Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,395)

Search Parameters:
Keywords = Catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
23 pages, 5217 KiB  
Article
High-Performance Pd-Pt/α-MnO2 Catalysts for the Oxidation of Toluene
by Ning Dong, Wenjin Wang, Xuelong Zheng, Huan Liu, Jingjing Zhang, Qing Ye and Hongxing Dai
Catalysts 2025, 15(8), 746; https://doi.org/10.3390/catal15080746 (registering DOI) - 5 Aug 2025
Abstract
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, [...] Read more.
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, 0.46, 0.89, and 0 wt%) catalysts were prepared using the polyvinyl alcohol-protected NaBH4 reduction method. The physicochemical properties of the catalysts were determined by means of various techniques and their catalytic activities for toluene oxidation were evaluated. It was found that among the xPd-yPt/α-MnO2 samples, 0.93Pd-0.89Pt/α-MnO2 showed the best catalytic performance, with the toluene oxidation rate at 156 °C (rcat) and space velocity = 60,000 mL/(g h) being 6.34 × 10−4 mol/(g s), much higher than that of 0.91Pt/α-MnO2 (1.31 × 10−4 mol/(g s)) and that of 0.92Pd/α-MnO2 (6.13 × 10−5 mol/(g s)) at the same temperature. The supported Pd-Pt bimetallic catalysts possessed higher Mn3+/Mn4+ and Oads/Olatt molar ratios, which favored the enhancement in catalytic activity of the supported Pd-Pt bimetallic catalysts. Furthermore, the 0.47Pd-0.46Pt/α-MnO2 sample showed better resistance to sulfur dioxide poisoning. The partial deactivation of 0.47Pd-0.46Pt/α-MnO2 was attributed to the formation of sulfate species on the sample surface, which covered the active site of the sample, thus decreasing its toluene oxidation activity. In addition, the in situ DRIFTS results demonstrated that benzaldehyde and benzoate were the intermediate products of toluene oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 (registering DOI) - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

17 pages, 2337 KiB  
Article
Oxygen Reduction by Amide-Ligated Cobalt Complexes: Effect of Hydrogen Bond Acceptor
by Zahra Aghaei, Adedamola A. Opalade, Victor W. Day and Timothy A. Jackson
Molecules 2025, 30(15), 3274; https://doi.org/10.3390/molecules30153274 - 5 Aug 2025
Abstract
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts [...] Read more.
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts can be modulated to optimize their performance. In this present work, we describe two CoII complexes [CoII(PaPy2Q)](OTf) (1) and [CoII(PaPy2N)](OTf) (2) that catalyze chemical and electrochemical dioxygen reduction. Both 1 and 2 contain CoII centers in a N5 coordination environment, but 2 has a naphthyridine group that places a nitrogen atom in the secondary coordination sphere. Solid-state X-ray crystallography and solution-state spectroscopic measurements reveal that, apart from this second-sphere nitrogen in 2, complexes 1 and 2 have essentially identical properties. Despite these similarities, 2 performs the chemical reduction of dioxygen ~10-fold more rapidly than 1. In addition, 2 has an enhanced performance in the electrochemical reduction of dioxygen compared to 1. Both complexes yield a significant amount of H2O2 in the chemical reduction of dioxygen (>25%). The enhanced catalytic performance of 2 is attributed to the presence of the second-sphere nitrogen atom, which might enable the efficient protonation of cobalt–oxygen intermediates formed during turnover. Full article
(This article belongs to the Special Issue Metal Complexes: Synthesis, Characterization and Applications)
Show Figures

Figure 1

17 pages, 17592 KiB  
Article
Functional Identification of Acetyl-CoA C-Acetyltransferase Gene from Fritillaria unibracteata
by Zichun Ma, Qiuju An, Xue Huang, Hongting Liu, Feiying Guo, Han Yan, Jiayu Zhou and Hai Liao
Horticulturae 2025, 11(8), 913; https://doi.org/10.3390/horticulturae11080913 (registering DOI) - 4 Aug 2025
Abstract
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active [...] Read more.
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active ingredient production of plants; however, the functional characterization of MVA-pathway genes in the Liliaceae family remains poorly documented. In this study, an Acetyl-CoA C-acetyltransferase gene (FuAACT) was first cloned from F. unibracteata. It exhibited structural features of the thiolase family and showed the highest sequence identity with the Dioscorea cayenensis homolog. The Km, Vmax, and Kcat of the recombinant FuAACT were determined to be 3.035 ± 0.215 μM, 0.128 ± 0.0058 μmol/(min·mg), and 1.275 ± 0.0575 min−1, respectively. The optimal catalytic conditions for FuAACT were ascertained to be 30 °C and pH 8.9. It was stable below 50 °C. His361 was confirmed to be a key amino acid residue to enzymatic catalysis by site-directed mutagenesis. Subsequent subcellular localization experiments demonstrated that FuAACT was localized in chloroplasts and cytoplasm. FuAACT-overexpressing transgenic Arabidopsis thaliana plants showed higher drought tolerance than wild-type plants. This phenotypic difference was corroborated by significant differences in seed germination rate, lateral root number, plant height, and leaf number (p < 0.05). Furthermore, the FuAACT transgenic plants resulted in the formation of a more developed fibrous root system. These results indicated that the FuAACT gene revealed substantial biological activity in vitro and in vivo, hopefully providing the basis for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 59
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

15 pages, 1407 KiB  
Article
Expression of Recombinant Hirudin in Bacteria and Yeast: A Comparative Approach
by Zhongjie Wang, Dominique Böttcher, Uwe T. Bornscheuer and Christian Müller
Methods Protoc. 2025, 8(4), 89; https://doi.org/10.3390/mps8040089 (registering DOI) - 3 Aug 2025
Viewed by 115
Abstract
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an [...] Read more.
The expression of recombinant proteins in heterologous hosts is a common strategy to obtain larger quantities of the “protein of interest” (POI) for scientific, therapeutic or commercial purposes. However, the experimental success of such an approach critically depends on the choice of an appropriate host system to obtain biologically active forms of the POI. The correct folding of the molecule, mediated by disulfide bond formation, is one of the most critical steps in that process. Here we describe the recombinant expression of hirudin, a leech-derived anticoagulant and thrombin inhibitor, in the yeast Komagataella phaffii (formerly known and mentioned throughout this publication as Pichia pastoris) and in two different strains of Escherichia coli, one of them being especially designed for improved disulfide bond formation through expression of a protein disulfide isomerase. Cultivation of the heterologous hosts and expression of hirudin were performed at different temperatures, ranging from 22 to 42 °C for the bacterial strains and from 20 to 30 °C for the yeast strain, respectively. The thrombin-inhibitory potencies of all hirudin preparations were determined using the thrombin time coagulation assay. To our surprise, the hirudin preparations of P. pastoris were considerably less potent as thrombin inhibitors than the respective preparations of both E. coli strains, indicating that a eukaryotic background is not per se a better choice for the expression of a biologically active eukaryotic protein. The hirudin preparations of both E. coli strains exhibited comparable high thrombin-inhibitory potencies when the strains were cultivated at their respective optimal temperatures, whereas lower or higher cultivation temperatures reduced the inhibitory potencies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
by Olga Morozova, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov and Tatyana Fedorova
Int. J. Mol. Sci. 2025, 26(15), 7488; https://doi.org/10.3390/ijms26157488 (registering DOI) - 2 Aug 2025
Viewed by 204
Abstract
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation [...] Read more.
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation and in a heterogeneous reaction of dioxygen electroreduction. The ThL and CcL laccases belong to high-redox-potential enzymes (E0T1 = 780 mV), while the AfL and SmL laccases are medium-redox-potential enzymes (E0T1 = 620 and 650 mV). We evaluated the efficiency of laccases in mediatorless bioelectrocatalytic dioxygen reduction by the steady-state potential (Ess), onset potential (Eonset), half-wave potential (E1/2), and the slope of the linear segment of the polarization curve. A good correlation was observed between the T1 center potential of the laccases and their electrocatalytic characteristics; however, no correlation with the homogeneous reactions of electron donor substrates’ oxidation was detected. The results obtained are discussed in the light of the known data on the three-dimensional structures of the laccases studied. Full article
(This article belongs to the Special Issue Advanced Research on Enzymes in Biocatalysis)
Show Figures

Graphical abstract

16 pages, 1976 KiB  
Article
Anatase-Free Nanosized Hierarchical Titanosilicate TS-1 Synthesis via Nitric Acid-Catalyzed Gel Preparation
by Vera R. Bikbaeva, Sergey V. Bubennov, Dmitry V. Serebrennikov, Daria A. Ogurechnikova, Evgenii V. Vakulin, Boris I. Kutepov, Nellia G. Grigoreva and Anton L. Maximov
Gels 2025, 11(8), 605; https://doi.org/10.3390/gels11080605 - 2 Aug 2025
Viewed by 125
Abstract
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can [...] Read more.
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can be obtained from gels synthesized with hydrolysis catalysts (HNO3 and tetrapropylammonium hydroxide). When nitric acid catalyzes tetraethyl orthosilicate (TEOS) hydrolysis, the resulting crystalline TS-1 that can be obtained has uniform particle sizes (150–180 nm), is anatase-free, and contains up to 46–67% of mesopores. When a base catalyst is applied, the obtained material’s features are opposite. Moreover, acid-promoted TS-1 samples catalyze cyclohexene H2O2-oxidation via a heterolytic route to the cyclohexane epoxide with 67% selectivity, which is non-typical. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

37 pages, 5131 KiB  
Review
Coating Metal–Organic Frameworks (MOFs) and Associated Composites on Electrodes, Thin Film Polymeric Materials, and Glass Surfaces
by Md Zahidul Hasan, Tyeaba Tasnim Dipti, Liu Liu, Caixia Wan, Li Feng and Zhongyu Yang
Nanomaterials 2025, 15(15), 1187; https://doi.org/10.3390/nano15151187 - 2 Aug 2025
Viewed by 262
Abstract
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, [...] Read more.
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, have resulted in significant interest in MOFs for applications in gas storage, catalysis, sensing, energy, and biomedicine. Beyond their stand-alone properties and applications, recent research has increasingly explored the integration of MOFs with other substrates, particularly electrodes, polymeric thin films, and glass surfaces, to create synergistic effects that enhance material performance and broaden application potential. Coating MOFs onto these substrates can yield significant benefits, including, but not limited to, improved sensitivity and selectivity in electrochemical sensors, enhanced mechanical and separation properties in membranes, and multifunctional coatings for optical and environmental applications. This review provides a comprehensive and up-to-date summary of recent advances (primarily from the past 3–5 years) in MOF coating techniques, including layer-by-layer assembly, in situ growth, and electrochemical deposition. This is followed by a discussion of the representative applications arising from MOF-substrate coating and an outline of key challenges and future directions in this rapidly evolving field. This article aims to serve as a focused reference point for researchers interested in both fundamental strategies and applied developments in MOF surface coatings. Full article
Show Figures

Figure 1

17 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 110
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

18 pages, 1390 KiB  
Review
Fantastic Ferulic Acid Esterases and Their Functions
by Savvina Leontakianakou, Patrick Adlercreutz and Eva Nordberg Karlsson
Int. J. Mol. Sci. 2025, 26(15), 7474; https://doi.org/10.3390/ijms26157474 (registering DOI) - 2 Aug 2025
Viewed by 205
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester [...] Read more.
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester bond between FA and the substituted carbohydrate moieties in FA-containing polysaccharides in the plant cell wall. This enzymatic reaction facilitates the degradation of lignocellulosic materials and is crucial for the efficient utilization of biomass resources. This review focuses on the occurrence of ferulic acid in nature and its different forms and outlines the various classification systems of FAEs, their substrate specificity, and the synergistic interactions of these enzymes with other CAZymes. Additionally, it highlights the various methods that have been developed for detecting hydroxycinnamic acids and estimating the enzyme activity, as well as the versatile applications of ferulic acid. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Graphical abstract

Back to TopTop