Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = CMOS ASICs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2442 KB  
Article
Design and Measurements of an Electrothermal Filter Using CMOS Technology
by Mariusz Jankowski, Michał Szermer and Marcin Janicki
Electronics 2025, 14(17), 3355; https://doi.org/10.3390/electronics14173355 - 23 Aug 2025
Viewed by 309
Abstract
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an [...] Read more.
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an essential part of temperature sensors, based on the measurement of material thermal diffusivity, in which the input signal of the filter is a square wave. However, the phase shift introduced by the filter depends on the signal frequency. Thus, the authors decided to explore this dependence in more detail by measuring filter response to sinusoidal input signals. The investigations presented in this paper were carried out for an electrothermal filter designed and manufactured in an ASIC using 3 µm CMOS technology. The obtained measurement results confirmed the hypothesis that both the gain and the phase shift in the filter strongly depend on the input signal frequency. Accurate data on the thermal impedance of filters is crucial for the optimization of their performance. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

25 pages, 9127 KB  
Article
Applicability and Design Considerations of Chaotic and Quantum Entropy Sources for Random Number Generation in IoT Devices
by Wieslaw Marszalek, Michał Melosik, Mariusz Naumowicz and Przemysław Głowacki
Entropy 2025, 27(7), 726; https://doi.org/10.3390/e27070726 - 4 Jul 2025
Viewed by 518
Abstract
This article presents a comparative analysis of two types of generators of random sequences: one based on a discrete chaotic system being the logistic map, and the other being a commercial quantum random number generator QUANTIS-USB-4M. The results of the conducted analysis serve [...] Read more.
This article presents a comparative analysis of two types of generators of random sequences: one based on a discrete chaotic system being the logistic map, and the other being a commercial quantum random number generator QUANTIS-USB-4M. The results of the conducted analysis serve as a guide for selecting the type of generator that is more suited for a specific IoT solution, depending on the functional profile of the target application and the amount of random data required in the cryptographic process. This article discusses both the theoretical foundations of chaotic phenomena underlying the pseudorandom number generator based on the logistic map, as well as the theoretical principles of photon detection used in the quantum random number generators. A hardware IP Core implementing the logistic map was developed, suitable for direct implementation either as a standalone ASIC using the SkyWater PDK process or on an FPGA. The generated bitstreams from the implemented IP Core were evaluated for randomness. The analysis of the entropy levels and evaluation of randomness for both the logistic map and the quantum random number generator were performed using the ent tool and NIST test suite. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

22 pages, 38738 KB  
Article
A 0.6 V 68.2 dB 0.42 µW SAR-ΣΔ ADC for ASIC Chip in 0.18 µm CMOS
by Xinyu Li, Kentaro Yoshioka, Zhongfeng Wang, Jun Lin and Congyi Zhu
Electronics 2025, 14(10), 2030; https://doi.org/10.3390/electronics14102030 - 16 May 2025
Viewed by 517
Abstract
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in [...] Read more.
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in the ISDM stage is presented. The ADC employs an improved high-precision double-bootstrapped switch, and the synchronous clock is also double-bootstrapped to work under the low supply voltage. A modified merged capacitor switching (MCS) approach is presented to maintain a stable VCM at the differential input. The chip was fabricated using a 0.18 µm CMOS process, with a core area of 0.21 mm2. It consumed only 0.42 µW at a 0.6 V supply and a sampling rate of 10 kS/s, which achieved an effective number of bits (ENOB) of 11.03. The resulting figure of merit (FOMW) was 20.05 fJ/conversion-step, which is the lowest reported for ADCs of this architecture in a 0.18 µm process. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

9 pages, 2186 KB  
Communication
Flexible Hybrid Integration Hall Angle Sensor Compatible with the CMOS Process
by Ye Luo, Youtong Fang, Yang Lv, Huaxiong Zheng and Ke Guan
Sensors 2025, 25(3), 927; https://doi.org/10.3390/s25030927 - 4 Feb 2025
Cited by 1 | Viewed by 2727
Abstract
Silicon-based Hall application-specific integrated circuit (ASIC) chips have become very successful, making them ideal for flexible electronic and sensor devices. In this study, we designed, simulated, and tested flexible hybrid integration angle sensors that can be made using complementary metal-oxide-semiconductor (CMOS) technology. These [...] Read more.
Silicon-based Hall application-specific integrated circuit (ASIC) chips have become very successful, making them ideal for flexible electronic and sensor devices. In this study, we designed, simulated, and tested flexible hybrid integration angle sensors that can be made using complementary metal-oxide-semiconductor (CMOS) technology. These sensors are manufactured on a 100 µm-thick flexible polyimide (PI) membrane, which is suitable for large-scale production and has strong potential for industrial use. The Hall sensors have a sensitivity of 0.205 V/mT. Importantly, their sensitivity remains stable even after being bent to a minimum radius of 10 mm and after undergoing 100 bending cycles. The experiment shows that these flexible hybrid integration devices are promising as angle sensors. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 3285 KB  
Article
Design of Interface ASIC with Power-Saving Switches for Capacitive Accelerometers
by Juncheng Cai, Yongbin Cai, Xiangyu Li, Shanshan Wang, Xiaowei Zhang, Xinpeng Di and Pengjun Wang
Micromachines 2025, 16(1), 96; https://doi.org/10.3390/mi16010096 - 15 Jan 2025
Cited by 1 | Viewed by 1265
Abstract
High-precision, low-power MEMS accelerometers are extensively utilized across civilian applications. Closed-loop accelerometers employing switched-capacitor (SC) circuit topologies offer notable advantages, including low power consumption, high signal-to-noise ratio (SNR), and excellent linearity. Addressing the critical demand for high-precision, low-power MEMS accelerometers in modern geophones, [...] Read more.
High-precision, low-power MEMS accelerometers are extensively utilized across civilian applications. Closed-loop accelerometers employing switched-capacitor (SC) circuit topologies offer notable advantages, including low power consumption, high signal-to-noise ratio (SNR), and excellent linearity. Addressing the critical demand for high-precision, low-power MEMS accelerometers in modern geophones, this work focuses on the design and implementation of closed-loop interface ASICs (Application-Specific Integrated Circuits). The proposed interface circuit, based on switched-capacitor modulation technology, incorporates a low-noise charge amplifier, sample-and-hold circuit, integrator, and clock divider circuit. To minimize average power consumption, a switched operational amplifier (op-amp) technique is adopted, which temporarily disconnects idle op-amps from the power supply. Additionally, a class-AB output stage is employed to enhance the dynamic range of the circuit. The design was realized using a standard 0.35 μm CMOS process, culminating in the completion of layout design and small-scale engineering fabrication. The performance of the MEMS accelerometers was evaluated under a 3.3 V power supply, achieving a power consumption of 3.3 mW, an accelerometer noise density below 1 μg/√Hz, a sensitivity of 1.65 V/g, a measurement range of ±1 g, a nonlinearity of 0.15%, a bandwidth of 300 Hz, and a bias stability of approximately 36 μg. These results demonstrate the efficacy of the proposed design in meeting the stringent requirements of high-precision MEMS accelerometer applications. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 2nd Edition)
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Reconfigurable Frequency Response Masking Multi-MAC Filters for Software Defined Radio Channelization
by Subahar Arivalagan, Britto Pari James and Man-Fai Leung
Electronics 2024, 13(21), 4211; https://doi.org/10.3390/electronics13214211 - 27 Oct 2024
Cited by 3 | Viewed by 1054
Abstract
Mobile technology is currently trending toward supporting multiple communication standards on a single device. This means that some reconfigurable techniques must be the foundation of their design. The two essential requirements of channel filters are minimized complexity and reconfigurability. In this research, a [...] Read more.
Mobile technology is currently trending toward supporting multiple communication standards on a single device. This means that some reconfigurable techniques must be the foundation of their design. The two essential requirements of channel filters are minimized complexity and reconfigurability. In this research, a novel extension of Frequency Response Masking (FRM) was investigated by employing Time Division Multiplexing (TDM)-based single Multiply and Accumulate (MAC) architecture using the principle of resource sharing to realize multiple sharp filter responses from a single prototype constant group delay low pass filter. This paper uses a single multiply and add units regardless of the quantity of channels and taps. The suggested reconfigurable filter was synthesized on technology based on 0.18-µm CMOS and put into practice. Further trials were carried out on Virtex-II 2v3000ff1152-4 FPGA device. The outcomes revealed that the suggested channel filter, which was synthesized using FPGA, provides 21.36% of the area curtail and 14.88% of power scaling down on average and put into practice using ASIC provides 5.18% of the area reduction and 9.08% of power scaling down on average. Full article
Show Figures

Figure 1

18 pages, 3584 KB  
Article
A New Carry Look-Ahead Adder Architecture Optimized for Speed and Energy
by Padmanabhan Balasubramanian and Douglas L. Maskell
Electronics 2024, 13(18), 3668; https://doi.org/10.3390/electronics13183668 - 15 Sep 2024
Cited by 3 | Viewed by 3068
Abstract
We introduce a new carry look-ahead adder (NCLA) architecture that employs non-uniform-size carry look-ahead adder (CLA) modules, in contrast to the conventional CLA (CCLA) architecture, which utilizes uniform-size CLA modules. We adopted two strategies for the implementation of the NCLA. Our novel approach [...] Read more.
We introduce a new carry look-ahead adder (NCLA) architecture that employs non-uniform-size carry look-ahead adder (CLA) modules, in contrast to the conventional CLA (CCLA) architecture, which utilizes uniform-size CLA modules. We adopted two strategies for the implementation of the NCLA. Our novel approach enables improved speed and energy efficiency for the NCLA architecture compared to the CCLA architecture without incurring significant area and power penalties. Various adders were implemented to demonstrate the advantages of NCLA, ranging from the slower ripple carry adder to the widely regarded fastest parallel-prefix adder viz. the Kogge–Stone adder, and their performance metrics were compared. The 32-bit addition was used as an example, with the adders implemented using a semi-custom design method and a 28 nm CMOS standard cell library. Synthesis results show that the NCLA architecture offers substantial improvements in design metrics compared to its high-speed counterparts. Specifically, an NCLA achieved (i) a 14.7% reduction in delay and a 13.4% reduction in energy compared to an optimized CCLA, while occupying slightly more area; (ii) a 42.1% reduction in delay and a 58.3% reduction in energy compared to a conditional sum adder, with an 8% increase in the area; (iii) a 14.7% reduction in delay and a 37.7% reduction in energy compared to an optimized carry select adder, while requiring 37% less area; and (iv) a 20.2% reduction in energy and a 55.4% reduction in area compared to the Kogge–Stone adder. Full article
Show Figures

Figure 1

24 pages, 13367 KB  
Article
Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations
by Omer Tariq, Muhammad Bilal Akram Dastagir and Dongsoo Han
Electronics 2024, 13(16), 3148; https://doi.org/10.3390/electronics13163148 - 9 Aug 2024
Viewed by 1922
Abstract
With the exponential growth of the Internet of Things (IoT), ensuring robust end-to-end encryption is paramount. Current cryptographic accelerators often struggle with balancing security, area efficiency, and power consumption, which are critical for compact IoT devices and system-on-chips (SoCs). This work presents a [...] Read more.
With the exponential growth of the Internet of Things (IoT), ensuring robust end-to-end encryption is paramount. Current cryptographic accelerators often struggle with balancing security, area efficiency, and power consumption, which are critical for compact IoT devices and system-on-chips (SoCs). This work presents a novel approach to designing substitution boxes (S-boxes) for Advanced Encryption Standard (AES) encryption, leveraging dual quad-bit structures to enhance cryptographic security and hardware efficiency. By utilizing Algebraic Normal Forms (ANFs) and Walsh–Hadamard Transforms, the proposed Register Transfer Level (RTL) circuitry ensures optimal non-linearity, low differential uniformity, and bijectiveness, making it a robust and efficient solution for ASIC implementations. Implemented on 65 nm CMOS technology, our design undergoes rigorous statistical analysis to validate its security strength, followed by hardware implementation and functional verification on a ZedBoard. Leveraging Cadence EDA tools, the ASIC implementation achieves a central circuit area of approximately 199 μm2. The design incurs a hardware cost of roughly 80 gate equivalents and exhibits a maximum path delay of 0.38 ns. Power dissipation is measured at approximately 28.622 μW with a supply voltage of 0.72 V. According to the ASIC implementation on the TSMC 65 nm process, the proposed design achieves the best area efficiency, approximately 66.46% better than state-of-the-art designs. Full article
Show Figures

Figure 1

17 pages, 14103 KB  
Article
A Modular 512-Channel Neural Signal Acquisition ASIC for High-Density 4096 Channel Electrophysiology
by Aikaterini Papadopoulou, John Hermiz, Carl Grace and Peter Denes
Sensors 2024, 24(12), 3986; https://doi.org/10.3390/s24123986 - 19 Jun 2024
Cited by 1 | Viewed by 1915
Abstract
The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural [...] Read more.
The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.2 mm × 6.8 mm 2D layout to enable high-channel count, creating an ultra-light 350 mg flexible module. The module can be deployed on headstages for small animals like rodents and songbirds, and it can be integrated with a variety of electrode arrays. The chip was fabricated in a TSMC 0.18 µm 1.8 V CMOS technology and dissipates a total of 125 mW. Each DC-coupled channel features a gain and bandwidth programmable analog front-end along with 14 b analog-to-digital conversion at speeds up to 30 kS/s. Additionally, each front-end includes programmable electrode plating and electrode impedance measurement capability. We present both standalone and in vivo measurements results, demonstrating the readout of spikes and field potentials that are modulated by a sensory input. Full article
(This article belongs to the Special Issue Integrated Circuit and System Design for Health Monitoring)
Show Figures

Figure 1

17 pages, 17487 KB  
Article
Design of a Sigma-Delta Analog-to-Digital Converter Cascade Decimation Filter
by Mao Ye, Zitong Liu and Yiqiang Zhao
Electronics 2024, 13(11), 2090; https://doi.org/10.3390/electronics13112090 - 27 May 2024
Cited by 3 | Viewed by 3015
Abstract
As the current mainstream high-precision ADC architecture, sigma-delta ADC is extensively employed in a wide range of domains and applications. This paper presents the design of a highly efficient cascaded digital decimation filter for sigma-delta ADCs, emphasizing the suppression of high folding band [...] Read more.
As the current mainstream high-precision ADC architecture, sigma-delta ADC is extensively employed in a wide range of domains and applications. This paper presents the design of a highly efficient cascaded digital decimation filter for sigma-delta ADCs, emphasizing the suppression of high folding band noise and the achievement of a flat passband. Additionally, this study addresses the critical balance between filter performance and power consumption. An inserting zero (IZ) filter is incorporated into a cascaded integrator comb (CIC) filter to enhance aliasing suppression. The IZ filter and compensation filter are optimized using the particle swarm optimization (PSO) algorithm to achieve greater noise attenuation and smaller passband ripple. The designed filter achieves a noise attenuation of 93.4 dB in the folding band and exhibits an overall passband ripple of 0.0477 dB within a bandwidth of 20 KHz. To decrease the power consumption in the filter design, polyphase decomposition has been applied. The filter structure is implemented on an FPGA, processing a 5-bit stream from a 64-times oversampling rate and third-order sigma-delta modulator. The signal-to-noise ratio (SNR) of the output signal reaches 91.7 dB. For ASIC design, the filter utilizes 180 nm CMOS technology with a power consumption of 0.217 mW and occupies a layout area of 0.72 mm2. The post-layout simulation result indicates that the SNR remains at 91.7 dB. Full article
Show Figures

Figure 1

12 pages, 1482 KB  
Article
Gate-Level Hardware Priority Resolvers for Embedded Systems
by Padmanabhan Balasubramanian and Douglas L. Maskell
J. Low Power Electron. Appl. 2024, 14(2), 25; https://doi.org/10.3390/jlpea14020025 - 17 Apr 2024
Cited by 1 | Viewed by 1670
Abstract
An N-bit priority resolver having N inputs and N outputs functions as polling hardware in an embedded system, enabling access to a resource when multiple devices initiate access requests at its inputs which may be located on-chip or off-chip. Subsystems such as data [...] Read more.
An N-bit priority resolver having N inputs and N outputs functions as polling hardware in an embedded system, enabling access to a resource when multiple devices initiate access requests at its inputs which may be located on-chip or off-chip. Subsystems such as data buses, comparators, fixed- and floating-point arithmetic units, interconnection network routers, etc., utilize the priority resolver function. In the literature, there are many transistor-level designs for the priority resolver based on dynamic CMOS logic, some of which are modular and others are not. This article presents a novel gate-level modular design of priority resolvers that can accommodate any number of inputs and outputs. Based on our modular design architecture, small-size priority resolvers can be conveniently combined to form medium- or large-size priority resolvers along with extra logic. The proposed modular design approach helps to reduce the coding complexity compared to the conventional direct design approach and facilitates scalability. We discuss the gate-level implementation of 4-, 8-, 16-, 32-, 64-, and 128-bit priority resolvers based on the direct and modular approaches and provide a performance comparison between these based on the design metrics. According to the modular approach, different sizes of priority resolver modules were used to implement larger-size priority resolvers. For example, a 4-bit priority resolver module was used to implement 8-, 16-, 32-, 64-, and 128-bit priority resolvers in a modular fashion. We used a 28 nm CMOS standard digital cell library and Synopsys EDA tools to synthesize the priority resolvers. The estimated design metrics show that the modular approach tends to facilitate increasing reductions in delay and power-delay product (PDP) compared to the direct approach, especially as the size of the priority resolver increases. For example, a 32-bit modular priority resolver utilizing 16-bit priority resolver modules had a 39.4% reduced delay and a 23.1% reduced PDP compared to a directly implemented 32-bit priority resolver, and a 128-bit modular priority resolver utilizing 16-bit priority resolver modules had a 71.8% reduced delay and a 61.4% reduced PDP compared to a directly implemented 128-bit priority resolver. Full article
Show Figures

Figure 1

8 pages, 620 KB  
Article
A Configurable 64-Channel ASIC for Cherenkov Radiation Detection from Space
by Andrea Di Salvo, Sara Garbolino, Marco Mignone, Stefan Cristi Zugravel, Angelo Rivetti, Mario Edoardo Bertaina and Pietro Antonio Palmieri
Instruments 2023, 7(4), 50; https://doi.org/10.3390/instruments7040050 - 7 Dec 2023
Viewed by 1915
Abstract
This work presents the development of a 64-channel application-specific integrated circuit (ASIC), implemented to detect the optical Cherenkov light from sub-orbital and orbital altitudes. These kinds of signals are generated by ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos (CNs). The purpose of [...] Read more.
This work presents the development of a 64-channel application-specific integrated circuit (ASIC), implemented to detect the optical Cherenkov light from sub-orbital and orbital altitudes. These kinds of signals are generated by ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos (CNs). The purpose of this front-end electronics is to provide a readout unit for a matrix of silicon photo-multipliers (SiPMs) to identify extensive air showers (EASs). Each event can be stored into a configurable array of 256 cells where the on-board digitization can take place with a programmable 12-bits Wilkinson analog-to-digital converter (ADC). The sampling, the conversion process, and the main digital logic of the ASIC run at 200 MHz, while the readout is managed by dedicated serializers operating at 400 MHz in double data rate (DDR). The chip is designed in a commercial 65 nm CMOS technology, ensuring a high configurability by selecting the partition of the channels, the resolution in the interval 8–12 bits, and the source of its trigger. The production and testing of the ASIC is planned for the forthcoming months. Full article
Show Figures

Figure 1

14 pages, 7553 KB  
Article
Multi-Channel Gating Chip in 0.18 µm High-Voltage CMOS for Quantum Applications
by Christoph Ribisch, Michael Hofbauer, Seyed Saman Kohneh Poushi, Alexander Zimmer, Kerstin Schneider-Hornstein, Bernhard Goll and Horst Zimmermann
Sensors 2023, 23(24), 9644; https://doi.org/10.3390/s23249644 - 6 Dec 2023
Cited by 2 | Viewed by 1472
Abstract
A gating circuit for a photonic quantum simulator is introduced. The gating circuit uses a large excess bias voltage of up to 9.9 V and an integrated single-photon avalanche diode (SPAD). Nine channels are monolithically implemented in an application-specific integrated circuit (ASIC) including [...] Read more.
A gating circuit for a photonic quantum simulator is introduced. The gating circuit uses a large excess bias voltage of up to 9.9 V and an integrated single-photon avalanche diode (SPAD). Nine channels are monolithically implemented in an application-specific integrated circuit (ASIC) including nine SPADs using 0.18 µm high-voltage CMOS technology. The gating circuit achieves rise and fall times of 480 ps and 280 ps, respectively, and a minimum full-width-at-half-maximum pulse width of 1.26 ns. Thanks to a fast and sensitive comparator, a detection threshold for avalanche events of less than 100 mV is possible. The power consumption of all nine channels is about 250 mW in total. This gating chip is used to characterize the integrated SPADs. A photon detection probability of around 50% at 9.9 V excess bias and for a wavelength of 635 nm is found. Full article
(This article belongs to the Special Issue Integrated Circuits and CMOS Sensors)
Show Figures

Figure 1

22 pages, 15981 KB  
Article
Digital Calibration of Input Offset Voltage and Its Implementation in FDDA Circuits
by David Maljar, Michal Sovcik, Miroslav Potocny, Robert Ondica, Daniel Arbet and Viera Stopjakova
Electronics 2023, 12(22), 4615; https://doi.org/10.3390/electronics12224615 - 11 Nov 2023
Cited by 1 | Viewed by 1900
Abstract
This article deals with the calibration method of analog integrated circuits (ICs) designed in CMOS nanotechnology. A brief analysis of various methods and techniques (e.g., fuse trimming, chopper stabilization, auto-zero technique, etc.) for calibration of a specific IC’s parameter is given, leading to [...] Read more.
This article deals with the calibration method of analog integrated circuits (ICs) designed in CMOS nanotechnology. A brief analysis of various methods and techniques (e.g., fuse trimming, chopper stabilization, auto-zero technique, etc.) for calibration of a specific IC’s parameter is given, leading to motivation for this research that is focused on the digital calibration. Then, the principle and overall design of the calibration subcircuit, which was generally used to calibrate the input offset voltage VIN_OFF of the operational amplifier (OPAMP). The essence of this work is verification of the proposed digital calibration algorithm for minimization the VIN_OFF of a bulk-driven fully differential difference amplifier (FDDA) with the power supply voltage VDD = 0.4 V. Evaluation of ASIC prototyped chip samples with silicon-proved results has been done. This evaluation contains comparison of selected parameters and characteristics obtained from both simulations and measurements of non-calibrated and calibrated FDDA configurations. Full article
(This article belongs to the Special Issue Advances in RF, Analog, and Mixed Signal Circuits)
Show Figures

Figure 1

17 pages, 2987 KB  
Article
Design and Implementation of Low-Power IoT RISC-V Processor with Hybrid Encryption Accelerator
by Sen Yang, Lian Shao, Junke Huang and Wanghui Zou
Electronics 2023, 12(20), 4222; https://doi.org/10.3390/electronics12204222 - 12 Oct 2023
Cited by 7 | Viewed by 5242
Abstract
The security and reliability of data transmission between IoT devices are considered to be major challenges in the development of IoT technology. This paper presents a low-power, low-cost RISC-V processor for IoT applications with an integrated hybrid encryption accelerator, which can achieve efficient [...] Read more.
The security and reliability of data transmission between IoT devices are considered to be major challenges in the development of IoT technology. This paper presents a low-power, low-cost RISC-V processor for IoT applications with an integrated hybrid encryption accelerator, which can achieve efficient and secure encryption and decryption of data transmitted between IoT devices. The hybrid encryption accelerator, which uses the SM3 and the SM4, respectively, as hash and symmetric encryption algorithms, achieves a balance between encryption security, high speed, and key-management convenience. Both the processor and encryption accelerator are designed using the Verilog HDL language and are subsequently implemented and evaluated on both FPGA and ASIC platforms. The performance of the proposed processor and that of the Hummingbird E203 and the XuanTie E902 are compared. It is shown that, on the FPGA platform, the total resource utilization rate is reduced by 39.1~66.2%. In a 90 nm CMOS process, it is shown that the power efficiency of the proposed processor is increased by 10~34.8% and the circuit area is reduced by 32.5~57.1%. Full article
Show Figures

Figure 1

Back to TopTop