Peptide-Based Nanoparticle for Tumor Therapy
Abstract
1. Introduction
1.1. Context: Limitations of Conventional Cancer Therapies
1.2. Nanotechnology in Oncology: Nanoparticles as Delivery Platforms
1.2.1. Nanoparticles (NPs)
1.2.2. Passive Tumor Targeting
1.2.3. Active Tumor-Targeting Strategies
1.3. Peptides in Nanomedicine: Properties and Potential
1.4. Peptide-Based Nanoparticles: A Synergistic Approach
1.5. Review Scope and Structure
2. Driving Forces for Self-Assembly
2.1. Introduction to Peptide Self-Assembly
2.2. Amphiphilic Structure
2.3. Key Non-Covalent Interactions
2.4. Metal Coordination Interactions
2.5. Controlling Self-Assembly
- Temperature: Influences hydrophobic interactions and the kinetics of assembly. Some systems, like ELPs, exhibit specific inverse temperature transitions [2].
- Ionic Strength: Modulates electrostatic interactions by screening charges, which can either promote or inhibit assembly depending on the peptide sequence [19].
- Solvent Composition: The polarity and type of solvent significantly impact hydrophobic interactions and peptide conformation [2].
- Peptide Concentration: Self-assembly typically occurs above a critical aggregation concentration [21].
- Presence of Co-solutes/Interfaces: Interactions with guest molecules (drugs), metal ions, or surfaces can template or direct the assembly process [19].
3. Non-Bioactive Peptide-Based Nanoparticles for Tumor Therapy
3.1. Introduction
3.2. Polypeptide Nanoparticles
3.3. Teledendrimer Peptide Nanoparticles
3.4. Elastin-like Polypeptide (ELP) Nanoparticles
3.5. Peptide Hydrogels as Drug Delivery Systems
4. Bioactive Peptide-Based Nanoparticles for Tumor Therapy
4.1. Introduction
4.2. Targeting Peptides
4.2.1. Discovery of Targeting Peptides
4.2.2. Structural Considerations: Linear vs. Cyclic Peptides
4.2.3. Prominent Examples of Targeting Peptides for Nanoparticle Systems
RGD Peptides
NGR Peptides
LyP-1 Peptides
CREKA Peptides
Other Targeting Peptides
4.3. Penetrating Peptides (CPPs)
4.3.1. Mechanisms of Cellular Uptake
Direct Penetration (Translocation)
Endocytosis
Peptide Name (Sequence Example) | Target Receptor/Molecule | Receptor Location | Delivery Vehicle Type(s) Used | Delivery Mechanism/Key Outcome | Example Cancer Types | Ref. |
---|---|---|---|---|---|---|
RGD (e.g., cyclic RGDfK) | Integrins (αvβ3, αvβ5) | Tumor cells, tumor vasculature | Lipid–polymer hybrid nanoparticles, ferritin (fusion), Inulin multimethacrylate NPs | Receptor-mediated endocytosis/enhanced drug accumulation, delivery | Glioblastoma, melanoma, breast, prostate, ovarian, lung | [2,54,65] |
NGR (Asn-Gly-Arg) | Aminopeptidase N (CD13) | Tumor vasculature, some tumor cells | ND | Tumor vasculature-targeting/drug delivery | Glioma, breast, fibrosarcoma | [54] |
LyP-1 (CGNKRTRGC) | p32 (gC1qR/HABP1) | Tumor cells, macrophages, lymphatics | Oncolytic adenovirus (genetically modified fiber) | Receptor binding, enhanced viral tropism and replication in cancer cells/antitumor response, inhibited metastasis, augmented ICI therapy | Breast, osteosarcoma, prostate | [57] |
CREKA (Cys-Arg-Glu-Lys-Ala) | Fibrin/Fibrin–Fibronectin | Tumor stroma, tumor microthrombi | Amino dextran-coated iron oxide (SPIO) nanoparticles | ND | Glioblastoma, general solid tumors (anti-metastasis) | [61] |
HER2pep (YCDGFYACYMDV) | HER2 | Tumor cells | Liposomes (with oligolysine/EG linkers), Nanoparticles | Receptor-mediated endocytosis/enhanced cellular uptake, targeted drug delivery (e.g., doxorubicin, capecitabine) | HER2+ breast cancer | [68] |
THP (WNLPWYYSVSPTC) | HER2 | Tumor cells | Liposomes | Receptor binding/enhanced drug uptake, interference with apoptotic signaling | HER2+ breast cancer | [68] |
Ferritin protein | Transferrin receptor 1 (TfR1/CD71) | Tumor cells, BBB | Ferritin nanocage | TfR1-mediated transcytosis/endocytosis; enhanced tumor/brain accumulation of drugs (DOX, paclitaxel, cisplatin, etc.) | Various proliferating cancers, brain tumors | [65] |
Octreotide | Somatostatin receptors | Tumor cells | Nanoparticles (self-assembled with drug) | Receptor-mediated targeting/drug delivery (e.g., doxorubicin) | Neuroendocrine tumors | [2] |
P-LPK (LPKTVSSDMSLN) | Unspecified CRC receptor | Tumor cells | Self-assembled peptide–drug nanoparticles (LPK-PTX NPs) | Targeted delivery, enhanced intracellular internalization and tumor accumulation/improved tumor cytotoxicity, enhanced antitumor activity in vivo, decreased systemic toxicity. | Colorectal cancer (CRC) | [8] |
C-peptide (endostatin-derived) | Integrin αvβ3 | Tumor cells | Solid lipid nanoparticles (SLNs) | Integrin targeting; enhanced cytotoxicity, inhibited cell migration, pH-dependent drug release/tumor volume reduction, prevented metastasis, apoptosis induction. | Triple-negative breast cancer (TNBC) | [4] |
4.3.2. Strategies to Enhance Specificity and Overcome Limitations
4.4. Therapeutic Peptides
4.4.1. Pro-Apoptotic Peptides
Mechanisms of Apoptosis Induction
4.4.2. Immunomodulatory Peptides
Peptide Vaccines
Immune Checkpoint Blockade Peptides
Modulation of Innate and Adaptive Immune Cells
Targeting Immunosuppressive Mechanisms
Self-Assembling Immunomodulators
5. Conclusions and Discussion
5.1. Synthesis of Current Status
5.2. Major Challenges and Hurdles
Peptide Class | Specific Peptide Example (Name/Sequence) | Mechanism of Action | Target Pathway/ Molecule | Nanoparticle/Delivery Vehicle Type | Relevant Tumor Type(s) Example | Ref. |
---|---|---|---|---|---|---|
Pro-apoptotic | D[KLAKLAK]2 | Mitochondrial membrane disruption | Mitochondria | Iron oxide nanoparticles (“nanoworms”) | Glioblastoma (GBM) | [71] |
p28 (azurin fragment 50–77) | p53 stabilization, cell cycle arrest, apoptosis induction | p53 pathway | Used as CPP/single agent in trials | Solid tumors (GBM, CNS, hepatocellular carcinoma in trials), breast cancer (preclinical) | [70] | |
ALRN-6924 (stapled peptide) | Inhibition of p53 suppressors, p53 reactivation | MDM2, MDMX | Peptide therapeutic (stapled) | Solid tumors, lymphomas, AML, ER+ breast cancer | [47,70] | |
BIM-SAHB_A (stapled peptide) | Inhibition of anti-apoptotic proteins | Bcl-2, Bcl-xL, Mcl-1 | Stapled peptide | Hematologic cancers | [47] | |
Melittin | Membrane lysis, apoptosis induction, cell cycle arrest | Cell membrane, mitochondria, CDK pathways | Lipodisks, lipid nanoparticle, polymer conjugates (PEG), graphene complexes, fusion proteins, polymeric NPs (MpG@LPN), bioinspired lipoproteins, micelles | Breast, bladder, gastric, colorectal, liver, lung, melanoma, glioma | [16] | |
Immunomodulatory (vaccine) | TAA/TSA/neoantigen peptides (various) | Antigen presentation, T cell/B cell activation | MHC Class I/II, T cell receptors, B cell receptors | Peptide + adjuvant, self-healing microcapsules, phage display vectors | Melanoma, TNBC, glioma, CRC, NSCLC, pancreatic, ovarian, HER2+ breast cancer | [18] |
Immunomodulatory (checkpoint) | Anti-PD-L1 peptides (various) | Blockade of inhibitory PD-1/PD-L1 interaction | PD-1/PD-L1 axis | Self-assembling peptides (TAP), oral microemulsion (OPBP-1), multi-stimulus NPs (MAPN), PD-L1 peptide (PD-NPs). | various solid tumors (preclinical models, including PDX and anti-PD-1 resistant models) | [18] |
DTBP-3 (anti-TIGIT peptide) | Blockade of inhibitory TIGIT/PVR interaction | TIGIT/PVR axis | D-peptide | Anti-PD-1 resistant tumor models | [18] | |
Immunomodulatory (cell modulator) | M2pep | Targeting M2 macrophages for payload delivery | Scavenger receptor B type 1 (SR-B1) on M2 TAMs | Cyclodextrin-siRNA NPs, phage display strategy, ZrMOF nanoparticles | Prostate cancer, melanoma | [18,79,80] |
Pep-20 (anti-CD47 peptide) | Blockade of “don’t eat me” signal, enhances phagocytosis | CD47/SIRPα axis | ZrMOF nanoparticles, phage display strategy | Ovarian, breast, colon cancer, glioblastoma and acute lymphoblastic leukemia | [80,81] | |
(STING agonist peptides) | Activation of innate immunity, type I IFN production | cGAS-STING pathway | Self-assembling peptide hydrogels (STINGel); multi-stimulus NPs (MAPN). MnO2–melittin–manganese NPs (melittin induces STING), ZrMOF nanoparticles | Various solid tumors (preclinical) | [18,80] |
Regulatory and Manufacturing Hurdles
Challenge Category | Specific Challenge Description | Potential Solutions/Strategies | Ref. |
---|---|---|---|
Stability/PK | Peptide degradation (proteolysis), rapid clearance, short half-life | Peptide modification (cyclization, unnatural AAs, stapling), PEGylation, encapsulation/protection, High MW ELPs, fusion to carrier proteins | [3] |
NP instability, premature drug leakage | Cross-linking NP core/shell, optimizing formulation stability (e.g., using cholesterol in liposomes), controlled release mechanisms | [34] | |
Delivery/penetration | Low tumor accumulation (EPR limits), poor penetration into tumor | Active targeting ligands (peptides), tumor-penetrating peptides (e.g., iRGD, CPPs), TME normalization/modulation strategies, smaller NP size, stimuli-responsive penetration enhancement | [46] |
Crossing biological barriers (e.g., BBB) | Specific transporter-targeting peptides (e.g., TfR), rceptor-mediated transcytosis strategies, biomimetic approaches (e.g., RBC coating) | [46] | |
Endosomal escape for intracellular cargo | Incorporating endosomolytic peptides/agents, pH-responsive NPs, photochemical internalization | [47] | |
Specificity/toxicity | Off-target binding/uptake, toxicity to healthy tissues | High-affinity/specificity targeting peptides, targeting TME components, prodrug strategies, stimuli-responsive activation/release in tumor, PEGylation/stealth coatings to reduce RES uptake | [7] |
Tumor heterogeneity (receptor expression) | Multi-targeting strategies, targeting common markers, theranostic approaches for patient selection, adaptive therapies | [46] | |
Immunogenicity | Immune response to peptide or NP components | Peptide sequence modification (humanization), PEGylation/stealth coatings, immunosuppressive coatings/co-delivery, careful selection of NP materials (e.g., natural proteins like ferritin) | [13] |
Scalability/cost/regulatory | Complex synthesis, reproducibility, high production cost, regulatory hurdles | Simplified designs, robust self-assembly methods, scalable manufacturing techniques (e.g., microfluidics), cost-effective peptide synthesis, clearer regulatory pathways | [1] |
Clinical translation | Poor correlation between preclinical and clinical outcomes | Development of more predictive in vivo models (e.g., PDX, humanized mice), better understanding of NP–biology interactions, improved trial design, theranostic monitoring | [78] |
5.3. Future Outlook and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K.; Park, M.H. Role of Functionalized Peptides in Nanomedicine for Effective Cancer Therapy. Biomedicines 2024, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.B.; Ozguney, B.; Vlachou, A.; Chen, Y.; Gazit, E.; Tamamis, P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J. Phys. Chem. B 2023, 127, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Rahdari, T.; Mahdavimehr, M.; Ghafouri, H.; Ramezanpour, S.; Ehtesham, S.; Asghari, S.M. Advancing triple-negative breast cancer treatment through peptide decorated solid lipid nanoparticles for paclitaxel delivery. Sci. Rep. 2025, 15, 6043. [Google Scholar] [CrossRef]
- Gupta, D.; Roy, P.; Sharma, R.; Kasana, R.; Rathore, P.; Gupta, T.K. Recent nanotheranostic approaches in cancer research. Clin. Exp. Med. 2024, 24, 8. [Google Scholar] [CrossRef]
- Jindal, A.; Sarkar, S.; Alam, A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front. Chem. 2021, 9, 629635. [Google Scholar] [CrossRef]
- Sell, M.; Lopes, A.R.; Escudeiro, M.; Esteves, B.; Monteiro, A.R.; Trindade, T.; Cruz-Lopes, L. Application of Nanoparticles in Cancer Treatment: A Concise Review. Nanomaterials 2023, 13, 2887. [Google Scholar] [CrossRef]
- Hou, L.; Zhong, T.; Cheng, P.; Long, B.; Shi, L.; Meng, X.; Yao, H. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer. Front. Bioeng. Biothechnol. 2022, 10, 938662. [Google Scholar] [CrossRef]
- Lorenzoni, S.; Rodríguez-Nogales, C.; Blanco-Prieto, M.J. Targeting tumor microenvironment with RGD-functionalized nanoparticles for precision cancer therapy. Cancer Lett. 2025, 614, 217536. [Google Scholar] [CrossRef]
- Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A.M.; Sindhwani, S.; Zhang, Y.; Chen, Y.Y.; MacMillan, P.; Chan, W.C.W. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano 2018, 12, 8423–8435. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y.; Liu, G.; Song, Y.; Jiang, X.; Du, B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS Nano 2023, 17, 20825–20849. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Solanki, H.K.; Davidson, M.; Apostolopoulos, V.; Bojarska, J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022, 27, 7232. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, D.; Jiang, Y.-B.; Jiang, T. Design of Cell-Specific Targeting Peptides for Cancer Therapy. Targets 2024, 2, 186–201. [Google Scholar] [CrossRef]
- Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics 2021, 11, 579–601. [Google Scholar] [CrossRef]
- Alaei, E.; Hashemi, F.; Farahani, N.; Tahmasebi, S.; Nabavi, N.; Daneshi, S.; Mahmoodieh, B.; Rahimzadeh, P.; Taheriazam, A.; Hashemi, M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol. Res. Pract. 2025, 269, 155946. [Google Scholar] [CrossRef]
- Yu, X.; Jia, S.; Yu, S.; Chen, Y.; Zhang, C.; Chen, H.; Dai, Y. Recent advances in melittin-based nanoparticles for antitumor treatment: From mechanisms to targeted delivery strategies. J. Nanobiotechnol. 2023, 21, 454. [Google Scholar] [CrossRef]
- Peng, X.; Fang, J.; Lou, C.; Yang, L.; Shan, S.; Wang, Z.; Chen, Y.; Li, H.; Li, X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm. Sin. B 2024, 14, 3432–3456. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, J.; Bai, Y.; Zheng, C.; Wang, D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025, 17, 46. [Google Scholar] [CrossRef]
- Delfi, M.; Sartorius, R.; Ashrafizadeh, M.; Sharifi, E.; Zhang, Y.; De Berardinis, P.; Zarrabi, A.; Varma, R.S.; Tay, F.R.; Smith, B.R.; et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021, 38, 101119. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, I.; Sharma, A.K.; Kumar, P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front. Bioeng. Biothechnol. 2020, 8, 504. [Google Scholar] [CrossRef]
- Wang, X.J.; Cheng, J.; Zhang, L.Y.; Zhang, J.G. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: Recent developments, challenges, and future perspectives. Drug Deliv. 2022, 29, 1184–1200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, H.; Lu, L.; Wang, H. Engineering Peptide Self-Assembly: Modulating Noncovalent Interactions for Biomedical Applications. Acc. Mater. Res. 2025, 6, 447–461. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Zhang, X.; Zhou, Z.; Shen, X.; Hu, H.; Sun, R.; Tang, J. Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics 2023, 15, 482. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liao, M.; Gong, H.; Zhang, L.; Cox, H.; Waigh, T.A.; Lu, J.R. Recent advances in short peptide self-assembly: From rational design to novel applications. CCS Chem. 2020, 45, 1–13. [Google Scholar] [CrossRef]
- Ge, L.; Xu, H.; Jiang, X.; Yu, J. Oligopeptide Self-Assembly: Mechanisms, Stimuli-Responsiveness, and Biomedical Applications. CCS Chem. 2024, 6, 69–90. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, R.; Li, S.; Xing, R.; Zou, Q. Peptide-coordination self-assembly: Supramolecular design and biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134076. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Cui, Y. Artificial Metal–Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J. Am. Chem. Soc. 2021, 143, 17316–17336. [Google Scholar] [CrossRef]
- Fan, Z.; Iqbal, H.; Ni, J.; Khan, N.U.; Irshad, S.; Razzaq, A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Shati, A.A.; Zhou, J.; et al. Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges. Int. J. Pharm. X 2024, 7, 100238. [Google Scholar] [CrossRef]
- Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 776–791. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Graham, W.; Torbett-Dougherty, M.; Islam, A.; Soleimani, S.; Bruce-Tagoe, T.A.; Johnson, J.A. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. Nanomaterials 2025, 15, 285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide Dendrimer–Doxorubicin Conjugate-Based Nanoparticles as an Enzyme-Responsive Drug Delivery System for Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 1299–1308. [Google Scholar] [CrossRef]
- Zenze, M.; Daniels, A.; Singh, M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023, 15, 398. [Google Scholar] [CrossRef]
- Basingab, F.S.; Alshahrani, O.A.; Alansari, I.H.; Almarghalani, N.A.; Alshelali, N.H.; Alsaiary, A.H.; Alharbi, N.; Zaher, K.A. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. Breast Cancer 2025, 17, 27–51. [Google Scholar] [CrossRef]
- Shi, X.; Chen, D.; Liu, G.; Zhang, H.; Wang, X.; Wu, Z.; Wu, Y.; Yu, F.; Xu, Q. Application of Elastin-like Polypeptide in Tumor Therapy. Cancers 2022, 14, 3683. [Google Scholar] [CrossRef]
- Phan, A.; MacKay, J.A. Steric stabilization of bioactive nanoparticles using elastin-like polypeptides. Adv. Drug Deliv. Rev. 2024, 206, 115189. [Google Scholar] [CrossRef]
- Dreher, M.R.; Raucher, D.; Balu, N.; Michael Colvin, O.; Ludeman, S.M.; Chilkoti, A. Evaluation of an elastin-like polypeptide–doxorubicin conjugate for cancer therapy. J. Control Release 2003, 91, 31–43. [Google Scholar] [CrossRef]
- Bidwell, G.L. Novel Protein Therapeutics Created Using the Elastin-Like Polypeptide Platform. Physiology 2021, 36, 367–381. [Google Scholar] [CrossRef]
- Lima, L.F.; Sousa, M.G.D.C.; Rodrigues, G.R.; de Oliveira, K.B.S.; Pereira, A.M.; da Costa, A.; Machado, R.; Franco, O.L.; Dias, S.C. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. Front. Nanotechnol. 2022, 4, 874790. [Google Scholar] [CrossRef]
- Jiang, A.; Guan, X.; He, L.; Guan, X. Engineered elastin-like polypeptides: An efficient platform for enhanced cancer treatment. Front. Pharmacol. 2023, 13, 1113079. [Google Scholar] [CrossRef]
- Sarangthem, V.; Seo, B.-Y.; Yi, A.; Lee, Y.-J.; Cheon, S.-H.; Kim, S.K.; Singh, T.D.; Lee, B.-H.; Park, R.-W. Effects of molecular weight and structural conformation of multivalent-based elastin-like polypeptides on tumor accumulation and tissue biodistribution. Nanotheranostics 2020, 4, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Sim, D.; Lee, B.H.; Sarangthem, V.; Park, R.W. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J. Nanobiotechnol. 2024, 22, 293. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, M.; Wang, T.; Sun, M.; Huang, H.; Shi, X.; Duan, S.; Wu, Y.; Zhu, J.; Liu, F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Materials Today Bio 2023, 20, 100644. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Muñana-González, S.; Lanceros-Mendez, S.; Ruiz-Rubio, L.; Alvarez, L.P.; Vilas-Vilela, J.L. Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation. Polymers 2024, 16, 2599. [Google Scholar] [CrossRef]
- Branco, F.; Cunha, J.; Mendes, M.; Vitorino, C.; Sousa, J.J. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS Nano 2024, 18, 16359–16394. [Google Scholar] [CrossRef]
- Moreno-Vargas, L.M.; Prada-Gracia, D. Cancer-Targeting Applications of Cell-Penetrating Peptides. Int. J. Mol. Sci. 2024, 26, 2. [Google Scholar] [CrossRef]
- Han, X.; Zhang, X.; Kang, L.; Feng, S.; Li, Y.; Zhao, G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int. J. Biol. Macromol. 2025, 299, 140143. [Google Scholar] [CrossRef]
- Vadevoo, S.M.P.; Gurung, S.; Lee, H.S.; Gunassekaran, G.R.; Lee, S.M.; Yoon, J.W.; Lee, Y.K.; Lee, B. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023, 55, 1099–1109. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.-d.; Duan, H.-y.; Du, Y.-n.; Ye, J.-f. Phage-based peptides for pancreatic cancer diagnosis and treatment: Alternative approach. Front. Microbiol. 2023, 14, 1231503. [Google Scholar] [CrossRef]
- Ayo, A.; Laakkonen, P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shen, Z.; Chen, Y.; Wang, Y.; Zhou, X.; Chen, X.; Li, Y.; Zhang, P.; Zhang, Q. Research Progress on Cyclic-Peptide Functionalized Nanoparticles for Tumor-Penetrating Delivery. Int. J. Nanomed. 2024, 19, 12633–12652. [Google Scholar] [CrossRef]
- Wang, B.; Tang, D.; Cui, J.; Jiang, H.; Yu, J.; Guo, Z. RGD-based self-assembling nanodrugs for improved tumor therapy. Front. Pharmacol. 2024, 15, 1477409. [Google Scholar] [CrossRef]
- Prajapati, A.; Rangra, S.; Patil, R.; Desai, N.; Jyothi, V.G.S.S.; Salave, S.; Amate, P.; Benival, D.; Kommineni, N. Receptor-Targeted Nanomedicine for Cancer Therapy. Receptors 2024, 3, 323–361. [Google Scholar] [CrossRef]
- Conte, C.; Longobardi, G.; Barbieri, A.; Palma, G.; Luciano, A.; Dal Poggetto, G.; Avitabile, C.; Pecoraro, A.; Russo, A.; Russo, G.; et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Inter. J. Pharm. 2023, 633, 122618. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, J.; Hao, W.; Chen, M.; Wang, Y.; Xu, F.; Gao, C. Dual-Target Peptide-Modified Erythrocyte Membrane-Enveloped PLGA Nanoparticles for the Treatment of Glioma. Front. Oncol. 2020, 10, 563938. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Y.; Hu, Z.; Head, M.; Mangold, K.A.; Sullivan, M.; Wang, E.; Saha, P.; Gulukota, K.; Helseth, D.L.; et al. LyP-1-Modified Oncolytic Adenoviruses Targeting Transforming Growth Factor β Inhibit Tumor Growth and Metastases and Augment Immune Checkpoint Inhibitor Therapy in Breast Cancer Mouse Models. Hum. Gene Ther. 2020, 31, 863–880. [Google Scholar] [CrossRef]
- Zhong, Z.; Cai, L.; Li, C. Characterization and targeting ability evaluation of cell-penetrating peptide LyP-1 modified alginate-based nanoparticles. RSC Adv. 2020, 10, 32443–32449. [Google Scholar] [CrossRef]
- Marasini, R.; Nguyen, T.D.T.; Rayamajhi, S.; Aryal, S. Synthesis and characterization of a tumor-seeking LyP-1 peptide integrated lipid–polymer composite nanoparticle. Mater. Adv. 2020, 1, 469–480. [Google Scholar] [CrossRef]
- Park, J.-H.; von Maltzahn, G.; Xu, M.J.; Fogal, V.; Kotamraju, V.R.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 981–986. [Google Scholar] [CrossRef]
- Raha, S.; Paunesku, T.; Woloschak, G. Peptide-mediated cancer targeting of nanoconjugates. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ru, B.; Hu, J.; Xu, L.; Wan, Q.; Liu, W.; Cai, W.; Zhu, T.; Ji, Z.; Guo, R.; et al. Recent advances of CREKA peptide-based nanoplatforms in biomedical applications. J. Nanobiotechnol. 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Okur, A.C.; Erkoc, P.; Kizilel, S. Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf. B Biointerfaces 2016, 147, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, J.; Liu, S.; Wang, J.; Han, X.; Qin, H.; Lang, J.; Cheng, K.; Li, Y.; Qi, Y.; et al. Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 2017, 7, 1062–1071. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Y.; Cao, T.; Liu, X.; Liu, X.; Yan, Y.; Shi, Y.; Wang, J.C. Ferritin-based nanomedicine for disease treatment. Med. Rev. (2021) 2023, 3, 49–74. [Google Scholar] [CrossRef]
- Roszkowski, S.; Durczyńska, Z.; Szablewska, S. Targeted nanodelivery systems for personalized cancer therapy. Rep. Pract. Oncol. Radiother. 2024, 29, 776–788. [Google Scholar] [CrossRef]
- Du, J.J.; Zhang, R.Y.; Jiang, S.; Xiao, S.; Liu, Y.; Niu, Y.; Zhao, W.X.; Wang, D.; Ma, X. Applications of cell penetrating peptide-based drug delivery system in immunotherapy. Front. Immunol. 2025, 16, 1540192. [Google Scholar] [CrossRef]
- Cavallaro, P.A.; De Santo, M.; Belsito, E.L.; Longobucco, C.; Curcio, M.; Morelli, C.; Pasqua, L.; Leggio, A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. Nanomater. 2023, 13, 2476. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, S.B.; Park, S.J.; Kweon, S.; Ma, G.; Seo, M.; Kim, H.R.; Kang, T.B.; Lim, J.H.; Park, J. Cell-Penetrating Peptide Like Anti-Programmed Cell Death-Ligand 1 Peptide Conjugate-Based Self-Assembled Nanoparticles for Immunogenic Photodynamic Therapy. ACS Nano 2025, 19, 2870–2889. [Google Scholar] [CrossRef]
- Nhàn, N.T.T.; Yamada, T.; Yamada, K.H. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int. J. Mol. Sci. 2023, 24, 12931. [Google Scholar] [CrossRef]
- Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA 2011, 108, 17450–17455. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Jothiswaran, V.V.; Singh, A.; Sharma, A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. Explor. Target. Anti-Tumor Ther. 2024, 5, 1074–1099. [Google Scholar] [CrossRef] [PubMed]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari-Nazari, H.; Tavakkol-Afshari, J.; Jaafari, M.R.; Tahaghoghi-Hajghorbani, S.; Masoumi, E.; Jalali, S.A. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice. PLoS ONE 2015, 10, e0142563. [Google Scholar] [CrossRef]
- Tran, T.A.; Kim, Y.H.; Kim, G.E.; Jung, S.; Kim, I.Y.; Moon, K.S.; Kim, Y.J.; Lee, T.K.; Yun, H.; Lee, J.J.; et al. The long multi-epitope peptide vaccine combined with adjuvants improved the therapeutic effects in a glioblastoma mouse model. Front. Immunol. 2022, 13, 1007285. [Google Scholar] [CrossRef]
- Zamani, P.; Teymouri, M.; Nikpoor, A.R.; Navashenaq, J.G.; Gholizadeh, Z.; Darban, S.A.; Jaafari, M.R. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Eur. J. Cancer 2020, 129, 80–96. [Google Scholar] [CrossRef]
- Sui, X.; Niu, X.; Zhou, X.; Gao, Y. Peptide drugs: A new direction in cancer immunotherapy. Cancer Biol. Med. 2024, 21, 198–203. [Google Scholar] [CrossRef]
- Bai, X.; Smith, Z.L.; Wang, Y.; Butterworth, S.; Tirella, A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines 2022, 13, 1623. [Google Scholar] [CrossRef]
- Sun, Y.; Cronin, M.F.; Mendonça, M.C.P.; Guo, J.; O’Driscoll, C.M. M2pep-Modified Cyclodextrin-siRNA Nanoparticles Modulate the Immunosuppressive Tumor Microenvironment for Prostate Cancer Therapy. Mol. Pharm. 2023, 20, 5921–5936. [Google Scholar] [CrossRef]
- Hussain, Z.; Gou, S.; Liu, X.; Li, M.; Zhang, H.; Ren, S.; Han, R.; Liu, F.; Zhou, X.; Qiu, L.; et al. Enhancing tumor immunotherapy with smart nanoparticles for reprogramming macrophages and blocking the CD47/Sirpα pathway. Mater. Today Bio 2025, 32, 101826. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Zhou, X.; Chen, C.; Jiao, L.; Li, W.; Gou, S.; Li, Y.; Du, J.; Chen, G.; et al. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000905. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, Q.; Wang, Y.; Liu, X.; Lu, M.; Li, Z.; Jiang, X.; Ji, J. Preparation of Glutathione-Responsive Paclitaxel Prodrug Based on Endogenous Molecule of L-Glutathione Oxidized for Cancer Therapy. Pharmaceutics 2024, 16, 1178. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Al Amili, M.; Guo, S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Zhong, W.; Ren, X.; Sha, X.; Fang, X. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: Preparation and in vitro and in vivo evaluation. Int. J. Nanomed. 2016, 11, 1643–1661. [Google Scholar] [CrossRef]
- Gotov, O.; Battogtokh, G.; Ko, Y.T. Docetaxel-Loaded Hyaluronic Acid–Cathepsin B-Cleavable-Peptide–Gold Nanoparticles for the Treatment of Cancer. Mol. Pharm. 2018, 15, 4668–4676. [Google Scholar] [CrossRef]
- Goles, M.; Daza, A.; Cabas-Mora, G.; Sarmiento-Varón, L.; Sepúlveda-Yañez, J.; Anvari-Kazemabad, H.; Davari, M.D.; Uribe-Paredes, R.; Olivera-Nappa, Á.; Navarrete, M.A.; et al. Peptide-based drug discovery through artificial intelligence: Towards an autonomous design of therapeutic peptides. Brief. Bioinform. 2024, 25, bbae275. [Google Scholar] [CrossRef]
- Batra, R.; Loeffler, T.D.; Chan, H.; Srinivasan, S.; Cui, H.; Korendovych, I.V.; Nanda, V.; Palmer, L.C.; Solomon, L.A.; Fry, H.C.; et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 2022, 14, 1427–1435. [Google Scholar] [CrossRef]
- Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A.; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush, T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongpon, P.; Tang, M.; Cong, Z. Peptide-Based Nanoparticle for Tumor Therapy. Biomedicines 2025, 13, 1415. https://doi.org/10.3390/biomedicines13061415
Thongpon P, Tang M, Cong Z. Peptide-Based Nanoparticle for Tumor Therapy. Biomedicines. 2025; 13(6):1415. https://doi.org/10.3390/biomedicines13061415
Chicago/Turabian StyleThongpon, Phonpilas, Menghuan Tang, and Zhaoqing Cong. 2025. "Peptide-Based Nanoparticle for Tumor Therapy" Biomedicines 13, no. 6: 1415. https://doi.org/10.3390/biomedicines13061415
APA StyleThongpon, P., Tang, M., & Cong, Z. (2025). Peptide-Based Nanoparticle for Tumor Therapy. Biomedicines, 13(6), 1415. https://doi.org/10.3390/biomedicines13061415