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Abstract: High-resolution maps of redwood distributions could enable strategic land management
to satisfy diverse conservation goals, but the currently-available maps of redwood distributions
are low in spatial resolution and biotic detail. Classification of airborne imaging spectroscopy data
provides a potential avenue for mapping redwoods over large areas and with high confidence.
We used airborne imaging spectroscopy data collected over three redwood forests by the Carnegie
Airborne Observatory, in combination with field training data and application of a gradient boosted
regression tree (GBRT) machine learning algorithm, to map the distribution of redwoods at 2-m
spatial resolution. Training data collected from the three sites showed that redwoods have spectral
signatures distinct from the other common tree species found in redwood forests. We optimized
a gradient boosted regression model for high performance and computational efficiency, and the
resulting model was demonstrably accurate (81–98% true positive rate and 90–98% overall accuracy)
in mapping redwoods in each of the study sites. The resulting maps showed marked variation
in redwood abundance (0–70%) within a 1 square kilometer aggregation block, which match the
spatial resolution of currently-available redwood distribution maps. Our resulting high-resolution
mapping approach will facilitate improved research, conservation, and management of redwood
trees in California.

Keywords: Carnegie Airborne Observatory; tree species classification; coastal redwood; gradient
boosted regression; CART; hyperspectral imagery

1. Introduction

Coastal redwoods (Sequoia sempervirens) are an exceptionally charismatic species. They are the
tallest trees on earth, with some individuals taller than 100 m and older than 2000 years in age.
Redwoods are endemic to the central coast of California and Southern Oregon, and redwood forests
are locally- and globally-valued ecosystems [1]. Historically, redwoods have been an important source
of lightweight, decay-resistant timber, and redwood logging remains an important source of revenue in
some regions. Redwood forests are unique sites for recreation, and visitors to redwood-dominated state
and national parks contribute $34 million dollars each year to local economies [1]. Redwoods have also
been the focus of recent research interest due to their unique potential for carbon storage [2], with some
redwood forests estimated to store 2600 mg of aboveground carbon per unit hectare, the highest values
recorded on earth [3].

Given the multiple and diverse interests in redwoods within the state of California, strategic
land management is needed to bolster conservation goals [1]. Redwood conservation has a long
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history in California, beginning with the founding of the first state park in 1901 following intensive
and unregulated logging of old-growth redwoods during the second half of the eighteenth century.
While some old-growth forests were protected, logging in many redwood forest regions in California
continued until the 1970s, when the passing of the Endangered Species Act increased the cost of
obtaining a permit to harvest redwoods [4]. Currently, approximately 90% of extant redwood forest is
second-growth forest that has been logged at some point during the last two centuries. Redwood forests
are fragmented by past harvest history and current land use pressures, and accordingly, there is a need
for local-scale, high resolution management of redwood forest land. Maps of redwood distributions are
currently available at 1-km spatial resolution, but due to the complex topography, geology, and climate
of coastal California, the abundance and properties of redwoods can vary enormously within a 1 km2

area. Higher-resolution maps have not yet been produced due to the challenge of conducting field
work to identify trees over large areas in topographically complex regions.

Remote sensing image analysis provides an array of potential tools for mapping vegetation
properties [5]. Variation in sensor type, the spectral resolution of the sensor and the spatial resolution
of the data have different applications. Passive sensors such as the Landsat Multispectral Scanner
(MSS), have been used for mapping vegetation types at the community level and regional scales [6].
Active remote sensing has also been applied for wetland vegetation classification, for example through
the identification of mangroves in Vietnam from the Advanced Land Observing Satellite Phased Array
type L-band Synthetic Aperture Radar (ALOS PALSAR) data [7]. With imagery at higher spatial
resolution, discrimination of individual tree species is possible. Sentinal-2A—a satellite multispectral
spectrometer with 13 spectral bands, ranging from 10–60 m resolution—was used to map tree species
with 65% overall accuracy in Germany [8]. QuickBird satellite data at less than 3-m resolution was
used to map forty tree species with a kappa coefficients between 0.68 and 0.94 [9], and WorldView-2
satellite data at 2-m resolution was used to map 10 tree species in Austria with between 33 and 94%
producer’s accuracies and 57–92% user’s accuracies [10].

Classification of imagery high in both spectral and spatial resolution has an especially effective
approach for mapping of individual tree species across a multitude of environments. Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) imagery, at 3.5 m resolution and including 224 bands,
was used to map urban tree species in Southern California with 94% accuracy at the tree type level and
70% accuracy at the individual tree level [11]. Hyperspectral data including 214 bands at approximately
2-m resolution from the Carnegie Airborne Observatory (CAO) was used to map tree species in a
tropical forest with 94–97% producer’s accuracy and 94–100% user’s accuracy [12]. Combining
high-resolution hyperspectral data with structural attributes of species derived from LiDAR data has
also yielded maps with high accuracy. Including LiDAR-derived height and canopy profile information
improved producer’s accuracies by 5.1–11.6%, and user’s accuracies by 8.4–18.8% for mapping 11 trees
species in Canada from Airborne Imaging Spectrometer for Applications (AISA) hyperspectral data at
2-m resolution and LiDAR data at 0.8 m resolution [13].

Tree species classifications from remotely-sensed imagery have been implemented with both
parametric and nonparametric classification algorithms [14], however, recent approaches have focused
on nonparametric machine learning (ML) algorithms because they have shown to be high-performing
and efficient [15]. Support vector machine (SVM) is the most widely-used algorithm for tree
species mapping from remotely-sensed data [14], however, artificial neural networks (ANN) [16]
and decision-tree-based methods such as random forest (RF) [17,18] and gradient boosted regression
trees (GBRT) have also been used [19]. For example, a recent comparison of SVM with an RF classifier
for mapping multiple tree species in Muir Woods National Monument in California with AISA
hyperspectral imagery found that the SVM produced slightly higher overall accuracy (95.02% for SVM
and 92.91% for RF) [20]. Gradient boosted regression trees (GBRT) are similar to RF, however for GBRT,
regression trees are fitted sequentially on observations that are modelled poorly by the existing set of
trees, which has the potential to improve their performance [21]. GBRT have been used less frequently
than RF thus far, but have performed well for species mapping in recent studies. For example, a recent
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study using GBRT to map giant sequoia trees from CAO hyperspectral imagery from the southern
Sierra Nevada mountains in California yielded 95.2–98% overall accuracy [22], and a study comparing
SVM with GBRT’s for detecting Ohi’a crowns infected with rapid Ohi’a death on Hawaii island found
that using a combined SVM and GBRT approach yielded higher performance than either algorithm
independently [19]. Other decision tree algorithms such as rotation forest [23] and logistic model tree
algorithms [7] have recently been successfully applied for mapping mangrove species.

Here, using imaging spectroscopy data collected from the Carnegie Airborne Observatory (CAO)
and field training data, we used the unique reflectance signatures of redwoods in a GBRT classification
model to identify redwoods with high accuracy in hyperspectral images collected from three forests.
We used a grid search to identify a GBRT model that minimizes false detections of redwoods while
maintaining high computational efficiency for application on large datasets. We then applied this
model to three coastal redwood forests in California, and compared its performance across three forests
with multiple measures of model performance. We used the resulting maps to assess variability in
redwood distributions at 10-m resolution and discussed its potential for advancing knowledge on
redwood ecology and improving the efficiency of redwood conservation and management.

2. Materials and Methods

2.1. Study Sites

We focused our study on three redwood forests in Northern California. Big Basin is the
southernmost site (122◦35′W, 37◦57′N), with a mean annual precipitation of 1093 mm and mean
annual temperature of 14.72 ◦C, Muir Woods is the mid-latitude site with a mean annual precipitation
of 1160 mm and a mean annual temperature of 13.96 ◦C (122◦35′W, 37◦57′N), and Jackson Forest is the
northernmost site (123◦35′W, 39◦21′N), with a mean annual precipitation of 1214 mm and mean annual
temperature of 13.14 ◦C [24]. All three sites have a rainy season in winter, and summers characterized
by frequent fog cover [4]. The area of data collection coverage was largest at Jackson Forest, with a
flight-box area of 261.41 km2, and smallest at Big Basin with a flight-box area of 27.66 km2. The area of
flight coverage at Muir Woods was 52.16 km2. While all three forests contain areas of both old-growth
and second-growth redwood forests, Jackson Forest is the only site with an active harvest operation.
Portions of Big Basin were logged as recently as the 1980s, whereas Muir Woods is mostly older
second-growth, with the most recent logging occurring in the early 1900s.

2.2. Airborne Data Acquisition

We collected imaging spectroscopy and Light Detection and Ranging (LiDAR) data over three
redwood forests in July of 2016 using the CAO (Figure 1, Table 1). The CAO is an aircraft that
carries a Visible-to-Shortwave Imaging Spectrometer (VSWIR) coaligned with a dual-channel LiDAR
sensor [25]. Data collection was performed at altitude of 1000 m above ground level at Big Basin and
2000 m above ground level at Muir Woods and Jackson Forest, yielding 1-m resolution data at Big
Basin and 2-m resolution data at Muir Woods and Jackson Forest. LiDAR returns were processed
to a three-dimensional LiDAR point cloud with the position and orientation data collected from the
GPS-Inertial Measurement System (IMU) navigation system on-board the CAO, and were further
processed to digital surface maps of ground elevation, canopy surface elevation, and canopy height
at 0.5- or 1-m resolution depending on the site using the LAStools software suite [25]. The VSWIR
collected data from 349 to 2482 nm in 427 distinct channels at a 5-nm wavelength increment, determined
as the full-width at half maximum of a Gaussian response function. To improve the signal-to-noise
ratio prior to atmospheric correction, VSWIR data were reduced by averaging each pair of neighboring
channels, yielding 214 channels at 10-nm increments.
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Figure 1. Map of the three study sites and airborne spectroscopy and field data collected. The 
airborne imaging spectroscopy data are displayed for each site as a three-band RGB (red, green, and 
blue) composite image. The locations of individual field-collected data (including both training and 
testing data) are shown as red dots within each site. Field data were collected to cover each Carnegie 
Airborne Observatory flightline. 

Table 1. Date and time of Carnegie Airborne Observatory (CAO) airborne data acquisition and date 
of field data acquisition from each site. 

Site Date Time 
Jackson Forest 23 July 2016 12:00–15:30 
Muir Woods 24 July 2016 11:00–12:00 

Big Basin 1 August 2016 12:30–1:00 

2.3. Imaging Spectrometer Data Processing 

Figure 1. Map of the three study sites and airborne spectroscopy and field data collected. The airborne
imaging spectroscopy data are displayed for each site as a three-band RGB (red, green, and blue)
composite image. The locations of individual field-collected data (including both training and testing
data) are shown as red dots within each site. Field data were collected to cover each Carnegie Airborne
Observatory flightline.

Table 1. Date and time of Carnegie Airborne Observatory (CAO) airborne data acquisition and date of
field data acquisition from each site.

Site Date Time

Jackson Forest 23 July 2016 12:00–15:30
Muir Woods 24 July 2016 11:00–12:00

Big Basin 1 August 2016 12:30–1:00
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2.3. Imaging Spectrometer Data Processing

The imaging spectroscopy data were radiometrically converted to radiance data with a flat field
conversion and spectral calibration data, and were then ortho-georectified to the LiDAR surface
elevation maps using the position and orientation data collected from the GPS-Inertial Measurement
System (IMU) navigation system on-board the CAO [25]. The ACORN-6LX atmospheric correction
model was then used to convert radiance to surface-level reflectance, with flight altitude and
surface elevation inputs derived from the LiDAR data, and an internal Gaussian spectral response
function (Imspec LLC, Glendale, California, USA). The ACORN-6LX visibility parameter specifies the
atmospheric aerosol content at the time of data collection. A different visibility parameter was fit for
each flightline of the reflectance data, in order to account for changes in atmospheric aerosols that
occur throughout the day and thus vary across flightlines [19]. The visibility parameter was adjusted
until the reflectance at 420 nm was 1%. Surface reflectance data from each flightline were mosaicked
into a single image for each site. Prior to further analysis, reflectance data were filtered to remove the
bands that primarily reflect absorption by atmospheric water vapor (1310–1460 nm and 1761–2021 nm)
and at the upper and lower edges of the instrument detection limits (349–429 nm and 2432–2472 nm).
We used the LAStools software package to produce a map of digital elevation and top-of-canopy height
from the LiDAR point cloud data (Rapidlasso GmbH; Gilching, Germany). The top-of-canopy height
map was then used with solar and viewing geometry data to identify pixels that were shaded at the
time of the overflight, following prior work using CAO data [25–27].

2.4. Field Training Data Collection

Field data were collected from each of the three study sites from February–March 2017, to identify
pixels belonging to redwood trees and other species (Table 2). At each site, a tiled three-band composite
of the reflectance data at 1–2-m resolution and top-of-canopy height images at 0.5–1-m resolution were
loaded into the iGIS program on an iPad [28]. Individuals from each species were identified along
trails at each of the three sites, and the pixels corresponding to those individuals were circled in the
image. Training data were collected from at least 60 redwood trees and at least 60 individuals from
the other common tree species at each site. Crowns were identified from at least 30 individuals of
broadleaved trees, including tanoak (Lithocarpus densiflorus), madrone (Arbutus menziesii), and coast
live oak (Quercus agrifolia), and at least forty Douglas fir (Pseudotsuga menziesii) trees at each site and
five ponderosa pine trees at Big Basin. We collected additional training data from Douglas fir because
they are the other commonly-occurring coniferous species in redwood forests, and we expected that
they might show similar reflectance signatures to redwoods [20].

Based on our observations in the field, location uncertainty of the iPad GPS could vary from
0 to 30 m, and sometimes exceeded the radius of individual tree crowns. We accounted for this in
a variety of ways. First, we focused our collection to individuals that were easy to pick out in the
combination of top-of-canopy height and RGB images because they were taller than their neighbors.
We also identified adjacent individuals of the same species, so that we could identify groups of pixels
>30 m in radius that belonged to same species, and we identified landmarks such as trails to aid in
location triangulation in the field. To check our ability to collect good field training data with these
approaches, we compared the reflectance of redwoods and Douglas fir (Figure A1 in Appendix A),
two species that were similar in height, and often growing in mixed stands. We collected training data
from redwoods and other species across all of the flightlines at each site, in order to minimize effects
caused by differences in the visibility parameter of the atmospheric correction model (Figure 1).

Within each site, the dataset was then partitioned into a training dataset for classification model
development and a testing dataset for classification model validation. Approximately 50% of redwood
crowns from each site and fifty percent of crowns from other species from each site were placed into
the testing dataset, with the remaining crowns placed into the training dataset. Crowns were randomly
selected from the entire dataset of redwood crowns and other crowns, in order to ensure that the
testing dataset and the training dataset were spatially distributed throughout the image. We combined



Remote Sens. 2019, 11, 351 6 of 19

the training data together from all three sites to build the classification model, and included a variable
indicating the site in the model. Prior to further analysis, shaded pixels (identified by the LiDAR
data as described above) and pixels with a normalized difference vegetation index (NDVI) of less
than 0.7 [12], and pixels shorter than 2-m in height were removed from the dataset in order to remove
shaded pixels and pixels with low leaf area [12,29]. We calculated NDVI using bands 35 (689.62 nm,
near infrared) and 23 (569.45 nm, red) of the spectral data. The resulting sample size for training the
model for was 6627 redwood pixels and 2816 other pixels for training, and 3249 redwood pixels and
2422 other pixels for testing. Sample sizes for each site are shown in Table 2.

Table 2. Sample sizes for the training and testing datasets for all three sites. Pixel values indicate the
sample sizes input during the model development and testing. Values shown are the values following
the masking of shaded and low-normalized difference vegetation index (NDVI) pixels.

Big Basin Muir Woods Jackson Forest All sites

Redwood Other Redwood Other Redwood Other Redwood Other

Training Crowns 109 37 51 47 72 76 232 160
Pixels 4899 1086 906 852 822 878 6627 2816

Testing Crowns 55 24 32 37 43 47 130 108
Pixels 2192 1078 514 839 543 505 3249 2422

Total
Crowns 164 61 83 84 115 123 362 268
Pixels 7091 2164 1420 1691 1365 1383 9876 5283

2.5. Gradient Boosted Regression Tree Modeling

A gradient boosted regression tree (GBRT) model was used to classify pixels as either redwood
pixels or other pixels. The GBRT is a decision-tree-based method, and it was selected because it
effectively models nonlinear relationships, is a robust to predictor variables that have little to no
influence on the response variable [21,30], and has worked well for past species mapping applications
with CAO data [19,31,32]. In comparison with other ML algorithms for species mapping, GBRT also has
the potential to show higher performance than random forest because each tree is fit on the residuals
of the existing set of trees [21], and a combined GBRT-SVM approach showed higher performance
for detecting trees infected with rapid Ohi’a death on Hawaii Island [19]. We performed a grid
search across parameter combinations to select a model that was simultaneously high-performing and
computationally-efficient. The parameters of a gradient boosted regression include the number of trees,
the interaction depth, the subsample, the learning rate, the minimum number of samples at each leaf,
and the loss function. To optimize model performance and efficiency, we varied the number of trees,
the interaction depth, and the learning rate. Models with a higher number of trees will tend to show
higher performance, but will also be less efficient [21]. The learning rate determines the extent to which
each successive tree contributes to the resulting predictions, where a higher learning rate indicates that
the first tree is substantially more important than the following trees. The interaction depth controls
the number of nodes on each tree. With two nodes, the model can include two-way interactions among
variables, and with three nodes, the model can incorporate three-way interactions, up to n nodes [21].
We searched across 33,750 parameter combinations, and calculated model performance through a
ten-fold cross-validation at each combination of variables (Table 3). For each fold, the model was
trained on a calibration set comprising 90% of the data, and tested on a validation set comprised of the
remaining 10% of the data. In the cross-validation, pixels were grouped by crown identity, meaning
that pixels from an individual crown could not end up in both the calibration set and the validation set.
The validation accuracy thus returns the classification accuracy of tree crowns that do not have pixels
included in the model calibration. All model development was done using the scikit learn package in
Python [33].
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Table 3. Parameters of a gradient boosting regression and parameter values tested to find the best
model. ‘Range’ specifies the maximum and minimum values of the parameter and number specifies
the number of different values within that range that were tested.

Parameter Range Number

Number of trees 10–750 75
Maximum depth 3–13 6

Subsample 0.9 1
Learning rate 0.01–0.15 75

Minimum samples at each leaf 1 1
Loss Function Least squares n/a

While the data are binary, the GBRT model predicts a continuous variable, and a threshold value
must be specified to produce a binary classification map. For each distinct combination of parameters,
we calculated the true positive rate, also known as the sensitivity, and the false positive rate (equivalent
to one minus the specificity) for one thousand distinct threshold values [34]. Our goal was to maintain a
strictly low rate of false detections while maximizing the proportion of positive detections of redwoods,
therefore, we used the true positive rate at a false positive rate of 2% as the performance criterion to
evaluate model performance across parameter combinations. The true positive rate at a false positive
rate of 2% was plotted as a function of the number of trees and the learning rate, with a separate plot
for each interaction depth. To select the best model—a simultaneously high performing and highly
efficient model—the interaction depth with the highest overall performance was selected, and we then
chose the learning rate that yielded the highest performance at the lowest number of trees.

2.6. Model Application and Assessment

To assess model performance, we applied the chosen model to both the training dataset and
the testing dataset for each site, and computed the true positive rate and false positive rate for one
thousand distinct threshold values, and plotted a receiver operating characteristic curve (ROC). As the
threshold values increase, both true positives and the false positives increase. Therefore, analysis of
the ROC provides a measure of model performance across a range of possible threshold values [34].
We are aware of one prior study that has used analysis of ROC for vegetation mapping from remote
sensing [35]. This is a distinct advantage of using a regression method for a binary classification
problem rather than a classification method such as SVM: it enables the user to determine the threshold
based on an application-specific measure of model performance. In our case, our goal was to minimize
the proportion of other species that were classified as redwoods while maintaining a high redwood
detection rate. To determine the threshold, we visually inspected the model predictions at each site
in comparison with the field testing and training datasets (Figure A2), as well as the ROC curves,
and selected a threshold that would minimize the false detections of other species as while maintaining
a high redwood detection rate (Table A1). We applied the threshold to the training and testing data at
each site, and then computed the true positive rate, false positive rate, overall accuracy, and Cohen’s
Kappa test statistic for the training and testing datasets at all three sites.

The selected model was applied to each site, and the resulting redwood probability map was
inspected visually to choose the best threshold for each site. The threshold was applied so that each
pixel was classified as either a redwood or not a redwood. The true positive rate and false positive rate
were then calculated for each site separately. We also applied a mask to remove shaded pixels and
pixels with NDVI < 0.7, and pixels shorter than 2-m in height, as shaded and low-NDVI pixels had not
been included in the training and testing datasets for model development and testing [12]. None of
the data in the testing dataset had been used to perform the grid search; therefore, performance on
the testing dataset provided an estimate of model performance in regions of the image where the
training data had not been collected. A sieve filter (GDAL 201x) was then applied to pixels that were
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not touching more than three other pixels in order to remove isolated pixels that were too small to
belong to whole crowns and may have been misclassified [12].

2.7. Calculation of Redwood Density and Redwood Height

Redwood crowns varied substantially in size. Prior studies have attempted to identify individual
crowns through crown segmentation, with varying levels of accuracy [20,36,37]. However, due to the
large size of our datasets, applying a crown segmentation algorithm would have been prohibitively
computationally demanding. Rather than attempt to identify individual redwood crowns through
crown segmentation, we resampled the redwood classification map to 10-m resolution to produce a
map at a resolution that was approximately equal to the average crown size of a redwood. Redwood
density was calculated as the proportion of 10-m pixels identified as a redwood within a 1 square
kilometer aggregation block. We resampled the top-of-canopy height model to the same resolution
by setting the 10-m resolution map equal to the maximum height of a 2-m pixel within a 10-m by
10-m pixel.

3. Results

3.1. Spectral Signatures of Redwoods

Redwoods were spectrally distinct from the other species in redwood forests (Figure 2) and
the other common conifer species, Pseudotsuga menziesii (Douglas fir) (Figure A1). Across all sites,
redwood pixels showed higher reflectance than the other species in the visible range, particularly
from approximately 600 to 700 nm (Figure 2). In comparison with Douglas fir, the other common
coniferous species found in redwood forests, redwood pixels showed higher reflectance in the visible
range (400–700 nm) and also the near infrared range (NIR) (750–1100 nm) (Figure A1).
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Figure 2. The mean ± one standard deviation of spectral reflectance from redwoods (transparent blue)
and other species (transparent green). Overlapping regions appear darker blue.

3.2. Model Optimization

The model performance (calculated as the true positive rate at a given false positive rate) varied
jointly as a function of the interaction depth, the learning rate, and the number of trees (Figure 3).
While model performance tended to increase monotonically with increasing numbers of trees, the
effect of varying the interaction depth (ID) on model performance was nonlinear (Figure 3). At the
smallest interaction depth tested (ID = 3), we observed a trade-off in model performance between
increasing the number of trees and increasing the learning rate (Figure 3). At higher interaction depth
values (3 < ID < 13), the variation in model performance was more closely related to the value of the
learning rate than the number of trees, except for very low numbers of trees which performed poorly
(Figure 3). We also observed consistency in the model performance across a wide range of trees at
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some learning rates, exhibited by the horizontal bands of a single color in Figure 3. The model that
yielded the highest performance at the smallest number of trees had a maximum depth of 9, a learning
rate of 0.89, and 40 trees.
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Figure 3. Model performance as a function of the number of decision trees and the learning rate of
the gradient boosted regression model. The color indicates the model performance, calculated as the
true positive rate at a 2% false positive rate, of different gradient boosted regression models, plotted
according to their interaction depth, the number of trees, and the learning rate. The different interaction
depths vary among the plots and are shown as the title of the plot, the numbers of trees allowed in the
model are the x-axes of all plots, and the learning rates are the y-axes of all plots.

3.3. Variation in True Positive Rate and False Positive Rate across the Sites

As we varied the threshold of the probability between zero and one, the true positive rate of the
model increased sharply from zero to close to one, with very little increase in the false positive rate
(Figure 4). As we continued to increase the threshold, the true positive rate increased marginally from
99% to almost 100% at Big Basin, 98% to almost 100% at Muir Woods, and 90% to almost 100% at
Jackson Forest (Figure 4). The true positive rate and false positive rates of the final models selected
varied across the sites (Table 4). When tested on the testing dataset that was not included in the model
development, the final model with the thresholds selected by eye in each site yielded the highest true
positive rate at Big Basin, and the lowest true positive rate at Jackson Forest. On the other hand, these
models showed the lowest false positive rate at Muir Woods and the highest false positive rate at
Jackson Forest. When tested on the training dataset on which the model was developed, the highest
true positive rate observed was 100% at Muir Woods and all three sites showed a 0% false positive
rate (Table 4). The difference in the true positive rate and the false positive rate between the training
and the testing datasets was greatest at Jackson Forest, where the testing dataset showed significantly
poorer performance than the training dataset (Table 4).
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Figure 4. Receiver operating characteristic curves for the final model for each site. Each point along
the line is the true positive rate and false positive rate calculated when setting a distinct threshold
value between zero and one, above which the pixel is classified as a redwood and below which it is
classified as another species. Blue lines show the model performance evaluated on the training dataset
and orange lines show the model performance evaluated on the testing dataset.

Table 4. Four measures of model performance on the testing and the training datasets at all three sites.

Training Testing

True
Positive

False
Positive

Overall
Accuracy

Kappa
Statistic

True
Positive

False
Positive

Overall
Accuracy

Kappa
Statistic

Big Basin 0.99 0 0.99 0.99 0.98 0.02 0.98 0.95
Muir

Woods 1.0 0 1.0 1.0 0.90 0.01 0.96 0.90

Jackson
Forest 0.96 0 0.98 0.95 0.81 0.03 0.90 0.81

3.4. Distribution of Redwood Density and Redwood Height

The distribution of redwood density within a 1 km2 grid cell was skewed (Figure 5). For all three
sites, the most common redwood density value was close to zero, indicating a large proportion of
area with no redwoods present. Big Basin showed an equivalently even distribution of area between
5 and 70% of redwoods, which can also be observed in the mapped crown images (Figure 6). On the
other hand, Muir Woods showed a decline in frequency with increasing abundance, with more area
with a lower redwood density, and only one 1 km2 grid cell with very high redwood density between
70 and 80%. Finally, the distribution of redwood density was the most uniform at Jackson Forest
(Figures 5 and 6). Although regions with redwood density of close to zero were the most frequent at
Jackson Forest, regions with redwood density between approximately 5 and 55% were also commonly
observed. The highest redwood density at Jackson Forest was 70%. The distribution of redwood height
was close to normal in all three sites (Figure 5). The mean redwood height was close to 30 m at both Big
Basin and Muir Woods, and the maximum redwood height was almost 80 m at both sites. Redwoods
were shorter at Jackson Forest, with a mean redwood height at approximately 25 m, and a maximum
redwood height of approximately 60 m (Figure 5).
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Figure 5. Distributions of redwood height (top panel) and redwood density (bottom panel) at all three
sites. Redwood height was calculated as the maximum height in a ten meter radius with a redwood in
it; redwood density was calculated as the proportion of redwood detections within a 1-square kilometer
aggregation block.
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4. Discussion

4.1. Redwood Reflectance Signatures

The relatively higher reflectance of redwood pixels in the visible range (Figure 2), and higher
reflectance of redwoods in comparison with Douglas fir in the NIR (Figure A1), can be interpreted in
the context of their leaf chemistry. The visible range is a region where chemicals related to light capture
and growth, specifically chlorophyll a, chlorophyll b, and carotenoids, interact with radiation [29,38],
and higher reflectance in these regions indicates a higher concentration of these compounds in
comparison with the other species. We also compared redwood reflectance with Douglas fir—the
other tall coniferous species commonly found co-occurring with redwoods. The higher reflectance
of redwood pixels in the near infrared region indicates higher canopy water content in redwood in
comparison with Douglas fir, which is consistent with the higher capacity for water storage in redwood
foliage in comparison with Douglas fir needles [39,40].

4.2. Model Selection and Parameterization

The improvement in the model performance with increasing interaction depth up to nine nodes
(Figure 3) illustrates the importance of accounting for complex interactions among spectral bands when
using high-dimensional hyperspectral data for species mapping. The trade-off in model performance
between the number of trees and the learning rate at the smallest interaction depth (Figure 3) has
been observed previously [21], and indicates that increasing the importance of the first tree in the
resulting prediction becomes more important as the number of trees increases. The lack of a consistent
relationship between the learning rate and the model performance may be due to the effect of the
learning rate on the relative weighting of the trees. Since each tree in a GBRT is fit to a different
randomly selected subset of data, changing the learning rate also changes the amount by which the
first random subset of data sampled affects the model prediction, thereby resulting in the increased
stochasticity we observed [21]. Boosted regression trees are fit sequentially, and an ensemble of GBRT
trees can thus be made more efficient either by reducing the complexity of the individual trees [21]
or by reducing the number of trees in the ensemble. We presented an example of the latter, and were
able to identify a high-performing model at a very low number of trees, while accounting for complex
interactions among spectral regions.

4.3. Model Performance

Overall accuracy was high, ranging from 90 to 98% depending on the site. This is similar to
91–95% for eight different species from a redwood forest [20] with Support Vector Machine, 25–95%
when mapping urban tree species in Santa Barbara, California using Random Forest [41], 90–95%
for mapping land cover classes in Vietnam using Random Forest [42], and between 55 and 95%
for a range of coniferous tree species in Pacific Northwest forests in Canada using Support Vector
Machine [43]. When reporting on measures of model performance that separate true positives and
false negatives, we report true positive rates of 81–98% and false positive rates of 1–3%, depending
on the site, in comparison with 82.5–99.7% and 0.6–3% for classifying tree crowns at different stages
of pathogenic infection using gradient boosted regression in Hawaii [19], and 75–99% and 0–6% for
classifying three large tree species in a tropical rainforest using an SVM [12].

In our study, we compared the performance of a single-species mapping algorithm across three
study sites. We observed variation in model performance across the three sites and in particular,
significantly lower performance, exhibited by a lower true positive rate (81% in comparison with 90%
and 98%), a higher false positive rate (3% in comparison with 1% and 2%), lower overall accuracy
(90% in comparison with 96% and 98%), and lower kappa statistic (0.81 in comparison with 0.90 and
0.95) at Jackson Forest in comparison with the other two sites. The lower performance at Jackson
Forest is likely a result of its smaller average crown sizes and more heterogeneous canopy, which
we hypothesize made it more difficult to obtain good field data for model development and testing.
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This is consistent with reports of lower overall accuracy for classification of tree species with smaller
crown sizes in a prior urban tree species classification study [41]. Although all three of the sites in our
study have a history of logging, Jackson Forest is the only site where logging is active, and also has
the youngest stands, whereas both Muir Woods and Big Basin have a larger proportion of old-growth
and older second-growth redwood forests. We also observed in the field and in the final redwood
maps (Figure 6) that Jackson Forest was more heterogeneous, with more areas showing stands that
were evenly mixed with redwoods and other species, in comparison with Big Basin and Muir Woods
which tended to have large areas where a single species was dominant [20]. Small crown sizes and a
heterogeneous canopy at Jackson Forest both lead to a greater frequency of mixed pixels, which are
more difficult to classify [44]. Crown segmentation is cited as a potential solution to the problem of
mixed pixels [45], but would have been prohibitively computationally demanding given the volume
of data from Jackson Forest.

There are limitations to species mapping from airborne imaging spectroscopy and our approach
in particular. By masking shaded pixels and pixels with NDVI less than 0.7, it is possible that there are
some pixels that are a mix of both redwood foliage and either branches, bole, or soil that would not
be classified in our map. For cases where these pixels are adjacent to pixels that are fully vegetated,
this would not result in failure to identify redwood trees at the crown level. However, our algorithm is
not able to identify redwood trees that are entirely shaded by other individuals or have NDVI less
than 0.7 throughout their crowns.

4.4. Redwood Density and Height Patterns

Our resulting high-resolution redwood maps show marked variation in redwood forest density
within a 1 square kilometer aggregation block. Current redwood distribution maps are available at
1 km2 resolution, and are presence-only, indicating whether a 1 km2 area is redwood forest or not [46].
Redwood density, calculated as the proportion of 10 m2 pixels classified as redwood within a 1 km2

aggregation block, varied from 0% redwood at many locations within all three sites, to greater than 70%
redwoods at Muir Woods (Figures 5 and 6). Although we did not perform a direct comparison of the
coarse-resolution redwood maps with our high-resolution maps, the large variation in redwood density
we reported suggests that there is likely to be substantial variation in redwood density in locations
that are currently listed as homogenous redwood habitat in the 1 km2 resolution redwood distribution
map. Prior comparisons of species density data with presence-only data have suggested that the ability
to predict variation in species density from species presence-only data is context-dependent. While
species abundance was consistently positively related to environmental suitability maps as predicted
from species presence-only data in tropical and subtropical rainforests [47], it was weakly related
across Amazonia [48]. Our results, which show large variation in redwood abundance from 0–70%
within a 1 km2 aggregation block, are more consistent with the latter example.

The distribution in redwood height across the three sites reflects a combination of land-use history
and environmental variability. Redwoods are a profitable timber species, and 90% of extant redwood
forests are second-growth forests that have been logged at least once over the past two centuries.
Both Muir Woods and Big Basin had some trees that were more than 70 m (230 feet) tall, whereas at
Jackson Forest, the tallest redwoods observed were shorter than 60 m. Both Muir Woods and Big Basin
have sections of old-growth forest in the areas where data was collected, whereas Jackson Forest is
almost entirely comprised of second-growth forest, which explains why the maximum height of the
trees is shorter. All of the forests had some trees that were below 10-m in height, which may reflect
stands that were either very recently logged at Jackson Forest, or stunted redwoods growing in sites
with poor water or nutrient availability.

4.5. Applications to Research, Conservation, and Management

High-resolution maps of redwood distribution and height will be useful in advancing research,
conservation, and management of redwoods. High-resolution maps could be used in species
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distribution models for redwoods [49] to improve predictions on where redwoods will be resilient
to future changes in fog and rainfall as a result of climate change [50,51]. High-resolution maps of
redwoods could also be used to guide field studies of redwoods across environmental gradients.
Redwood maps could be used by conservation organizations to identify priority areas for redwood
conservation [52]. Finally, maps of redwood abundance and height could help to guide the
management of redwood forests towards objectives such as carbon storage or restoration of old-growth
forest characteristics [53]. While our data was limited to three regional sites, collection of airborne
imaging spectroscopy and LiDAR data for the entirety of the redwood region to produce wall-to-wall
maps would be time-intensive, highlighting the need for the development and deployment of
high-resolution, spaceborne imaging spectroscopy instrumentation.

5. Conclusions

We showed that it is possible to map redwood tree canopies with 90–98% overall accuracy and
high computational efficiency using airborne imaging spectroscopy data, field data on species identity,
and gradient boosted regression trees. By analyzing reflectance signatures of pixels from redwoods
and other species from the three study sites, we found that redwoods are spectrally differentiable from
the neighboring tree species, with redwood reflectance signatures indicating greater investment in
chemicals related to photosynthesis and water storage. We found reduced model performance at the
site with the most active timber harvest history, which we suspect is due to resulting smaller tree crowns
and higher frequency of mixed pixels. The resulting maps show variability in redwood density within
a 1 square kilometer aggregation block of redwood forest from 0–70%, and pave the way for future
high-resolution species distribution modeling of redwoods for scientific and management purposes.
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