Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (686)

Search Parameters:
Keywords = Cell penetrating peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Viewed by 294
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Viewed by 505
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

28 pages, 9321 KiB  
Article
In Situ Vaccination with a Vpr-Derived Peptide Elicits Systemic Antitumor Immunity by Improving Tumor Immunogenicity
by Danjie Pan, Ling Du, Jiayang Liu, Kudelaidi Kuerban, Xuan Huang, Yue Wang, Qiuyu Guo, Huaning Chen, Songna Wang, Li Wang, Pinghong Zhou, Zhefeng Meng and Li Ye
Vaccines 2025, 13(7), 710; https://doi.org/10.3390/vaccines13070710 - 30 Jun 2025
Viewed by 632
Abstract
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein [...] Read more.
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein R (Vpr) peptides as effective candidates for constructing anonymous antigen vaccines in situ by directly injecting at the tumor site and releasing whole-tumor antigens, inducing robust anti-tumor immune responses to overcome the limitations of predefined antigen vaccines. Methods: The cytotoxic effects of Vpr peptides were evaluated using the CCK8 reagent kit. Membrane penetration ability of Vpr peptides was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. EGFR levels in the cell culture supernatants of cells treated with Vpr peptides were evaluated using an ELISA. Surface exposure of CRT on the tumor cell surface was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. The secretion levels of ATP from tumor cells were evaluated using an ATP assay kit. HMGB1 release was evaluated using an ELISA. Mouse (Male C57BL/6 mice aged 4 weeks) MC38 and LLC bilateral subcutaneous tumor models were established to evaluate the therapeutic effects of Vpr peptides through in situ vaccination. Proteomic analysis was performed to explore the mechanism of anti-tumor activity of Vpr peptides. Results: Four Vpr peptides were designed and synthesized, with P1 and P4 exhibiting cytotoxic effects on tumor cells, inducing apoptosis and immunogenic cell death. In mouse tumor models, in situ vaccination with Vpr peptide significantly inhibited tumor growth and activated various immune cells. High-dose P1 monotherapy demonstrated potent anti-tumor effects, activating DCs, T cells, and macrophages. Combining ISV of P1 with a CD47 inhibitor SIRPαFc fusion protein showed potent distant tumor suppression effects. Proteomic analysis suggested that Vpr peptides exerted anti-tumor effects by disrupting tumor cell morphology, movement, and adhesion, and promoting immune cell infiltration. Conclusions: The designed Vpr peptides show promise as candidates for in situ vaccination, with significant anti-tumor effects, immune activation, and favorable safety profiles observed in mouse models. In situ vaccination with Vpr-derived peptides represents a potential approach for cancer immunotherapy. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

22 pages, 1990 KiB  
Article
Circadian-Tuned Peptide Drug/Gene Co-Delivery Nanocomplexes to Enhance Glioblastoma Targeting and Transfection
by Ana R. Neves, Eric Vivès, Prisca Boisguérin, Telma Quintela and Diana Costa
Int. J. Mol. Sci. 2025, 26(13), 6130; https://doi.org/10.3390/ijms26136130 - 26 Jun 2025
Viewed by 584
Abstract
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53 [...] Read more.
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53) have been associated with treatment resistance. Thus, this study aimed to explore an innovative therapeutic strategy to enhance treatment efficacy of GBM. Previously, our team had developed a WRAP5 cell-penetrating peptide (CPP) functionalized with a transferrin receptor ligand (Tf) for the targeted delivery of TMZ and a p53-encoding plasmid to glioma cells. Our research had elucidated the circadian oscillations of the clock genes in the U87 glioma cells by employing two different computational models and observed that T16 and T8 time points revealed the highest circadian activity for Bmal1 and Per2 genes, respectively. Similar analysis was conducted for the transferrin receptor, which revealed that T7 and T8 were the key time points for its expression. A confocal microscopy study indicated the highest intracellular uptake of complexes and p53 mRNA expression at T8, the time point with the highest Per2 and transferrin receptor expression. Following mRNA analysis, the evaluation of p53 levels confirmed transcriptional changes at the protein level, and that T16 appears to be a favourable time point for enhancing therapeutic efficacy in U87 glioblastoma cells. These findings suggested that synchronizing the complexes’ administration with the biological clock of GBM cells may significantly improve glioblastoma therapeutics. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Graphical abstract

12 pages, 3592 KiB  
Article
Membrane-Embedded Anti-Cancer Peptide Causes a Minimal Structural Perturbation That Is Sufficient to Enhance Phospholipid Flip-Flop and Charge Permeation Rates
by Alfredo E. Cardenas and Ron Elber
Life 2025, 15(7), 1007; https://doi.org/10.3390/life15071007 - 25 Jun 2025
Viewed by 408
Abstract
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents [...] Read more.
A prime role of biological membranes is to form barriers for material transport into and out of cells. Membranes consist of phospholipids with polar heads, which are presented to the aqueous solutions, and hydrophobic tails that form the membrane core. This construct prevents the permeation of hydrophilic, well-solvated molecules across the lipid hydrophobic barrier. The barrier is not absolute, and several approaches are available for efficient translocation. Channels and pumps enable selective and efficient transport across membranes. Another transport mechanism is passive permeation, in which permeants, without assistance, directly transport across membranes. Passive transport is coupled to transient defects in the membrane structure that make crossing the hydrophobic bilayer easier—for example, displacements of head groups from aqueous solution–membrane interface into the membrane core. The defects, in turn, are rare unless assisted by passively permeating molecules such as cell-penetrating peptides that distort the membrane structure. One possible defect is a phospholipid molecule with a head pointing to the hydrophobic core. This membrane distortion allows head group flipping from one layer to the other. We show computationally, using atomically detailed simulations and the Milestoning theory, that the presence of a cell-penetrating peptide in a membrane greatly increases phospholipid flip-flop rate and hence defect formation and the permeability of membranes. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

21 pages, 5739 KiB  
Article
Novel Lung Cell-Penetrating Peptide Targets Alveolar Epithelial Type II Cells, Basal Cells, and Ionocytes
by Jin Wen, Gajalakshmi Singuru, Jeffrey Stiltner, Sanjay Mishra, Kyle S. Feldman, Kayla McCandless, Raymond Yurko, Kazi Islam, Ray Frizzell, Hisato Yagi, Jonathan M. Brown and Maliha Zahid
Pharmaceutics 2025, 17(7), 824; https://doi.org/10.3390/pharmaceutics17070824 - 25 Jun 2025
Viewed by 582
Abstract
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies [...] Read more.
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies were performed in human bronchial epithelial cells (HBECs) with and without various endocytic inhibitors, and coincubation with fluorescently labeled transferrin or endocytic markers. Cyclic R11A (cR11A) was conjugated to siRNA duplexes and anti-viral activity against SARS-CoV-2 was tested. Biodistribution studies were performed by injecting wild-type mice with fluorescently labeled peptides, and various circulation times were allowed for, as well as cross-staining of lung sections or isolated single cells with various cellular markers, followed by fluorescence-activated cell sorting or confocal microscopy. Results: cR11A showed peak uptake in 15 min, with the highest uptake in airway epithelial type II (ATII) cells, followed by p63+ basal cells and ionocytes. Cyclization increased transduction efficiencies ~100-fold. Endocytosis studies showed a decrease in peptide uptake by pre-treatment with Pitstop2 but not Amiloride or Nystatin. Endocytic marker Lamp1 showed colocalization at the earliest time point, with the escape of the peptide from endocytic vesicles later. cR11A conjugated to ant-spike and anti-envelop proteins showed anti-viral effects with an EC90 of 0.6 μM and 1.0 µM, respectively. Conclusions: We have identified a novel peptide, cR11A, that targets ATII, basal cells, and ionocytes, the cyclization of which increased transduction efficiency in vitro and in vivo. The uptake mechanism appears to be via clathrin-mediated endocytosis with escape from endocytic vesicles. cR11A can act as a vector to deliver anti-viral siRNA to epithelial cells. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

14 pages, 2719 KiB  
Article
Combinatorial Effects of CPP-Modified Antimicrobial Peptides: Synergistic and Additive Interactions Against Pathogenic Bacteria
by Oxana V. Galzitskaya, Sergey V. Kravchenko, Sergei Y. Grishin, Alena P. Zakhareva, Leila G. Mustaeva, Elena Y. Gorbunova, Alexey K. Surin and Viacheslav N. Azev
Int. J. Mol. Sci. 2025, 26(13), 5968; https://doi.org/10.3390/ijms26135968 - 21 Jun 2025
Viewed by 443
Abstract
The development of novel antimicrobial peptides (AMPs) with broad-spectrum activity represents a promising strategy to overcome multidrug resistance in pathogenic bacteria. In this study, we investigated the antimicrobial activity of three designed peptides—R44KS*, V31KS*, and R23FS*—engineered to [...] Read more.
The development of novel antimicrobial peptides (AMPs) with broad-spectrum activity represents a promising strategy to overcome multidrug resistance in pathogenic bacteria. In this study, we investigated the antimicrobial activity of three designed peptides—R44KS*, V31KS*, and R23FS*—engineered to incorporate an amyloidogenic fragment from the S1 protein of Staphylococcus aureus and one or two cell-penetrating peptide (CPP) fragments to enhance cellular uptake. The antimicrobial efficacy of these peptides and their combinations was assessed against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Bacillus cereus. The results demonstrated that all three peptides exhibited significant antibacterial activity in a concentration-dependent manner, with R44KS* being the most potent. Peptide combinations, particularly V31KS*/R23FS* and R44KS*/V31KS*, showed enhanced inhibitory effects and reduced minimum inhibitory concentrations (MICs), suggesting synergistic or additive interactions. Fractional inhibitory concentration index (FICI) analysis confirmed that most combinations exhibited synergy or additive effects. These findings highlight the potential of CPP-modified peptides as antimicrobial agents and underscore the importance of optimizing peptide combinations for therapeutic applications. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 3709 KiB  
Article
An Effective Oral Nanodelivery Material for Curcumin: Ingenious Utilization of Gastrointestinal Absorption Characteristics
by Qiuxu An, Yuanyuan Liu, Guodong Liang, Yuewu Wang, Fengying Liang, Yunyang Bai, Chaolu Eerdun, Riqing Cheng, Haifeng Zhang and Xiaojie Lv
Molecules 2025, 30(12), 2536; https://doi.org/10.3390/molecules30122536 - 10 Jun 2025
Viewed by 475
Abstract
Curcumin exhibits compromised bioavailability upon oral administration due to its inherent limitations, including low aqueous solubility, poor membrane permeability, and chemical instability. Inspired by the efficient mechanism by which viruses penetrate mucus and cells, we constructed an electrically neutral and hydrophilic nanocarrier (C60-CPP5/Pser@CUR) [...] Read more.
Curcumin exhibits compromised bioavailability upon oral administration due to its inherent limitations, including low aqueous solubility, poor membrane permeability, and chemical instability. Inspired by the efficient mechanism by which viruses penetrate mucus and cells, we constructed an electrically neutral and hydrophilic nanocarrier (C60-CPP5/Pser@CUR) using fullerene C60 as the matrix modified with cell-penetrating peptides and phosphoserine. CPP5 facilitates efficient cellular internalization of therapeutic agents, while the incorporation of phosphoserine serves as a charge reversal strategy. This design enables dynamic surface charge modulation to enhance curcumin’s trans-barrier delivery efficiency. Systematic in vitro and in vivo evaluations demonstrated that the synthesized carrier significantly improved the synergistic effects of mucus penetration and cellular uptake. The Caco-2 cellular uptake of curcumin-loaded carriers was 2.26 times higher than that of free drugs. In a single-pass intestinal perfusion study in rat models, this nanocarrier significantly enhanced the absorption of curcumin in the duodenal and colonic regions. In the in vivo experiments, compared with free curcumin, its Cmax and AUC0–t achieved improvements of 2.60 times and 14.70 times, respectively. This virus-mimetic platform dynamically adapts to micro-environmental demands through charge reversal mechanisms, effectively overcoming sequential biological barriers and providing a robust strategy for oral delivery of hydrophobic therapeutics. Full article
Show Figures

Graphical abstract

31 pages, 2005 KiB  
Review
Peptide-Based Nanoparticle for Tumor Therapy
by Phonpilas Thongpon, Menghuan Tang and Zhaoqing Cong
Biomedicines 2025, 13(6), 1415; https://doi.org/10.3390/biomedicines13061415 - 9 Jun 2025
Viewed by 961
Abstract
Cancer treatment continues to face significant challenges due to the limitations of conventional therapies, including non-specific toxicity, poor bioavailability, and drug resistance. Nanotechnology, particularly peptide-based nanoparticles (NPs), is increasingly recognized as a valuable strategy to address these obstacles. Peptides provide a versatile platform [...] Read more.
Cancer treatment continues to face significant challenges due to the limitations of conventional therapies, including non-specific toxicity, poor bioavailability, and drug resistance. Nanotechnology, particularly peptide-based nanoparticles (NPs), is increasingly recognized as a valuable strategy to address these obstacles. Peptides provide a versatile platform offering high biocompatibility, specificity, biodegradability, and minimal immunogenicity, making them ideal for targeted cancer therapies. This review comprehensively examines recent advancements in peptide-based nanoparticle systems, highlighting the mechanisms driving peptide self-assembly, such as amphiphilicity, non-covalent interactions, and metal coordination. It distinguishes between non-bioactive peptide nanoparticles, which primarily serve as drug carriers, and bioactive peptide nanoparticles, which integrate targeting peptides, cell-penetrating peptides (CPPs), and therapeutic peptides to enhance specificity, internalization, and anticancer efficacy. Emphasis is placed on innovative designs that exploit active targeting, stimuli-responsive release, and immunomodulatory strategies to maximize therapeutic outcomes while minimizing side effects. Despite promising preclinical outcomes, the clinical translation of peptide nanoparticles struggles with challenges involving stability, delivery efficiency, scalability, regulatory compliance, and manufacturing complexity. The review concludes by outlining future directions, emphasizing personalized nanomedicine, combination therapies, and advanced peptide engineering as crucial pathways toward successful clinical implementation. Full article
Show Figures

Figure 1

24 pages, 2492 KiB  
Review
Antioxidant Peptides Derived from Woody Oil Resources: Mechanisms of Redox Protection and Emerging Therapeutic Opportunities
by Jia Tu, Jie Peng, Li Wen, Changzhu Li, Zhihong Xiao, Ying Wu, Zhou Xu, Yuxi Hu, Yan Zhong, Yongjun Miao, Jingjing Xiao and Sisi Liu
Pharmaceuticals 2025, 18(6), 842; https://doi.org/10.3390/ph18060842 - 4 Jun 2025
Viewed by 703
Abstract
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and [...] Read more.
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and molecular imprinting, each with distinct advantages in yield, selectivity, and scalability. The structure–activity relationships of antioxidant peptides are explored with respect to amino acid composition, molecular weight, and 3D conformation, which collectively determine their bioactivity and stability. Additionally, emerging delivery systems—such as nanoliposomes, microencapsulation, and cell-penetrating peptides—are discussed for their role in enhancing peptide stability, absorption, and targeted release. Mechanistic studies reveal that antioxidant peptides from woody oil resources act through network pharmacology, engaging core signaling pathways, including Nrf2/ARE, PI3K/Akt, AMPK, and JAK/STAT, to regulate oxidative stress, mitochondrial health, and inflammation. Preliminary safety data from in vitro, animal, and early clinical studies suggest low toxicity and favorable tolerability. The integration of omics technologies, molecular docking, and bioinformatics is accelerating the mechanism-driven design and functional validation of peptides. In conclusion, antioxidant peptides derived from woody oil resources represent a sustainable, multifunctional, and scalable solution for improving human health and promoting a circular bioeconomy. Future research should focus on structural optimization, delivery enhancement, and clinical validation to facilitate their industrial translation. Full article
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
Tripeptide-Loaded Liposomes as Multifunctional Components in Topical Formulations
by Michał Dymek, Maria José García-Celma, Elvira Escribano-Ferrer, Dawid Warszycki, Sławomir Kaźmierski, Łukasz Skoczylas, Małgorzata Tabaszewska and Elżbieta Sikora
Int. J. Mol. Sci. 2025, 26(11), 5321; https://doi.org/10.3390/ijms26115321 - 1 Jun 2025
Viewed by 849
Abstract
Modern dermocosmetics combine the effectiveness of active substances with the benefits of percutaneous penetration enhancers to address skin issues such as hyperpigmentation. In this study, three bioactive tripeptides (with amino acid sequences CSF, CVL, and CSN) with previously confirmed tyrosinase inhibition activity were [...] Read more.
Modern dermocosmetics combine the effectiveness of active substances with the benefits of percutaneous penetration enhancers to address skin issues such as hyperpigmentation. In this study, three bioactive tripeptides (with amino acid sequences CSF, CVL, and CSN) with previously confirmed tyrosinase inhibition activity were synthesized using the solid-phase synthesis method. The structures of the obtained peptides were determined. In addition, elastase in silico and in vitro inhibition assays were carried out. The tripeptides were subsequently encapsulated into liposomes, for which key physicochemical parameters were determined, including size, zeta potential, and encapsulation efficiency. The average diameter of the prepared liposomes was approximately 100 nm across all samples. The prepared carriers were found to be stable and exhibited no cytotoxicity toward reconstructed human epidermis cells. The peptides achieved an encapsulation efficiency of approximately 20–30%, with no significant differences observed between the cationic and anionic vesicles. Liposomes containing the CSF tripeptide, which showed the strongest tyrosinase-inhibiting effect, did not transport the peptide through the human skin in an ex vivo assay to permit quantification in the receptor solution, but facilitated penetration and retention of the tripeptide within the epidermis (4.65 ± 1.81 μg/cm2). These findings suggest that the prepared liposomes may serve as valuable carriers of bioactive tripeptides in anti-aging cosmetics. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

53 pages, 2354 KiB  
Review
Negative Immune Checkpoint Inhibitors
by Magda Drewniak-Świtalska, Paulina Fortuna and Małgorzata Krzystek-Korpacka
Pharmaceutics 2025, 17(6), 713; https://doi.org/10.3390/pharmaceutics17060713 - 28 May 2025
Viewed by 1103
Abstract
Checkpoint inhibitors are a modern therapeutic approach for treating various types of cancer, metabolic diseases, and chronic infections. The main goal of this therapy is to specifically unlock the immune system, allowing it to recognize and eliminate cancer cells or pathogens, primarily through [...] Read more.
Checkpoint inhibitors are a modern therapeutic approach for treating various types of cancer, metabolic diseases, and chronic infections. The main goal of this therapy is to specifically unlock the immune system, allowing it to recognize and eliminate cancer cells or pathogens, primarily through the activation of T lymphocytes. Monoclonal antibodies used in the treatment of various cancers, such as pembrolizumab (Keytruda), nivolumab (Opdivo), and ipilimumab (Yervoy), carry several limitations, primarily due to their large molecular size. The main challenges include limited tissue penetration, long half-life in the body, and the risk of autoimmune responses. Compared to antibodies, small-molecule and peptide inhibitors offer significant advantages related to their molecular structure. These drugs demonstrate a better ability to penetrate hard-to-reach areas, such as the tumor microenvironments, can be administered orally, and often show lower immunogenicity. A new generation of drugs is PROTACs, which combine the ability to direct proteins to degradation with the action of checkpoint inhibitors, contributing to the elimination of proteins responsible for suppressing the immune response. This publication describes small-molecule inhibitors, peptide inhibitors, and PROTAC molecules targeting negative immune checkpoints—CTLA-4, PD-1, VISTA, TIM-3, BTLA-4, LAG-3, and TIGIT. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

24 pages, 1060 KiB  
Review
Near-Infrared Photoimmunotherapy in Brain Tumors—An Unexplored Frontier
by Haruka Yamaguchi, Masayasu Okada, Takuya Otani, Jotaro On, Satoshi Shibuma, Toru Takino, Jun Watanabe, Yoshihiro Tsukamoto, Ryosuke Ogura, Makoto Oishi, Takamasa Suzuki, Akihiro Ishikawa, Hideyuki Sakata and Manabu Natsumeda
Pharmaceuticals 2025, 18(5), 751; https://doi.org/10.3390/ph18050751 - 19 May 2025
Viewed by 1008
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer treatment that uses near-infrared light to activate a conjugate of a monoclonal antibody (mAb) and a photoactivatable silica phthalocyanine dye (IRDye700DX: IR700). Unlike conventional photodynamic therapy (PDT), NIR-PIT selectively destroys targeted tumor cells while preserving the [...] Read more.
Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer treatment that uses near-infrared light to activate a conjugate of a monoclonal antibody (mAb) and a photoactivatable silica phthalocyanine dye (IRDye700DX: IR700). Unlike conventional photodynamic therapy (PDT), NIR-PIT selectively destroys targeted tumor cells while preserving the surrounding normal tissue and providing superior tissue penetration. Recently, NIR-PIT has been approved for the treatment of unresectable recurrent head and neck cancers in Japan. It induces highly selective cancer cell death; therefore, it is expected to be a new curative treatment option for various cancers, including brain tumors. In this review, we compare the principles of NIR-PIT and PDT and discuss the potential applications of NIR-PIT for brain tumors. We selected targetable proteins across various types of brain tumors and devised a strategy to effectively pass the mAb–IR700 conjugate through the blood–brain barrier (BBB), which is a significant challenge for NIR-PIT in treating brain tumors. Innovative approaches for delivering the mAb–IR700 conjugate across the BBB include exosomes, nanoparticle-based systems, and cell-penetrating peptides. Small-molecule compounds, such as affibodies, are anticipated to rapidly accumulate in tumors within intracranial models, and our preliminary experiments demonstrated rapid uptake. NIR-PIT also induces immunogenic cell death and activates the anti-tumor immune response. Overall, NIR-PIT is a promising approach for treating brain tumors. It has the potential to overcome the limitations of conventional therapies and offers new hope to patients with brain tumors. Full article
(This article belongs to the Special Issue Antibody-Based Imaging and Targeted Therapy in Cancer)
Show Figures

Figure 1

12 pages, 1743 KiB  
Article
Cell-Penetrating Peptide Based on Myosin Phosphatase Target Subunit Sequence Mediates Myosin Phosphatase Activity
by Andrea Kiss, Mohamad Mahfood, Zsófia Bodogán, Zoltán Kónya, Bálint Bécsi and Ferenc Erdődi
Biomolecules 2025, 15(5), 705; https://doi.org/10.3390/biom15050705 - 12 May 2025
Cited by 1 | Viewed by 492
Abstract
Myosin phosphatase (MP) holoenzyme consists of protein phosphatase-1 (PP1) catalytic subunit (PP1c) associated with myosin phosphatase target subunit-1 (MYPT1) and it plays an important role in mediating the phosphorylation of the 20 kDa light chain (MLC20) of myosin, thereby regulating cell contractility. The [...] Read more.
Myosin phosphatase (MP) holoenzyme consists of protein phosphatase-1 (PP1) catalytic subunit (PP1c) associated with myosin phosphatase target subunit-1 (MYPT1) and it plays an important role in mediating the phosphorylation of the 20 kDa light chain (MLC20) of myosin, thereby regulating cell contractility. The association of MYPT1 with PP1c increases the phosphatase activity toward myosin; therefore, disrupting/dissociating this interaction may result in inhibition of the dephosphorylation of myosin. In this study, we probed how MYPT132–58 peptide including major PP1c interactive regions coupled with biotin and cell-penetrating TAT sequence (biotin-TAT-MYPT1) may influence MP activity. Biotin-TAT-MYPT1 inhibited the activity of MP holoenzyme and affinity chromatography as well as surface plasmon resonance (SPR) binding studies established its stable association with PP1c. Biotin-TAT-MYPT1 competed for binding to PP1c with immobilized GST-MYPT1 in SPR assays and it partially relieved PP1c inhibition by thiophosphorylated (on Thr696 and Thr853) MYPT1. Moreover, biotin-TAT-MYPT1 dissociated PP1c from immunoprecipitated PP1c-MYPT1 complex implying its holoenzyme disrupting ability. Biotin-TAT-MYPT1 penetrated into A7r5 smooth muscle cells localized in the cytoplasm and nucleus and exerted inhibition on MP with a parallel increase in MLC20 phosphorylation. Our results imply that the biotin-TAT-MYPT1 peptide may serve as a specific MP regulatory cell-penetrating peptide as well as possibly being applicable to further development for pharmacological interventions. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

Back to TopTop