Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = California redwood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2316 KiB  
Article
Fuels Treatments and Tending Reduce Simulated Wildfire Impacts in Sequoia sempervirens Under Single-Tree and Group Selection
by Jade D. Wilder, Keith A. Shuttle, Jeffrey M. Kane and John-Pascal Berrill
Forests 2025, 16(6), 1000; https://doi.org/10.3390/f16061000 - 13 Jun 2025
Viewed by 477
Abstract
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire [...] Read more.
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire behavior over a century in stands dominated by coast redwood (Sequoia sempervirens (Lamb. ex. D. Don) Endl.) on California’s north coast. We used the fire and fuels extension to the forest vegetation simulator (FFE-FVS) to compare group selection (GS) to single-tree selection silviculture with either low-density (LD) or high-density (HD) retention on a 20-year harvest return interval. These three approaches were paired with six options involving vegetation management (i.e., hardwood control or pre-commercial thinning (PCT)) with and without fuels treatments (i.e., prescribed fire or pile burning), or no subsequent vegetation or fuel treatment applied after GS, HD, or LD silviculture. Fuel treatment involving prescribed fire reduced hazardous fuel loading but lowered stand density and hence productivity. Hardwood control followed by prescribed fire mitigated potential wildfire behavior and promoted dominance of merchantable conifers. PCT of small young trees regenerating after selection harvests, followed by piling and burning of these cut trees, sustained timber production while reducing potential wildfire behavior by approximately 40% relative to selection silviculture without vegetation/fuel management, which exhibited the worst potential wildfire behavior. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

9 pages, 5721 KiB  
Communication
Reproduction of a Serotinous Conifer, the Giant Sequoia, in a Large High-Severity Fire Area
by Chad T. Hanson, Tonja Y. Chi, Maya Khosla, Bryant C. Baker and Craig Swolgaard
Fire 2024, 7(2), 44; https://doi.org/10.3390/fire7020044 - 31 Jan 2024
Cited by 3 | Viewed by 3052
Abstract
Giant sequoia groves, located on the western slope of the central and southern Sierra Nevada mountains in California, USA, have been experiencing regeneration failure for more than a century due to the exclusion of wildfires. Giant sequoias are serotinous conifers and have evolved [...] Read more.
Giant sequoia groves, located on the western slope of the central and southern Sierra Nevada mountains in California, USA, have been experiencing regeneration failure for more than a century due to the exclusion of wildfires. Giant sequoias are serotinous conifers and have evolved a strong relationship between high-severity fire and reproduction. While this relationship is widely recognized, only one previous peer-reviewed study has directly investigated giant sequoia reproduction and fire severity, and that study used different fires for each severity class. We conducted a study of giant sequoia reproduction and fire severity in a single fire, the KNP Complex fire of 2021, within the Redwood Mountain Grove in Sequoia and Kings Canyon National Park. We found that giant sequoia seedlings are more dominant relative to other conifer species and are growing faster in a large high-severity fire area than in adjacent low/moderate-severity areas. Distance to the nearest live sequoia seed source was not a significant factor in sequoia seedling density. Our results call into question the basis for widespread plans and projects designed to prevent high-severity fires and should reevaluate moving forward with proposed tree planting activities in high-severity fire areas within giant sequoia groves. Full article
Show Figures

Figure 1

57 pages, 18765 KiB  
Article
Three Censuses of a Mapped Plot in Coastal California Mixed-Evergreen and Redwood Forest
by Gregory S. Gilbert, Sarah G. Carvill, Alexander R. Krohn and Alexander S. Jones
Forests 2024, 15(1), 164; https://doi.org/10.3390/f15010164 - 12 Jan 2024
Cited by 1 | Viewed by 2525
Abstract
Large, mapped forest research plots are important sources of data to understand spatial and temporal changes in forest communities in the context of global change. Here, we describe the data from the first three censuses of the 16-ha UC Santa Cruz Forest Ecology [...] Read more.
Large, mapped forest research plots are important sources of data to understand spatial and temporal changes in forest communities in the context of global change. Here, we describe the data from the first three censuses of the 16-ha UC Santa Cruz Forest Ecology Research Plot, located in the Mediterranean-climate forest on the central coast of California, USA. The forest includes both mixed-evergreen forest and redwood-dominated forest and is recovering from significant logging disturbances in the early 20th century. Each woody stem with a diameter ≥ 1 cm at 1.3 m was mapped, tagged, identified, and measured, with censuses performed at ~5-year intervals. The first census included just 6 ha (previously described), and the area was then expanded to 16 ha in the second census. We describe the temporal dynamics of the forest in the original 6 ha, as well as the structure and temporal dynamics of the full 16 ha. The community includes 34 woody species, including 4 gymnosperm and 9 angiosperm tree species, 18 species of shrubs, and 3 species of lianas. The community includes eight non-native species, representing less than 0.5% of the stems. More than half the species show greater rates of mortality than recruitments, reflective of a dynamic forest community. Over a decade, the number of living woody stems has declined, but the basal area has increased, reflecting a self-thinning process. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 1884 KiB  
Article
Residual Stand Structure and Topography Predict Initial Survival and Animal Browsing of Redwood and Douglas-Fir Seedlings Planted in Coastal Forests of Northern California
by Kurt A. Schneider, John-Pascal Berrill, Christa M. Dagley, Lynn A. Webb and Aaron Hohl
Sustainability 2023, 15(23), 16409; https://doi.org/10.3390/su152316409 - 29 Nov 2023
Cited by 1 | Viewed by 1174
Abstract
Successful regeneration of commercial species is central to the long-term sustainability of forests managed for wood production. We studied two species of tree seedlings planted after group selection and single-tree selection harvesting in a 20 ha replicated silviculture experiment in stands dominated by [...] Read more.
Successful regeneration of commercial species is central to the long-term sustainability of forests managed for wood production. We studied two species of tree seedlings planted after group selection and single-tree selection harvesting in a 20 ha replicated silviculture experiment in stands dominated by coast redwood (Sequoia sempervirens (D.Don) Endl.). Treatments consisted of complete harvest in 1 ha group selection opening (GS), low-density dispersed retention (LD), aggregated high-density retention (HA), and dispersed high-density retention (HD). One year after planting, seedlings planted on a southwest aspect had the lowest survival rate, while northeast aspects had nearly complete survival rates. As expected, redwood had a higher survival rate than coast Douglas-fir (Pseudotsuga menziesii var menziesii (Mirb.) Franco). Survival rates exhibited a rise-peak-fall pattern with stand density, most notably on southwest-facing slopes, ranking LD > HA ≈ HD > GS treatments. Deer browsing of planted seedlings was a pervasive problem where Douglas-fir were preferentially browsed over redwood. In treatments with higher retention densities, browsing was less likely, ranking GS > LD > HA > HD treatments. Further from watercourses at higher elevation, the probability of browsing diminished. Overall, dispersed treatments outperformed aggregated and GS treatments by simultaneously maximizing survival and minimizing browsing of planted seedlings. We did not perform site preparation or herbicide treatment of re-sprouting hardwoods following harvest, and therefore recommend testing the effectiveness of understory vegetation management to enhance seedling survival. Consideration could also be given to planting more seedlings in anticipation of lower survival rates, and/or implementing seedling protection measures when and where heavy browsing is expected. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

16 pages, 2681 KiB  
Article
Bat Use of Hollows in California’s Old-Growth Redwood Forests: From DNA to Ecology
by Amon J. Armstrong, Faith M. Walker, Colin J. Sobek, Cheri J. Sanville, Stephanie L. Martin and Joseph M. Szewczak
Animals 2022, 12(21), 2950; https://doi.org/10.3390/ani12212950 - 27 Oct 2022
Cited by 4 | Viewed by 4200
Abstract
The loss of roosting resources, either through disturbance or removal, negatively affects bats. Identifying sensitive species and determining roost requirements are critical components in conserving their habitat. Cavity-roosting bats on the North Coast of California are known to use hollows in large redwood [...] Read more.
The loss of roosting resources, either through disturbance or removal, negatively affects bats. Identifying sensitive species and determining roost requirements are critical components in conserving their habitat. Cavity-roosting bats on the North Coast of California are known to use hollows in large redwood trees. In this study, we examined the factors determining the use of basal tree hollows by different bat species at eight redwood forest sites in Del Norte, Humboldt, and Mendocino Counties, California. Bat guano was collected from 179 basal hollow roosts from 2017 to 2018, and guano mass was used as an index of roosting activity. Nine bat species and one species group were identified by analysis of DNA in guano. We made a total of 253 identifications from 83 hollows into the 10 species categories. The most prevalent species were Myotis californicus (California myotis; 28.5% of all identifications), the Myotis evotis-Myotis thysanodes group (17.4%), Corynorhinus townsendii (17.0%), and Myotis volans (15.0%). We evaluated the extent to which habitat variables at the scales of the hollow, vicinity, and site influenced the level of roost use. The correlations between guano mass and habitat variables were examined using generalized additive mixed models. At the hollow scale, guano mass increased with ceiling height above the opening. At the vicinity scale, guano mass increased with less cover of small trees. At the site scale, there was no association between guano mass and distance to foraging areas, elevation, or the number of nearby hollows. These tree hollow roost preferences can inform land managers when planning the management and conservation of redwood forests. Full article
Show Figures

Figure 1

10 pages, 3843 KiB  
Article
Initial Floristic Response to High Severity Wildfire in an Old-Growth Coast Redwood (Sequoia sempervirens (D. Don) Endl.) Forest
by Mojgan Mahdizadeh and Will Russell
Forests 2021, 12(8), 1135; https://doi.org/10.3390/f12081135 - 23 Aug 2021
Cited by 8 | Viewed by 4634
Abstract
Climate driven increases in fire frequency and severity are predicted for Mediterranean climatic zones, including the Pacific coast of California. A recent high severity wildfire that burned in the Santa Cruz Mountains affected a variety of vegetation types, including ancient coast redwood ( [...] Read more.
Climate driven increases in fire frequency and severity are predicted for Mediterranean climatic zones, including the Pacific coast of California. A recent high severity wildfire that burned in the Santa Cruz Mountains affected a variety of vegetation types, including ancient coast redwood (Sequoia sempervirens (D. Don) Endl.) stands. The purpose of this study was to characterize the survival and initial recovery of vegetation approximately six months after the fire. We sampled thirty randomly selected points in an old-growth coast redwood forest to examine and compare survival, crown retention, and post fire regeneration of trees by species, and the recovery of associated understory plant species. Sequoia sempervirens exhibited the highest post-fire survival (95%), with lower survival rates for subcanopy hardwood associates including tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos) (88%), coast live oak (Quercus agrifolia Nee.) (93%), Pacific wax myrtle (Myrica californica (Cham. & Schltdl.) Wilbur) (75%), Pacific madrone (Arbutus menziesii Pursh) (71%), and the lowest survival recorded for the canopy codominant Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) (15%). Canopy retention and post fire regeneration were also highest for S. sempervirens and lowest for P. menziesii, indicating that S. sempervirens had a competitive advantage over P. menziesii following high severity crown fire. Both canopy survival and regeneration were greater for larger height and diameter trees; and basal sprouting was positively associated with tree height and diameter for S. sempervirens and N. densiflorus. Observed recovery of understory species was modest but included the reemergence of coast redwood associated herbaceous species. The robust nature of survival and recovery of S. sempervirens following this extreme fire event suggest that the removal of scorched, and the seeding or planting of trees, following this type of fire is contraindicated. The decline of P. menziesii is of concern, however, and suggests that repeated high severity fires driven by climate change could eventually lead to vegetation type conversion. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2082 KiB  
Article
Bark Thickness in Coast Redwood (Sequoia sempervirens (D.Don) Endl.) Varies According to Tree- and Crown Size, Stand Structure, Latitude and Genotype
by John-Pascal Berrill, Kevin L. O’Hara and Nickolas E. Kichas
Forests 2020, 11(6), 637; https://doi.org/10.3390/f11060637 - 4 Jun 2020
Cited by 15 | Viewed by 4731
Abstract
Research Highlights: Bark thickness (BT) in coastal redwood (Sequoia sempervirens (D.Don) Endl.) varies in accordance with tree size, crown ratio, position within the canopy, height along the tree stem, genetic identity and latitude. However, current BT predictive equations do not account [...] Read more.
Research Highlights: Bark thickness (BT) in coastal redwood (Sequoia sempervirens (D.Don) Endl.) varies in accordance with tree size, crown ratio, position within the canopy, height along the tree stem, genetic identity and latitude. However, current BT predictive equations do not account for such variability, leading to inaccurate BT estimations. We present improved BT models to increase the accuracy of BT estimates for coastal redwood in northern California. Background and Objectives: BT is an important metric that has many practical applications in forest management. However, BT varies substantially across species and environments, as well as across individuals and populations. Our objectives were to investigate BT along various gradients of change, with factors accounting for genetics, tapering of BT along the tree bole, differences in BT according to tree crown position within the stand, and the latitude. Materials and Methods: We collected BT data throughout most of redwood’s natural range along a north–south latitudinal gradient. Subsets of these data were used to examine the influence of particular variables on BT while holding the other variables constant. Results: Regionally, the bark was thicker among more xeric southern redwoods and thinner among more mesic northern redwoods. We found that the BT of codominant, intermediate and suppressed trees was around 8%, 14%, and 18% thicker, respectively, than bark of the same size dominant tree. Redwood trees growing in the partial shade of an overstory had thicker bark than trees growing in even-aged stands and incorporating genetic identity yielded major improvements in the BT model estimates, suggesting that BT is under genetic control. Bark thickness decreased with increasing height along the tree stem, with notable differences in the BT above and below breast height. Conclusions: We recommend utilizing the best available BT equations (over standard ‘bark factors’) in forest science, modeling and management applications. We also recommend the adoption of our drilling method for BT measurement on larger trees due to the potential for error associated with traditional bark gauge measurements. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 10083 KiB  
Article
High-Resolution Mapping of Redwood (Sequoia sempervirens) Distributions in Three Californian Forests
by Emily J. Francis and Gregory P. Asner
Remote Sens. 2019, 11(3), 351; https://doi.org/10.3390/rs11030351 - 10 Feb 2019
Cited by 7 | Viewed by 6984
Abstract
High-resolution maps of redwood distributions could enable strategic land management to satisfy diverse conservation goals, but the currently-available maps of redwood distributions are low in spatial resolution and biotic detail. Classification of airborne imaging spectroscopy data provides a potential avenue for mapping redwoods [...] Read more.
High-resolution maps of redwood distributions could enable strategic land management to satisfy diverse conservation goals, but the currently-available maps of redwood distributions are low in spatial resolution and biotic detail. Classification of airborne imaging spectroscopy data provides a potential avenue for mapping redwoods over large areas and with high confidence. We used airborne imaging spectroscopy data collected over three redwood forests by the Carnegie Airborne Observatory, in combination with field training data and application of a gradient boosted regression tree (GBRT) machine learning algorithm, to map the distribution of redwoods at 2-m spatial resolution. Training data collected from the three sites showed that redwoods have spectral signatures distinct from the other common tree species found in redwood forests. We optimized a gradient boosted regression model for high performance and computational efficiency, and the resulting model was demonstrably accurate (81–98% true positive rate and 90–98% overall accuracy) in mapping redwoods in each of the study sites. The resulting maps showed marked variation in redwood abundance (0–70%) within a 1 square kilometer aggregation block, which match the spatial resolution of currently-available redwood distribution maps. Our resulting high-resolution mapping approach will facilitate improved research, conservation, and management of redwood trees in California. Full article
(This article belongs to the Special Issue Remote Sensing for Biodiversity, Ecology and Conservation)
Show Figures

Graphical abstract

12 pages, 1739 KiB  
Article
Amount and Location of Damage to Residual Trees from Cut-to-Length Thinning Operations in a Young Redwood Forest in Northern California
by Kyungrok Hwang, Han-Sup Han, Susan E. Marshall and Deborah S. Page-Dumroese
Forests 2018, 9(6), 352; https://doi.org/10.3390/f9060352 - 13 Jun 2018
Cited by 16 | Viewed by 3735
Abstract
A cut-to-length (CTL) harvest system using a harvester and forwarder has been recently introduced in northern California (USA) for thinning young (<25 years old) redwood forests (Sequoia sempervirens (Lamb. ex D. Don) Endl.). However, the severity of CTL damage to residual trees [...] Read more.
A cut-to-length (CTL) harvest system using a harvester and forwarder has been recently introduced in northern California (USA) for thinning young (<25 years old) redwood forests (Sequoia sempervirens (Lamb. ex D. Don) Endl.). However, the severity of CTL damage to residual trees in this forest type are unknown. The goals of this study were to (1) determine the location, size, and number of scars resulting from CTL harvesting and (2) compare scar size differences between redwood clumps and individual trees in two units. Most scars occurred on trees located near the forwarding trails. Wider and longer scars were associated with clumped trees (9.1–12.2 cm wide and 28.1–46.2 cm long) as compared to scars on individual trees (8.1–9.5 cm wide and 16.7–31.3 cm long), and 16–32% of the residual trees were scarred. Determining a minimum scar size will define the severity of stand damage; larger scars result in a longer time until closure. However, counting all the smaller scars that result from CTL harvesting will result in a large number of counted damaged trees. Therefore, we suggest that scars smaller than 5–10 cm width are acceptable on coastal redwood after CTL thinning. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 2506 KiB  
Article
Second-Log Branching in Multiaged Redwood and Douglas-Fir: Influence of Stand, Site, and Silviculture
by Christopher Kirk and John-Pascal Berrill
Forests 2016, 7(7), 147; https://doi.org/10.3390/f7070147 - 16 Jul 2016
Cited by 9 | Viewed by 5226
Abstract
We studied branching in Sequoia sempervirens (Lamb. ex D. Don) Endl. (coast redwood) and Pseudotsuga menziesii (Mirb.) Franco var. menziesii (coast Douglas-fir) because of their commercial value to coastal northern California. We focused on branching in the second log, which constitutes an important [...] Read more.
We studied branching in Sequoia sempervirens (Lamb. ex D. Don) Endl. (coast redwood) and Pseudotsuga menziesii (Mirb.) Franco var. menziesii (coast Douglas-fir) because of their commercial value to coastal northern California. We focused on branching in the second log, which constitutes an important part of a tree’s wood volume and potential value. We quantified branch size and branch growth of overstory trees in multiaged stands in Mendocino County, California, in response to topographic, silvicultural, and stand- and tree-related variables. Higher stand density—a measure of competition averaged across the sample plot—did not correlate with size of the largest second-log branch measured but was associated with a smaller average diameter of the largest branches measured on all sides of the study tree. The largest branch measured was smaller when in closer proximity to branches of its immediate neighbor tree. Redwood had larger branches than Douglas-fir but their size was more sensitive to an ecological gradient of soil-moisture deficit. Branches responded differently to individual tree selection harvest of conifers versus herbicide control of hardwoods. Residual conifer branches in harvested plots responded almost immediately with increased growth, but this release was short-lived. Branches in herbicide-treated plots exhibited a delayed release, giving more consistent branch growth throughout two five-year measurement periods after treatment. Full article
Show Figures

Graphical abstract

13 pages, 1911 KiB  
Article
Predicting Aboveground Biomass in Second Growth Coast Redwood: Comparing Localized with Generic Allometric Models
by Anil Raj Kizha and Han-Sup Han
Forests 2016, 7(5), 96; https://doi.org/10.3390/f7050096 - 27 Apr 2016
Cited by 14 | Viewed by 7409
Abstract
Biomass amounts predicted by generalized models are often not applicable for small regions. Localized allometric models were developed relating tree/biomass components to diameter at breast height (dbh) for coast redwood (Sequoia sempervirens (D. Don) Endl.) from an industrial timberland in northwestern California, [...] Read more.
Biomass amounts predicted by generalized models are often not applicable for small regions. Localized allometric models were developed relating tree/biomass components to diameter at breast height (dbh) for coast redwood (Sequoia sempervirens (D. Don) Endl.) from an industrial timberland in northwestern California, USA. dbh for the candidate trees ranged from 2.54 cm to 84.07 cm. Biomass of tree components, such as bole, foliage, bark, live and dead branches, along with the total aboveground biomass (TAGB) were estimated. Other tree dimensions such as tree height, height to live crown, weight and volume of bole wood were also modeled. Localized allometric models were able to explain more than 93% of the variability for most of the tree components (p < 0.001). Biomass amounts predicted from the widely used generalized models were different from that estimated by the localized allometric model developed from this study. However, the results presented in this study should be used carefully to predict the biomass components, if applied outside the stated dbh range or stand conditions on which this study was based. Full article
Show Figures

Figure 1

Back to TopTop