Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,910)

Search Parameters:
Keywords = Ca2+ ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1862 KB  
Article
Experimental and Molecular Dynamics Simulation Study on Influencing Factors of Barium Sulfate Scaling in Low-Permeability Sandstone Reservoirs
by Haien Yang, Xuan Xie, Miao Dou, Ajing Wei, Ming Lei and Chao Ma
Appl. Sci. 2026, 16(3), 1204; https://doi.org/10.3390/app16031204 - 24 Jan 2026
Viewed by 59
Abstract
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling [...] Read more.
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling behavior were examined through integrated experimental core flooding tests and molecular dynamics (MD) simulations. Experiments were conducted using synthetic cores simulating the ultra-low permeability Chang-8 Reservoir of the Jiyuan Oilfield, analyzing the impact of ion concentrations (Ba2+, SO42−, Na+, Ca2+, HCO3), flow velocity, and injection pressure. MD simulations were performed based on an interfacial SiO2(010)–BaSO4 solution model constructed in Materials Studio to elucidate the micro-mechanisms. Results indicate that increasing concentrations of Ba2+ and SO42− significantly promote scaling. High Ca2+ concentration (>8000 mg/L) inhibits BaSO4 deposition via competitive adsorption. High Na+ concentration (>70,000 mg/L) reduces Ba2+ activity due to ionic strength effects. When HCO3 concentration exceeds 600 mg/L, CaCO3 coprecipitation occurs, reducing effective SO42− concentration and thus inhibiting BaSO4 scaling. Increased flow velocity enhances scaling, whereas elevated injection pressure suppresses deposition. MD simulations reveal that increased ion concentrations decrease the mean square displacement (MSD) of Ba2+ and SO42−, weakening diffusion and enhancing scaling tendency. Elevated temperature promotes ion diffusion and inhibits scaling, while pressure shows negligible effect on ion diffusion at the molecular scale. This study provides theoretical insights for scaling prevention in low-permeability sandstone reservoirs. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity, 2nd Edition)
Show Figures

Figure 1

16 pages, 2807 KB  
Article
Silk Fibroin-Templated Copper Nanoclusters: Responsive Fluorescent Probes Exhibiting 2,4-Dichlorophenoxyacetic Acid-Enhanced Emission and p-Nitrophenol-Induced Quenching
by Neng Qin, Qian Wang, Jingwen Tao, Guijian Guan and Ming-Yong Han
Sensors 2026, 26(3), 784; https://doi.org/10.3390/s26030784 (registering DOI) - 24 Jan 2026
Viewed by 90
Abstract
In this work, highly water-soluble silk fibroin (SF) is first prepared by recrystallizing degummed silkworm cocoon fibers in concentrated CaCl2 solution (replacing the conventional Ajisawa’s reagent), and then used as both stabilizing and reducing agents to synthesize copper nanoclusters (Cu@SF NCs) at [...] Read more.
In this work, highly water-soluble silk fibroin (SF) is first prepared by recrystallizing degummed silkworm cocoon fibers in concentrated CaCl2 solution (replacing the conventional Ajisawa’s reagent), and then used as both stabilizing and reducing agents to synthesize copper nanoclusters (Cu@SF NCs) at pH = 11. Due to the existence of unreacted Cu2+ ions, the resulting SF-templated Cu NCs form slight aggregates, yielding a purple-colored solution with blue fluorescence. Interestingly, upon adding the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D), the Cu NCs aggregates disassemble and the fluorescence is significantly enhanced, creating a “fluorescence-on” sensor for 2,4-D with a detection limit of 0.65 μM. In contrast, the pollutant p-nitrophenol (p-NP) quenches the fluorescence of Cu NCs via a fluorescence resonance energy transfer mechanism (with a detection limit as low as 1.35 nM), which is attributed to the large overlap between absorption spectrum of p-NP and excitation spectrum of Cu NCs. Other tested analytes (i.e., pyrifenox, carbofuran and melamine) produce negligible fluorescence changes. The distinct sensing mechanisms are elucidated with experimental evidence and density functional theory (DFT) calculations. The evolutions of fluorescence as a function of incubation time and analyte concentration are systematically investigated, demonstrating a versatile platform for sensitive and selective detection of target analytes. These findings provide an effective strategy for optimizing the optical properties of metal nanoclusters and improving their performance in environmental applications. Full article
(This article belongs to the Special Issue Optical Nanosensors for Environmental and Biomedical Monitoring)
Show Figures

Figure 1

28 pages, 1155 KB  
Review
Root-Specific Signal Modules Mediating Abiotic Stress Tolerance in Fruit Crops
by Lili Xu and Xianpu Wang
Plants 2026, 15(3), 363; https://doi.org/10.3390/plants15030363 - 24 Jan 2026
Viewed by 76
Abstract
Sustained abiotic stress severely impairs fruit crop growth and development. As plants’ primary environmental sensing organ, fruit tree roots experience disrupted morphogenesis and physiological functions, reducing yield, lowering fruit quality, and threatening orchard ecosystem stability. Abiotic stress is diverse: water deficit from drought, [...] Read more.
Sustained abiotic stress severely impairs fruit crop growth and development. As plants’ primary environmental sensing organ, fruit tree roots experience disrupted morphogenesis and physiological functions, reducing yield, lowering fruit quality, and threatening orchard ecosystem stability. Abiotic stress is diverse: water deficit from drought, extreme temperature fluctuations, and salinization-induced ion imbalance, heavy metal accumulation, or nutrient disorders. Its complexity requires synergistic and crosstalk regulation of multiple root-specific signaling modules and pathways in root stress perception and transduction. When responding to stress, roots activate hormone, reactive oxygen species (ROS), and calcium ion (Ca2+) signaling. These pathways mediate early stress recognition and regulate downstream gene expression and physiological metabolic reprogramming via transcription factors (TFs) and other regulators, determining stress tolerance and adaptability. Using typical abiotic stresses as models, this review outlines the composition, activation mechanisms, specificity, and synergistic effects of root-specific signaling modules/pathways, along with modern biotechnologies for decoding these modules and current research limitations, aiming to reveal the root signal network’s integration mode. Full article
Show Figures

Figure 1

18 pages, 2455 KB  
Article
Chronology and Geochemistry of Intrusive Magmatic Rocks in the Shiquanhe Ophiolitic Mélange, Tibet: Constraints on the Tectonic Evolution of the Meso-Tethys Ocean
by Kegang Dai, Xu Zhang, Ru-Xin Ding, Harald Furnes, Wei-Liang Liu, Xiaobo Kang, Hongfei Zhao, Jing Li, Qin Wang, Yun Bai, Chi Yan and Yutong Shi
Minerals 2026, 16(2), 123; https://doi.org/10.3390/min16020123 - 23 Jan 2026
Viewed by 72
Abstract
Magmatic activity is crucial for identification of the tectonic framework of the ancient oceanic crust. In this study, systematic investigation, including a field survey, zircon LA-ICP-MS U-Pb dating, and whole-rock geochemical analysis, has been carried out on the intrusive quartz- and granodiorites within [...] Read more.
Magmatic activity is crucial for identification of the tectonic framework of the ancient oceanic crust. In this study, systematic investigation, including a field survey, zircon LA-ICP-MS U-Pb dating, and whole-rock geochemical analysis, has been carried out on the intrusive quartz- and granodiorites within the Meso-Tethyan Shiquanhe Ophiolitic Mélange (SQM), Tibet. Zircon U-Pb dating yields the weighted mean ages of 174.7 ± 1.4 Ma (quartz diorite) and 178.9 ± 1.2 Ma (granodiorite), respectively, demonstrating the Early Jurassic formation age. The quartz diorite samples are metaluminous (A/NKC = 0.77–0.95) (molar/Al2O3/(CaO + Na2O + K2O)), while the granodiorite samples are weakly peraluminous (A/NKC = 0.95–1.21), and both of them exhibit tholeiitic to calc-alkaline geochemical characteristics and can be classified as I-type granites. The right-dipping rare-earth element (REE) patterns, enrichment in large ion lithophile elements (LILEs: Rb, Ba, Th), and depletion in high-field-strength elements (HFSEs: Nb, Ta, Ti), as well as relatively high (La/Yb)N ratios, are features compatible with an island arc setting. Combined with previous works, we suggest that the Shiquanhe ophiolitic mélange not only preserves records of mid-late Jurassic island arc magmatic activity but also contains evidence of island arc magmatism from the late Early Jurassic. Full article
19 pages, 4121 KB  
Article
TRIC-A Loss Sensitizes the Heart to β-Adrenergic Stress and Drives Cardiomyocyte Death and Fibrosis
by Ki Ho Park, Daiju Yamazaki, Xinyu Zhou, Shinji Komazaki, Chengzhu Zhao, Miyuki Nishi, Jingsong Zhou, Hiroshi Takeshima and Jianjie Ma
Biomolecules 2026, 16(2), 181; https://doi.org/10.3390/biom16020181 - 23 Jan 2026
Viewed by 280
Abstract
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, [...] Read more.
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, mitochondrial integrity, and cardiac resilience during β-adrenergic stimulation. Tric-a−/− cardiomyocytes exhibited Ca2+ transients evoked by electrical stimuli and exaggerated isoproterenol (ISO)-evoked Ca2+ release, consistent with SR Ca2+ overload. These defects were accompanied by selective upregulation of protein kinase A (PKA)-dependent phosphorylation of ryanodine receptor 2 (RyR2) (S2808) and phospholamban (PLB) (S16). Acute ISO challenge induced mitochondrial swelling, cristae disruption, and Evans Blue Dye uptake, and elevated circulating troponin T in Tric-a−/− hearts, hallmarks of necrosis-like cell death. Mitochondrial Ca2+ uptake inhibition with Ru360 markedly reduced membrane injury, establishing mitochondrial Ca2+ overload as the proximal trigger of cardiac cell death. With sustained β-adrenergic stimulation by ISO, Tric-a−/− hearts developed extensive interstitial and perivascular fibrosis without exaggerated hypertrophy. Cardiac fibroblasts lacked TRIC-A expression and displayed normal Ca2+ signaling and activation, indicating that fibrosis arises secondarily from cardiomyocyte injury rather than fibroblast-intrinsic abnormalities. These findings identify TRIC-A as a critical regulator of SR-mitochondrial Ca2+ coupling and a key molecular safeguard that protects the heart from catecholamine-induced injury and maladaptive remodeling. Full article
(This article belongs to the Special Issue Mitochondrial Calcium Signaling in Cardiac Health and Disease)
Show Figures

Figure 1

26 pages, 7253 KB  
Article
Effects of Total Calcium and Iron(II) Concentrations on Heterogeneous Nucleation and Crystal Growth of Struvite
by Pengcheng Wei, Kaiyu Deng, Yang Huang, Jiayu Yang, Fujiang Hui, Dunqiu Wang and Kun Dong
Crystals 2026, 16(2), 80; https://doi.org/10.3390/cryst16020080 (registering DOI) - 23 Jan 2026
Viewed by 46
Abstract
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different [...] Read more.
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different Ca2+ and Fe2+ concentrations were systematically characterized using XRD, SEM, FTIR, and XPS, while real-time pH and redox potential (Eh) monitoring was employed to elucidate reaction dynamics and thermodynamic speciation and saturation indices were calculated, and classical nucleation theory (CNT) was applied to interpret nucleation behavior. The results show that Ca2+ primarily suppresses struvite formation through bulk-phase competition with Mg2+ for phosphate, diverting phosphate into Ca–P phases and progressively reducing struvite supersaturation, which leads to decreased crystallinity and distorted Crystal habit. In contrast, Fe2+ does not form detectable crystalline Fe-P phases but inhibits struvite crystallization mainly through surface-mediated processes. Surface analyses indicate that Fe-bearing species adsorb onto struvite surfaces and promote amorphous Fe-P deposition, increasing interfacial resistance to nucleation and growth. CNT analysis further reveals that Ca2+ inhibition is governed by reduced thermodynamic driving force, whereas Fe2+ inhibition is dominated by surface-related kinetic barriers. This study provides mechanistic insight into ion-specific interference during struvite crystallization and offers guidance for optimizing phosphorus recovery in ion-rich wastewater systems. Full article
Show Figures

Figure 1

17 pages, 3595 KB  
Article
Calcium Ions as Conjugation-Specific Regulators in Paramecium caudatum
by Nobuyuki Haga
Microorganisms 2026, 14(2), 263; https://doi.org/10.3390/microorganisms14020263 - 23 Jan 2026
Viewed by 80
Abstract
The unicellular ciliate Paramecium caudatum undergoes a developmental transition from asexual binary fission to sexual reproduction during its mature stage. This transition is triggered by mating interactions between cells of complementary mating types, leading to aggregate formation, mating pairs, and the meiotic division [...] Read more.
The unicellular ciliate Paramecium caudatum undergoes a developmental transition from asexual binary fission to sexual reproduction during its mature stage. This transition is triggered by mating interactions between cells of complementary mating types, leading to aggregate formation, mating pairs, and the meiotic division of micronuclei. Although calcium-driven EF-hand kinases have been implicated as mating type proteins, the spatiotemporal dynamics of calcium signaling during conjugation have not been comprehensively characterized. In this study, we established a behavioral assay to isolate committed cells from aggregates immediately after mating onset, and developed an experimental system to monitor intracellular calcium fluctuations specifically expressed in these cells. By combining Ca2+/EGTA buffering and microinjection approaches, we manipulated extracellular and intracellular calcium levels and confirmed the continuous requirement of calcium ions for conjugation-specific functions. Two significant findings emerged. First, we identified, for the first time, a calcium atlas covering the entire cell, with ascending centers localized in the anterior, oral apparatus, and posterior regions. The calcium/Indo-1-AM fluorescence peaked at 6 h after mating initiation and declined gradually, but persisted until conjugation was completed at ~48 h. Second, we demonstrated that distinct intracellular calcium thresholds are required for each stage of mating, including maintenance of mating activity, commitment of micronuclei to meiosis, and two-stepwise formation of mating pairs. These thresholds function as regulatory checkpoints that coordinate subcellular localization and stage synchronization. Collectively, our findings highlight calcium ions as pivotal regulators of conjugation in Paramecium and propose a novel framework, the Paramecium calcium atlas, for understanding the cellular and molecular mechanisms underlying sexual reproduction in ciliates. Full article
Show Figures

Figure 1

10 pages, 1594 KB  
Article
The Exceptional Solubility of Cyclic Trimetaphosphate in the Presence of Mg2+ and Ca2+
by Megan G. Bachant and Ulrich F. Müller
Life 2026, 16(1), 184; https://doi.org/10.3390/life16010184 - 22 Jan 2026
Viewed by 23
Abstract
Studying the origin of life requires identifying chemical and physical processes that could have supported early self-replicating and evolving molecular systems. Besides the requirement of information storage and transfer, an essential aspect is an energy source that could have thermodynamically driven the formation [...] Read more.
Studying the origin of life requires identifying chemical and physical processes that could have supported early self-replicating and evolving molecular systems. Besides the requirement of information storage and transfer, an essential aspect is an energy source that could have thermodynamically driven the formation and replication of these molecular assemblies. Chemical energy sources such as cyclic trimetaphosphate are attractive because they could drive replication with relatively simple catalysts. Here, we focus on cyclic trimetaphosphate (cTmp), and compare its solubility in water to linear triphosphate, pyrophosphate, and phosphite when Mg2+ or Ca2+ are present. These solubilities are important for facilitating the reactions under prebiotically plausible conditions. The results showed that cTmp was soluble even at molar concentrations of Mg2+ and little precipitation with 200 mM Ca2+. In contrast, pyrophosphate and linear triphosphate precipitated efficiently even at low divalent metal ion concentrations. The precipitation of phosphate was pH-dependent, showing similar precipitation with Mg2+ and Ca2+ at a prebiotically plausible pH of 6.5. Phosphite was soluble at high Mg2+ concentrations but started precipitating with increasing Ca2+ concentration. At conditions that model Archaean seawater, cTmp was the most soluble of these compounds. Together, this experimental overview may help to identify promising conditions for lab-based investigations of phosphate-based energy metabolisms in early life forms. Full article
(This article belongs to the Special Issue Prebiotic Chemistry: The Molecular Origins of Life)
Show Figures

Figure 1

22 pages, 5019 KB  
Article
Enhanced Bioactivity and Antibacterial Properties of Ti-6Al-4V Alloy Surfaces Modified by Electrical Discharge Machining
by Bárbara A. B. dos Santos, Rafael E. G. Leal, Ana P. G. Gomes, Liszt Y. C. Madruga, Ketul C. Popat, Hermes de Souza Costa and Roberta M. Sabino
Colloids Interfaces 2026, 10(1), 12; https://doi.org/10.3390/colloids10010012 - 22 Jan 2026
Viewed by 31
Abstract
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic [...] Read more.
Bacterial infections and the lack of bioactivity of titanium implants and their alloys remain critical challenges for the long-term performance and clinical success of these devices. These issues arise from the undesirable combination of early microbial adhesion and the limited ability of metallic surfaces to form a bioactive interface capable of supporting osseointegration. To address these limitations simultaneously, this study employed electrical discharge machining (EDM), which enables surface topography modification and in situ incorporation of bioactive ions from the dielectric fluid. Ti-6Al-4V ELI surfaces were modified using two dielectric fluids, a fluorine/phosphorus-based solution (DF1-F) and a calcium/phosphorus-based solution (DF2-Ca), under positive and negative polarities. The recast layer was characterized by SEM and EDS, while bioactivity was evaluated through immersion in simulated body fluid (SBF) for up to 21 days. Antibacterial performance was assessed against Staphylococcus aureus at 6 h and 24 h of incubation. The results demonstrated that dielectric composition and polarity strongly influenced ionic incorporation and the structural stability of the modified layers. The DF2-Ca(+) condition exhibited the most favorable bioactive response, with Ca/P ratios closer to hydroxyapatite and surface morphologies typical of mineralized coatings. In antibacterial assays, Ca/P-containing surfaces significantly decreased S. aureus attachment (>80–90%). Overall, EDM with Ca/P-containing dielectrics enables the fabrication of Ti-6Al-4V surfaces with enhanced mineralization capacity and anti-adhesive effects against Gram-positive bacteria, reinforcing their potential for multifunctional biomedical applications. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 3rd Edition)
Show Figures

Figure 1

20 pages, 10017 KB  
Article
Calcium-Modified Coal-Based Humin Waste Residue: Enhanced Cadmium Remediation in Combined Soil–Plant Systems
by Fei Wang, Nan Guo, Yuxin Ma, Zhi Yuan, Xiaofang Qin, Yun Jia, Guixi Chen, Haokai Yu, Ping Wang and Zhanyong Fu
Sustainability 2026, 18(2), 1103; https://doi.org/10.3390/su18021103 - 21 Jan 2026
Viewed by 82
Abstract
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) [...] Read more.
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) was synthesized via a low-temperature-assisted method. The material was characterized and its cadmium passivation mechanism was investigated using scanning electron microscopy (SEM), zeta potential analysis (Zeta), carbon nuclear magnetic resonance (13C-CPMAS-NMR), and X-ray photoelectron spectroscopy (XPS). Soil incubation experiments were conducted to determine the actual cadmium adsorption capacity of coal-based humin in soils and to evaluate the stability of cadmium passivation. Plant cultivation experiments were carried out to verify the effects of coal-based humin on migration and transformation in soil, as well as on cadmium bioefficiency. The results showed that Ca-NHM passivated soil cadmium through multiple mechanisms such as ion exchange, electrostatic adsorption, complexation reactions, and physical adsorption. Compared with NHM, Ca-NHM exhibited a 69.71% increase in passivation efficiency, and a 2.44% reduction in cadmium leaching concentration. In Ca-NHM treatments, the above- and below-ground biomass of pakchoi increased by 18.06%, and 80.95%, respectively, relative to the control group. Furthermore, Ca-NHM enhanced the cadmium resistance of pakchoi, reduced the enrichment coefficient, activity coefficient, and activity-to-stability ratio in the above-ground portion of pakchoi, and maintained a transfer coefficient below 1, thereby alleviating cadmium toxicity. In summary, this study provides a theoretical foundation for understanding the mechanisms by which coal-based humin mitigates cadmium toxicity in pakchoi. Full article
(This article belongs to the Special Issue Sustainable Risk Assessment and Remediation of Soil Pollution)
Show Figures

Figure 1

21 pages, 4803 KB  
Article
Recovery of High-Purity Lithium Hydroxide Monohydrate from Lithium-Rich Leachate by Anti-Solvent Crystallization: Process Optimization and Impurity Incorporation Mechanisms
by Faizan Muneer, Ida Strandkvist, Fredrik Engström and Lena Sundqvist-Öqvist
Batteries 2026, 12(1), 35; https://doi.org/10.3390/batteries12010035 - 21 Jan 2026
Viewed by 75
Abstract
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the [...] Read more.
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the flue dust of a pilot-scale pyrometallurgical process for LIB material recycling. To optimize product yield and purity, a series of experiments were performed, focusing on the influence of parameters such as solvent type, organic-to-aqueous (O/A) volumetric ratio, crystallization time, stirring rate, and anti-solvent addition rate. Acetone was identified as the most effective anti-solvent, producing rectangular cuboid crystals with approximately 90% Li recovery and around 95% purity, under optimized conditions (O/A = 4, 3 h, 150 rpm, and solvent flow rate of 5 mL/min). The flow rate influenced crystal morphology and impurity entrapment, with 5 mL/min favoring nucleation-dominated crystallization regime, producing ~20 μm of well-dispersed crystals with reduced impurity incorporation. SEM-EDS, surface washing, and gradual dissolution of obtained LiOH·H2O crystals revealed that the impurities sodium (Na), potassium (K), aluminum (Al), calcium (Ca) and chromium (Cr) were crystallized as conglomerates. It was found that Na, K, Al, and Ca primarily crystallized as highly soluble conglomerates, while Cr was crystallized as a lowly soluble conglomerate impurity. In contrast Zn was distributed throughout the crystal bulk, suggesting either the entrapment of soluble zincate species within the growing crystals or the formation of mixed Li-Zn phase. Therefore, to achieve battery-grade purity, further purification measures are necessary. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Graphical abstract

30 pages, 5027 KB  
Article
Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using Entropy-Weighted WQI, Pollution Index, and Multivariate Statistical Analysis in the Maze Zenti Catchment, Southern Ethiopia
by Yonas Oyda, Samuel Dagalo Hatiye and Muralitharan Jothimani
Geosciences 2026, 16(1), 50; https://doi.org/10.3390/geosciences16010050 - 21 Jan 2026
Viewed by 208
Abstract
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water [...] Read more.
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water quality index, entropy weight, pollution index of groundwater, multivariate statistics, Piper, Gibbs, and Wilcox diagrams, ANOVA, and irrigation indices based on WHO standards. The correlation matrix revealed strong associations between Na+-TDS (r = 0.77) and Na+-Ca2+ (r = 0.68), indicating mineral dissolution, ion exchange, and agricultural inputs as key factors. Weak correlations were found for NO3 and F, reflecting localized anthropogenic and geogenic influences. Component analysis identified four components explaining 78.2% (wet season) and 81.2% (dry season) of the variance, highlighting mineralization and anthropogenic inputs. Hydrochemical facies were mainly Ca-Mg-HCO3 with some localized Na-HCO3, suggesting that rock–water interactions are the primary source of geochemical control. Drinking water quality assessment showed that, during the wet season, 52.8% of the catchment had excellent water quality, 45.8% was good, and 1.4% was poor–very poor. In the dry season, 51.6% was excellent, 47.4% was good, 0.8% was poor, and 0.2% was very poor. The results of the entropy-weighted analysis indicated seasonal improvement, with excellent areas increasing from 13.1% to 31.4% and poor zones decreasing from 7.5% to 3.4%. Irrigation indices (Na%, PI, MAR, SAR) and Wilcox analysis (86.4% C2S1) suggested low sodicity and salinity hazards. This study provides the first integrated seasonal mapping of drinking and irrigation water quality, entropy-weighted water quality, and pollution index for the Maze Zenti catchment, establishing a hydrogeochemical baseline. Overall, groundwater in the area is generally suitable for drinking and irrigation. However, localized monitoring and sustainable land-use practices are recommended to mitigate contamination risks. Full article
Show Figures

Figure 1

14 pages, 5476 KB  
Article
From Corrosion Control to Cell Adhesion: Parascholzite as a Functional Interface for Biodegradable Zinc Alloys
by Jaroslav Fojt, Jakub Veselý, Jan Šťovíček, Jan Pokorný, Eva Jablonská, Zdeněk Míchal and Vojtěch Hybášek
Materials 2026, 19(2), 416; https://doi.org/10.3390/ma19020416 - 21 Jan 2026
Viewed by 92
Abstract
Zinc-based alloys are promising candidates for biodegradable implant applications; however, their rapid initial corrosion and limited cytocompatibility remain major challenges. In this study, a Zn-Ca-P layer in a form of parascholzite (CaZn2(PO4)2·2H2O) was prepared on [...] Read more.
Zinc-based alloys are promising candidates for biodegradable implant applications; however, their rapid initial corrosion and limited cytocompatibility remain major challenges. In this study, a Zn-Ca-P layer in a form of parascholzite (CaZn2(PO4)2·2H2O) was prepared on a Zn-0.8Mg-0.2Sr alloy via anodic oxidation followed by short-time biomimetic calcium–phosphate deposition. The formation mechanism, corrosion behaviour, and preliminary biological response of the modified surface were systematically investigated. The Zn-Ca-P layer formed a compact and crystalline phosphate layer that significantly altered the corrosion response of the zinc substrate in Leibovitz L-15 medium containing foetal bovine serum. Electrochemical measurements revealed a pronounced improvement in corrosion resistance and a transition from rapid active dissolution to a controlled, ion-exchange-driven degradation mechanism. The moderate solubility of parascholzite enabled the gradual release of Zn2+ and Ca2+ ions while maintaining surface stability during immersion. Preliminary cell adhesion experiments demonstrated a clear enhancement of cytocompatibility for the Zn-Ca-P-layer-coated samples, where cells readily adhered and spread, in contrast to the bare alloy surface, which showed lower cell attachment. The improved biological response is attributed to the phosphate-rich surface chemistry, favourable surface morphology, and moderated corrosion behaviour. Overall, the parascholzite-like layer provides an effective strategy with which to regulate both corrosion and early cell–material interactions of zinc-based biodegradable alloys, highlighting its potential for temporary biomedical implant applications. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Passivating Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 6743 KB  
Article
Differential Toxicity of Water-Soluble Versus Water-Insoluble Components of Cowshed PM2.5 on Ovarian Granulosa Cells and the Regulatory Role of Txnip in Overall Toxicity
by Zhenhua Ma, Xiqing Zhang, Xiaohui Du, Cuizhu Zhao, Yunna Jia, Ye Wang, Xintian Li, Xiuzhen Yu and Yunhang Gao
Antioxidants 2026, 15(1), 138; https://doi.org/10.3390/antiox15010138 - 21 Jan 2026
Viewed by 90
Abstract
Fine particulate matter (PM2.5)-induced ovarian damage has attracted widespread attention, but differences in cytotoxicity and underlying mechanisms of water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions are unclear. To investigate potential effects of PM2.5 from livestock farming environments on animal ovaries, PM2.5 samples were collected [...] Read more.
Fine particulate matter (PM2.5)-induced ovarian damage has attracted widespread attention, but differences in cytotoxicity and underlying mechanisms of water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions are unclear. To investigate potential effects of PM2.5 from livestock farming environments on animal ovaries, PM2.5 samples were collected from large-scale cattle barns. There were significant differences between fractions regarding elemental composition, proportion of water-soluble ions, polycyclic aromatic hydrocarbon content, and endotoxin concentrations. Based on transcriptome sequencing results, in a cowshed PM2.5 exposure model (rats), differentially expressed ovarian mRNAs were significantly enriched in signaling pathways such as cytokine interaction and the Hippo pathway, with the expression of thioredoxin-interacting protein (Txnip) significantly increased. In vitro (primary rat ovarian granulosa cells), short-term exposure to WS-PM2.5 (12 h) significantly induced inflammatory factor release, acute oxidative stress, mitochondrial dysfunction, and intracellular Ca2+ overload, with characteristics of rapid acute injury. However, extended (24 h) WIS-PM2.5 exposure had greater disruptive effects on estrogen homeostasis, intracellular enzyme release (LDH), and mitochondrial structure (subacute characteristics). Furthermore, downregulating Txnip expression via inhibitors effectively mitigated cowshed PM2.5-induced ovarian granulosa cell toxicity, oxidative stress, and mitochondrial and hormonal dysfunction. In summary, solubility of cowshed PM2.5 components affected cytotoxic characteristics, and Txnip was a key factor linking oxidative stress to granulosa cell damage. The study provided a mechanistic basis and potential targets for preventing and controlling PM2.5-induced ovarian damage in livestock environments. Full article
Show Figures

Figure 1

22 pages, 1511 KB  
Review
Ionic Mechanisms of Two-Pore Channel Regulation of Vesicle Trafficking
by Heng Zhang and Michael X. Zhu
Cells 2026, 15(2), 194; https://doi.org/10.3390/cells15020194 - 20 Jan 2026
Viewed by 92
Abstract
The endolysosomal system plays a pivotal role in cellular function. Before reaching lysosomes for degradation, the endocytosed cargoes are sorted at various stages of endosomal trafficking for recycling and/or rerouting. The proper execution of these processes depends on tightly regulated ion fluxes across [...] Read more.
The endolysosomal system plays a pivotal role in cellular function. Before reaching lysosomes for degradation, the endocytosed cargoes are sorted at various stages of endosomal trafficking for recycling and/or rerouting. The proper execution of these processes depends on tightly regulated ion fluxes across endolysosomal membranes. Recent studies have demonstrated the importance of two-pore channels (TPCs), including TPC1 and TPC2, in endolysosomal trafficking. These channels are expressed in the membranes of distinct populations of endosomes and lysosomes, where they respond to nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] to conduct Ca2+ and Na+ release from these acidic organelles. Here, we discuss the potential implications of Ca2+ and Na+ fluxes mediated by TPCs across endolysosomal membranes in the physiological and pathophysiological functions of these organellar channels. Full article
Show Figures

Figure 1

Back to TopTop