i:;l?é electronics

Article

Design and Implementation of Low-Power [oT RISC-V
Processor with Hybrid Encryption Accelerator

Sen Yang, Lian Shao, Junke Huang and Wanghui Zou *

check for
updates

Citation: Yang, S.; Shao, L.; Huang, J.;
Zou, W. Design and Implementation
of Low-Power IoT RISC-V Processor
with Hybrid Encryption Accelerator.
Electronics 2023, 12, 4222. https://
doi.org/10.3390/ electronics12204222

Academic Editor: Paris Kitsos

Received: 11 September 2023
Revised: 6 October 2023
Accepted: 10 October 2023
Published: 12 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Physical and Electronic Sciences, Changsha University of Science and Technology,
Changsha 410114, China
* Correspondence: zouwh@csust.edu.cn

Abstract: The security and reliability of data transmission between IoT devices are considered to be
major challenges in the development of IoT technology. This paper presents a low-power, low-cost
RISC-V processor for IoT applications with an integrated hybrid encryption accelerator, which can
achieve efficient and secure encryption and decryption of data transmitted between IoT devices.
The hybrid encryption accelerator, which uses the SM3 and the SM4, respectively, as hash and
symmetric encryption algorithms, achieves a balance between encryption security, high speed, and
key-management convenience. Both the processor and encryption accelerator are designed using the
Verilog HDL language and are subsequently implemented and evaluated on both FPGA and ASIC
platforms. The performance of the proposed processor and that of the Hummingbird E203 and the
XuanTie E902 are compared. It is shown that, on the FPGA platform, the total resource utilization
rate is reduced by 39.1~66.2%. In a 90 nm CMOS process, it is shown that the power efficiency of the
proposed processor is increased by 10~34.8% and the circuit area is reduced by 32.5~57.1%.
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1. Introduction

In recent years, the rapid evolution of the Internet of Things (IoT) has seen widespread
integration of IoT devices across diverse domains, including smart homes, smart cities,
healthcare, agriculture, and industries. Data communication between IoT devices has
become more frequent, and meanwhile, data protection has become a critical issue [1].
Data transmitted over the network are vulnerable to eavesdropping and tampering, which
compromise data quality and safety [2]. In this context, the imperative of our IoT era is to
delve into strategies for ensuring robust data security.

Encryption and decryption serve as fundamental techniques underpinning data secu-
rity and communication. The primary classifications of encryption algorithms encompass
symmetric-key encryption, asymmetric-key encryption, and hash functions [3]. Symmetric-
key encryption uses the same key for both encryption and decryption. Notable instances
of symmetric-key encryption algorithms encompass AES [4] and SM4 [5]. Asymmetric-
key encryption uses different keys for encryption and decryption. Some examples of
asymmetric-key encryption algorithms are RSA [6] and SM2 [7]. Hash functions repre-
sent one-way mechanisms mapping input data to a fixed-length output, facilitating the
verification of data integrity and authenticity. Eminent illustrations of hash function al-
gorithms encompass MD5 [8] and SHA-2 [9]. Symmetric-key encryption offers rapidity
and simplicity; its deployment necessitates a secure mechanism for key sharing between a
sender and receiver. Conversely, asymmetric-key encryption, offering heightened security
and flexibility, entails a trade-off in terms of reduced speed and heightened complexity
compared to symmetric-key encryption. Hash functions excel at verifying data integrity
and authenticity, but they lack the capacity for data encryption or decryption.
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Hybrid encryption technology represents a versatile approach that integrates diverse
encryption systems and algorithms, facilitating the creation of encryption schemes tai-
lored to specific requirements. This technology substantiates enhancements in the security,
efficiency, and convenience of encryption, decryption, and key management processes,
consequently eliciting substantial attention in research and analysis. Li et al. proposed a
novel hybrid encryption algorithm by using the initial encryption algorithm, the Micro
Genard encryption algorithm, and the Base64 encryption algorithm. They enhance and
optimize established encryption algorithms and meticulously reassemble them in a strate-
gic sequence to bolster information security [10]. Shende et al. combined the advantages
of AES and RSA algorithms to propose a hybrid encryption scheme that reduces complex
calculations and increases computation speed without compromising the randomness and
efficiency of the algorithm [11]. Chandu et al. proposed a hybrid encryption algorithm,
using AES to encrypt the data generated by edge devices and RSA to encrypt the AES key,
and implemented the design on FPGA to ensure data integrity and confidentiality [12].
Hui et al. introduced a real-time analysis and hybrid encryption technique for substantial
data, leveraging Spark Streaming to fuse ECC encryption with block data encryption.
Their approach encompassed a key generation method amalgamating semiconductor
noise sources and chaotic sequences [13]. Zheng et al. devised a hybrid cryptographic
framework for intelligent devices, entailing software/hardware co-design and integrating
SM2/SM3/SM4 algorithms, thereby achieving a cost-effective, high-performance solution
surpassing prior endeavors, and execution speed increased by over 10% [14]. Li et al.
proposed an original triple-hybrid encryption system for a real-time sensitive image acqui-
sition chip. This encryption system optimizes the symmetric encryption algorithm AES,
asymmetric encryption algorithm ECC, and chip authentication algorithm PUF in pursuit
of security; AES reduced the hardware area by 60.1%, and ECC reduced the hardware area
by 43.4% [15]. However, prevailing hybrid encryption systems often rely on conventional
processor architectures, with their acceleration units mostly attached to the CPU’s bus as
peripherals, failing to fully exploit the flexibility and scalability inherent in the RISC-V
instruction set. However, prevailing hybrid encryption systems often rely on conventional
processor architectures, with their acceleration units mostly attached to the CPU’s bus
as peripherals, failing to fully utilize the flexibility and scalability inherent in the RISC-V
instruction set. This may result in data transmission delays and bandwidth limitations,
increasing system power consumption, and this discrepancy leads to suboptimal alignment
with IoT scenarios.

This paper presents a hybrid encryption scheme based on the SM3 and SM4 algorithms,
both of which are Chinese national cryptographic standards, the former being a hash
function and the latter a symmetric-key block cipher. The SM3 algorithm offers robust
security and favorable performance when compared to other hash functions like SHA-
256. Similarly, the SM4 algorithm boasts high security levels and cost-effectiveness in
hardware, distinguishing it from block ciphers such as AES. Our hybrid encryption scheme
is seamlessly integrated into a 32-bit, low-power IoT RISC-V processor, delivering notable
efficiency, security, and data encryption flexibility. The processor core features a two-stage
pipeline and supports RISC-V’s I and M standard extensions. Additionally, the hybrid
encryption accelerator is seamlessly incorporated into the execution stage of the RISC-
V processor, activated by custom instructions. To validate our approach, we assessed
the processor core’s performance on an FPGA platform and conducted synthesis using
90 nm CMOS ASIC technology. The results clearly demonstrate the superiority of our
design in terms of throughput, area utilization, and power efficiency when compared to
existing alternatives.

The remainder of this paper is structured as follows. Section 2 provides an introduction
to the foundational concepts of the RISC-V instruction set and the encryption algorithm.
In Section 3, we delve into the architecture of the proposed processor and its constituent
elements. Section 4 outlines the implementation results and offers an analysis of the
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proposed processor’s performance. Finally, Section 5 concludes the paper, offering insights
into future avenues of research.

2. Background
2.1. SM3 Algorithm

The SM3 algorithm is a cryptographic hash function that can map any input data to
fixed-length output data, called a message digest, which can be used for data encryption
and integrity verification [16]. It was developed by the State Cryptography Administration
of China and became a national standard in 2012 [17]. It is similar to SHA-256 in terms of
security and efficiency [18]. The SM3 algorithm consists of three parts: message padding,
message expansion, and a compression function [19]. For a plaintext message with a
length of m bits, the SM3 algorithm performs a series of message padding and iterative
compression operations, which finally produces a 256-bit hash value. The process is
typically implemented in three steps as follows:

(1) Message padding. Firstly, the plain message m is padded with a single bit “1” fol-
lowed by k bits “0” (I + 1+ k = 448 mod 512) and a 64-bit string, which is the binary
representation of the message length. After padding, the length of the final padded
message is a multiple of 512.

(2) Message expansion. The padded message m' is then divided into several 512-bit

message blocks as B ©) ), ... B(=1) Each message block B() will be transformed

into 132 words as Wy, Wy, - - -, Wez, W, Wy, - - -, W[5 using the following method:

a. The message block B() is divided into 16 words Wo, Wy, - -+, Wis.
b.  W;is calculated by:

forj=16to 67

W= Pl(ijlé 5> V\/vjfg @ (W];3 <<<15)) @ (Wj,13 <<<7)® I/Vj,m €))
endfor

Here, Pj(-) is a permutation function.
c.  Wiis calculated by:

forj=0to67
W/j = Wj ©® Wj+4 (2)
endfor

(3) Message compression. Then, the message block B(!) is processed by:
vt — cpv BDY, 0<i<n—1 )

where CF is the compression function. V(9 is the initial value IV of the compression
function, which is a 256-bit constant as defined in the algorithm standard. The
operation procedure of the compression function CF can be summarized as follows:

ABCDEFGH = V) (4a)



Electronics 2023, 12, 4222 40f17

forj=0to63
S51=((A<<<12)+E+(T; <<<j)) <<<7
§52 =551 (A <<< 12)
TT1 = FF;(A,B,C) + D + S52 + W/;
TT2 = GG,(E,F,G) + H+ SS1+W;

D=C
C=B<<<9
4b
B_ A (4b)
A=TT1
H=G
G=F<<<9
F=E
E = Py(TT2)
endfor
v+l — ABCDEFGH & V) (4c)

where A, B, C, D, E, F, G, and H are a 32-bit word. SS1, SS2, TT1, and TT2 are
intermediate variables. T; is a constant. FF;(-) and GG;(-) are Boolean functions. Py(-)
is a permutation function. The final 256-bit hash value is:

ABCDEFGH =V (5a)

y = ABCDEFGH (5b)

2.2. SM4 Algorithm

The SM4 algorithm serves as a symmetric block cipher, adept at both data encryption
and decryption, employing a 128-bit key and a 128-bit block size [20]. It was conceived by
the State Cryptography Administration of China and was officially established as a national
standard in 2012 [21]. Its widespread application encompasses data encryption and the
fortification of wireless network security [22]. Structurally, the SM4 algorithm comprises
three distinct stages: message padding, message expansion, and iterative compression [23].
The message padding phase introduces additional bits to the input message, aligning it to a
multiple of 128 bits. Following this, the message expansion phase generates 32 round keys
from the initial key, employing a non-linear function along with two constants. Lastly, the
iterative compression phase enacts 32 encryption or decryption rounds on each 128-bit block
of the padded message. This operation is facilitated using the round keys and a substitution-
permutation network. Each round’s computation adheres to the following formula:

Xita = Xi @ T(X; ® Xip1 © Xi2 © Xi3 B 7k;) (6)

where X; is a 32-bit word, @ represents the bitwise XOR operation, rk; is the round key for
the i-th round, and T(-) is a non-linear transformation function that consists of an S-box
and a linear transformation. The S-box is based on the multiplicative inverse over GF(28)
with an affine transform. The linear transformation is defined by:

L(B)=B® (B<<<2)®(B<<<10)® (B <<<18)® (B <<< 24) (7)

where B is a 32-bit word and << < represents the cyclic left shift operation. The final
output of the SM4 algorithm is a 128-bit cipher-text.

2.3. RISC-V Instruction Set

RISC-V is an instruction-set architecture that originated at the University of California,
Berkeley, and it holds notable distinctions from the x86 and ARM architectures [24].
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Specifically, the RISC-V architecture offers a spectrum of benefits encompassing simplicity,
flexibility, and considerable scalability. This architectural framework has gained significant
traction within the realm of IoT devices [25]. RISC-V’s foundation rests on a modular
design, enabling straightforward customization through the selection of diverse modules
that align with varying application demands. Notably, this modular approach augments
the system’s flexibility and scalability, consequently enhancing the overall architecture [26].

The basic instruction set in RISC-V is denoted by I, which is the subset of instructions
that all processors need to support [27]. And the extension instruction sets can be selected
according to specific application requirements. The basic instruction set provides the
most essential functions, while the extension instruction sets provide more options and
optimizations. In addition, RISC-V also supports user-defined instructions and reserves
a significant amount of encoding space for custom instructions, which makes it easy to
design custom instructions for domain-specific accelerators [28]. This flexible instruction
set design makes RISC-V a versatile and adaptable architecture that can meet various
application needs, while also promoting innovation and customization.

3. Hardware Implementation
3.1. SM3 Algorithm Accelerator

The SM3 algorithm accelerator is a hardware circuit that can perform the SM3 algo-
rithm faster and more efficiently than the software implementations. It consists of four
parts: a message padding module, a control module, iterative compression logic, and a
data cache module. From the previous section, the iterative compression process requires
64 rounds of computation. We use a three-way parallel computation scheme for the ex-
pansion and compression modules to improve the speed of encryption operation with low
resource cost. Figure 1 shows the overall architecture of an SM3 algorithm accelerator. After
a message padding operation, the plain message m is transformed into the padded message
m'’, which is then sent to the iterative compression logic. Under the control of the control
module, three expansion modules generate expansion words in parallel in each clock cycle
and send them to the compression module. The compression module performs a round of
compression calculations. After 22 clock cycles, the data cache module produces a 256-bit
hash value. In our design, by using the hardware SM3 accelerator, high performance and
low power consumption for data encryption can be achieved.

SM3
Padding Module <«
(e T T T T T T T T T T }
| Iterative compression logic I
|
| |:|I > —T>
I .| Expansion W. Compression | g
'™ Module 1 : Module1 [€— | &
: |$'> | 3
| ’ ' 2
> | o
: .| Expansion W, Compression | ! g
I 7|  Module 2 " Module2 [€t— |
| — !
| VVjH :
|
I | Expansion IW:.‘2> Compression _=_>
.| Module3 " Module3 |l —
: > |
| ‘A7j+2 |
\A A Snlnieinieteeie bbbl ;I val
Data Cache Module }&Re

Figure 1. Overall architecture of SM3 algorithm accelerator.
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As depicted in Figure 2, the message padding module is realized by a finite state ma-
chine (FSM). The FSM enters the idle state when it receives a reset signal. When a msg_vaild
signal is detected, indicating the beginning of the message input, the FSM transfers to the
normal_msg state. When both msg_vaild and last_word signals are asserted, indicating
the end of the message input, the FSM switches to the last_word state. Subsequently, a bit
“1” is appended to the tail of the message, followed by a bit “0”. Next, the 64-bit string
representing the message length is filled in. Upon completion of the padding, the FSM
enters the finish state and sends a signal to the control module to indicate that the padding
operation is completed. Finally, the FSM returns to the idle state.

msg_vaild=1&last_word=1

msg_vaild=1&las
_word=1

Figure 2. FSM state transition diagram.

The expansion module is responsible for expanding the padded message. Figure 3
shows the conceptual structure of this module, which is implemented using a 16-word shift
register as a buffer to produce 132 words. The shift register is initialized with Wy, Wy, -+,
W5, which comes directly from the division of the message block B(), and then shifted to
the left by one word for each expansion round. In one round, Wj is extracted as the output
of W;, while Wy and Wj are used to form the output of W'; through an XOR operation.
The calculated Wy is assigned to Wys. W; and W'} are sent to the following compression
module for further processing.

<« WO | W1 [ W2 | W3 | W& | W5 | W6 [ W7 | W8 | WO | W10 [ W11 | W12 | W13 [ W14 | W15

Figure 3. Logic schematic of the expansion module.

Based on the calculation process of the compression function, the compression mod-
ule can be divided into constant T; generation circuit, FF; function circuit, GGj function
operation circuit. The logic structure of the compression module is shown in Figure 4.
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Figure 4. Logic schematic of the compression module.

For the compression operation, the critical path lies in the calculation of E as described
in Equations (8)—(10).

SS1  ((A<<<12) +E+(T; <<<j) <<<7 (8)
TT2 + GG/(E,F,G) + H+ SS1 + W, )
E « Py(TT2) (10)

For optimization, the computation of S51 and TT?2 are arranged in parallel to reduce
the critical path length and the computation delay. Figure 5 shows the optimization scheme.
After optimization, the critical path is reduced from five additional steps to two additional
steps. In our design, the Carry Save Adder (CSA) and Carry Propagate Adder (CPA) are
introduced to minimize the addition delay [29,30].

= ] ] | o

GA <<< 1'2) <<< 7><E <2< 7 ) ((T] <<<"j) <<< 7) (V G‘C';i(-) ">
Y Y JV A\ 4 A
| CsA | | CSA
| CPA |
|
TT2

B,()

Figure 5. Illustration of the critical path optimization.



Electronics 2023, 12, 4222

8 of 17

3.2. SM4 Algorithm Accelerator

We employ a cyclic hardware architecture for the SM4 algorithm accelerator, which
facilitates the parallel computation of the round key-generation module and the encryp-
tion/decryption module. Figure 6 depicts the overall architecture of the SM4 algorithm ac-
celerator. It consists of three parts, including the control module, the round key-generation
module, and the encryption/decryption module. The control module orchestrates the
parallel execution of the round key-generation module and the encryption/decryption
module. The round key-generation module can dynamically update the round key in
response to the key changes. Furthermore, both the round key-generation module and the
encryption/decryption module have constant time cycles for encrypting the whole data
block, which improves the resistance to side-channel attacks.

SM4

~-round-»
round key generation module  [—key—®
[ —rk—P

- control
iﬁk_l module
-round-P
—data—

—enc—

¢ one
data

encryption/decryption module

Figure 6. Overall architecture of SM4 algorithm accelerator.

The round key-generation module mainly consists of an S-box module, a CK parameter
module, a multiplexer, an XOR circuit, etc. The circuit architecture is shown in Figure 7,
where the S-box uses combinational logic, which can reduce the number of storage units in
the circuit, thereby simplifying the circuit and reducing resource consumption. Under the
control of the control module, the round key-generation module completes one iteration
operation per clock cycle, generates the round key ry;, and passes it to the encryption
module for the next encryption calculation.

. Regi
Cyclic )
shift ster ——»

Y

Sl o

Figure 7. Overall architecture of round key-generation module.

The encryption/decryption module is similar to the round key-generation module,
and consists mainly of an S-box module, a multiplexer, an XOR circuit, etc. The architecture
is shown in Figure 8, where the S-box uses combinational logic to implement. Under the
output signal r of the round key-generation module and the control signal round encryption
of the control module, the encryption module completes one substitution operation per
clock cycle and outputs the cipher-text after 32 rounds of substitution operations.
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_enc

Y

Registe

Cyclic r

—data

Figure 8. Overall architecture of encryption/decryption module.

3.3. RISC-V Processor with Encryption Accelerator

The structure of the proposed RISC-V IoT processor is depicted in Figure 9, which
features a two-stage pipeline architecture and supports 55 general-purpose instructions
in RV32IM. It takes two clock cycles for the processor to complete the processing of one
instruction. In the first clock cycle, the fetch module fetches the instruction from the
instruction memory, decodes the instruction, and reads the source operands from the
General Purpose Registers (GPRs) based on the result of the decoding. In the second clock
cycle, the execution module performs logic or arithmetic operations on the operands based
on the output from the decoding module, and then writes the results back to the GPRs or
data memory. The registers without a reset are used for the data path, and the latches are
used for the GPRs and the Control and Status Register (CSR) to minimize the processor’s
area and power consumption.

RISC-V CORE ’ P
Controller 4———| :
E ——————————— Bl —1>
2 Execution | 5
g I 3]
=6 A Z
S| v v ALU = g
z Fench Module |
(0] |
e |
MULT/ |
» Decoder DIV I S
PN
a\ CSR —l
_ YVYVY
GPRs . .

Figure 9. Architectural block diagram of the processor core.

The RISC-V architecture encompasses fundamental branch-and-jump instructions,
including unconditional direct jumps (JAL), unconditional indirect jumps (JALR), and
direct conditional jumps (Bxx such as BEQ, BNE) [31]. To optimize processor performance
while conserving hardware resources, this study integrates static prediction techniques, as
depicted in Figure 10. These techniques augment processor performance without incurring
significant hardware overhead. For unconditional direct jump instruction, its target jump
address can be directly calculated from the immediate data in the instruction code. For a
direct jump with the condition Bxx instruction, a static prediction is used, and the jump
address can be obtained directly by adding the value of the PC register and the immediate
data. For unconditional indirect jump instruction, the base address used to calculate the
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jump target needs to be read from GPRs. It might probably cause a RAW conflict with the
execution module, so if rs1 is the register x0, the value of PC value is generated directly,
and if not, in order to prevent RAW conflicts, the instruction fetch will be suspended, and
the jump occurs after the execution module completes all the operations.

XXXXXXX op code
v v v
7'b1100011(Bxx) 7'b1100111(JALR) 7b1101111(JAL)
Y Y
Y
N N
l ; Y A\ 4 A\ 4

QT C D

Figure 10. Diagram of static branch prediction.

The hybrid encryption accelerator is invoked through five custom instructions that
use the reserved opcodes’ space of RISC-V ISA, including SM3 algorithm encryption,
SM4 algorithm encryption, and SM4 algorithm decryption. Figure 11 lists all the custom
instructions. The extended instruction “sm3sw” performs single-word SM3 algorithm en-
cryption, “sm3mw” performs multi-word SM3 algorithm encryption, and “sm3iw” performs
immediate-number SM3 algorithm encryption. The extended instruction “sm4dec” per-
forms SM4 algorithm decryption, and the “sm4enc” algorithm performs SM4 encryption.
According to the RISC-V instruction specification, the 7-bit binary number 0001011 is se-
lected to be the opcode of the extension instruction in order to distinguish it from other
types of instructions. To distinguish the function of the extension instructions, “funct3”
is utilized.

31 2524 20 19 1514 1211 76
0000_0000_0000 rsl 000 rd 0001011 sm3sw
offset[11:0] rs1 001 rd 0001011 sm3mw
encsel[11:0] rsl 010 rd 0001011 sm3iw
0000000 rs2 rsl 100 rd 0001011 sm4enc
0000000 rs2 rsl 101 rd 0001011 smddec
funct3 opcode

Figure 11. Field definitions of the custom instruction.

As shown in Figure 12, the encryption accelerator is integrated into the execution
stage of the RISC-V processor. When a custom instruction is executed, the message to be
encrypted is fetched from the data memory and sent to the encryption accelerator. The
encryption accelerator initiates the corresponding cryptographic procedures based on the
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instruction opcode. During the encryption process, the encryption accelerator emits a
pause signal to the control module to stall the processor’s pipeline. When the encryption
operation is finished, the final hash value is automatically written back to the memory block.
Then, the processor’s pipeline is resumed and the next instruction is fetched. To reduce the
processor power consumption, a clock-gating mechanism is employed to turn off the clock
signal of the encryption accelerator when it is idle.

_ hold_pipeline

A A A
|- -—-== A )
| Execution |
: | rdata
: ; wdata
funct3 | ALU 4_:_1\_1\_ > U
|
\4 | [ o &
| 1d
imm_ ) : | =
| MuLT/ [0 | 2
| DIV |
rdata | B ¥
” L___—_—_—_—_—_—_-__
address
acc_en .
— Encryption

Latch messages N
%C } Accelerator

Figure 12. Encryption accelerator embedded into the processor core.

The proposed hybrid encryption system combines the advantages of SM3 and SM4
algorithms and achieves a balance among encryption security, high speed, and key-
management convenience. The basic principle is that, to fulfill the demand of high-rate
encryption/decryption transmission, the system uses the SM4 algorithm to quickly en-
crypt/decrypt massive application data and uses the SM3 hash algorithm to compare
the hash values of the plaintext before and after encryption/decryption, which prevents
the information from being tampered during transmission. Because of the hybrid use of
two different encryption algorithms, the proposed hybrid encryption system can realize
high-speed encryption/decryption and verification operations for large numbers of data.
The encryption/decryption process is summarized in Figure 13.

Assuming that the data to be encrypted and transmitted are the plaintext message
m, the specific encryption/decryption transmission process is as follows: the sender uses
the SM4 algorithm to encrypt the plaintext message and generate the SM4 ciphertext, and
uses the SM3 algorithm to calculate the hash value of the plaintext message. After the
calculation is completed, the two sets of data are packaged and sent to the receiver through
the transmission channel. After receiving the data, the receiver first splits the data and
obtains the SM4 ciphertext, then uses the SM4 algorithm to decrypt the SM4 ciphertext
and obtains the unverified parameter plaintext; then, the receiver uses the SM3 algorithm
to calculate the hash value of the parameter plaintext and compares it with the received
hash value. If they are consistent, it means that the data have not been tampered with
during transmission, and the plaintext message can be output, completing the decryption;
if the two sets of data digests are inconsistent, it means that the data have been tampered
with during transmission, and the decrypted data have security risks. The system issues a
warning and exits decryption.
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SM4 encryption, SM4
ciphertext

Plaintext Mergg SM4 ciphertext | _ _ _
Sender message m +SM3 ciphertext |
|
|
SM3 encryption SM3 :
ciphertext |
————————————————————— Transmission channel- — — — — — — —!
I 0
| e | on [TOET] ap [ o
| ciphertext | decryption P s encryption " | ciphertext2
|
|
|

SM4 ciphertext |Split

i L
Recetver > +SM3 ciphertext

SM3
ciphertextl

Output
plaintext

ompare an
validate

ampering

Tampering

Figure 13. Encryption and decryption process of the hybrid system.

4. Results
4.1. Performance Analysis

The encryption algorithm necessitates repetitive arithmetic computations, involving
a multitude of fundamental algorithmic instructions. By employing custom instructions
in Figure 11, we achieve a significant reduction in both the number of instructions and
clock cycles required for these arithmetic processes, consequently yielding a noteworthy
enhancement in the algorithm’s throughput rate. We quantitatively assess the efficiency of
these custom instructions by measuring and comparing encryption time and throughput
rates between the hardware acceleration and traditional software schemes. Tables 1 and 2
list several test values of the encryption time and throughput rate for different message
lengths. Both schemes operate at a fixed-system clock frequency of 50 MHz. It is obvious
from the result that the custom instructions show great efficiency. For different message
lengths, the improvement ratio of the SM3 algorithm will be 131.24-318.62, and that of the
SM4 algorithm will be 33.56-59.18.

In this section, we evaluate our implementations against previous work in terms of fre-
quency, number of gates, throughput, and throughput frequency ratio (TFR). Tables 3 and 4
present a performance comparison between our SM3 and SM4 algorithm accelerator
and various stand-alone hardware SM3 and SM4 algorithm accelerators documented
in the literature.

Table 1. Comparison of SM3 encryption delay with/without custom instructions.

Traditional Software Schemes Hardware Accelerator
Plaintext Message (Byte) Enc i i Improvement

. ryption Throughput En.cryptlon Throughput Ratio

Time (us) Rate (MB/s) Time (us) Rate (MB/s)
32 135 0.24 1.02 31.37 131.24
64 238 0.27 1.48 43.24 159.73
128 447 0.29 1.94 65.98 229.35
256 760 0.34 2.86 89.51 264.69
512 1385 0.37 4.7 108.94 293.66
1024 2531 0.40 8.38 122.20 301.01

2048 5031 0.41 15.74 130.11 318.62
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Table 2. Comparison of SM4 encryption delay with/without custom instructions.
Traditional Software Schemes Hardware Accelerator

Plai : - Improvement

aintext Message (Byte) Encryption Throughput Encryption Throughput Ratio
Time (us) Rate (MB/s) Time (us) Rate (MB/s)
16 42.76 0.39 0.66 23.08 59.18
256 376.96 0.68 10.26 23.82 35.03
1024 1461.31 0.70 40.98 23.83 34.04
2048 2888.32 0.71 81.94 23.83 33.56
8192 11,519.15 0.71 327.7 23.83 33.56
16,384 22,960.42 0.71 655.38 23.83 33.56
Table 3. SM3 algorithm accelerator performance comparison.
This Work 2] 31 (341 151 36l
Standard
Platforms (nm) 90 130 65 130 130 40
Frequency (MHz) 50 200 526.3 36 216 415
Gates (Gate) 9537 12,956 5370 6036 9458 15,750
Throughput (Mb/s) 1040 1506 3368 263 1619 6400
Throughput/Frequency 20.8 7.53 6.4 7.3 7.5 154

Table 4. SM4 algorithm accelerator performance comparison.

. [37] [37]
This Work Unpipelined Pipelined [38] [39] [401
Platforms (nm) 90 180 180 180 180 130
Frequency (MHz) 50 100 100 144.9 100 50
Gates (Gate) 7224 11,535 18,609 5740 8488 7612
Throughput (Mb/s) 190.64 570 2000 272.7 100 193.9
Throughput/Frequency 3.8 57 20 1.9 1.0 3.9

Compared to the SM3 standard architecture implementations described in [32], our
work has achieved a noteworthy 26.4% reduction in the number of logic gates. Additionally,
we have achieved a significant 2.7 X increase in the throughput frequency ratio, enhancing
the overall performance of the system. In [33], a design methodology is proposed for a novel
dual-path parallel adder known as the Two Parallel Road Adder. This design methodology
incorporates the utilization of the CSA structure, resulting in a substantial reduction
in clock delay along the critical path compared to prior research efforts. Reference [34]
employed task scheduling and hardware resource optimization techniques in the design of
expansion modules, as well as task scheduling and critical path optimization techniques
in the compression module design. This innovative architecture reduces the number
of registers by approximately 3.11x and achieves a throughput of 263 Mbps under a
36 MHz clock. Compared to [33,34], our implementations have at least 3.25x and 2.8 x
increase in the throughput frequency ratio, respectively. Compared to [35], we achieved
a higher throughput frequency ratio with approximately the same area. The proposed
SM3 architecture in [36] achieves optimization at both the algorithm and circuit levels.
The circuit design effectively overcomes the limitations of the conventional algorithm
flow by eliminating the “blocking point” on the critical path and introducing four parallel
compensation operations to restructure the algebraic framework. However, the complexity
of the circuit in [36] remains a challenge. In comparison to [36], our circuit reduces the
number of logic gates by 39%.

In [37], the 4-stage-pipelined SM4 cipher circuit is implemented with 18,609 gates,
delivering a remarkable throughput of 2Gbps. Additionally, the unpipelined SM4 circuit
with 11,535 gates achieves a throughput rate of 570 Mbps. We achieve a significant reduction
of 37.4% and 61.18% in the number of logic gates compared with the unpipelined scheme
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and the 4-stage-pipelined scheme in [37], respectively. Reference [38] designs a compact
SM4 algorithm circuit based on reusing the S-box in key schedule and round transformation,
achieving a throughput of 272.7 Mbps@144.9 MHz. In comparison to [38], our circuit
exhibits a throughput frequency ratio that is 1x higher. Compared to [39], our circuit has
achieved a reduction in the number of logic gates by 14.89%. When compared to [40], we
achieved lower gate amount with approximately the same throughput frequency ratio.

4.2. FPGA Implementation

We employed the Xilinx A7-100T FPGA experimental platform with a clock frequency
set at 50 MHz. Table 5 provides an overview of the LUT (lookup table) and FF (flip-flop)
resource utilization for the proposed processor, both with and without the hybrid encryp-
tion accelerator. In order to facilitate comparisons, we also present the relevant parameters
for two other open-source RISC-V IoT processors, namely, the Hummingbird E203 [41]
and XuanTie E902 [42], utilizing similar experimental platforms. The Hummingbird E203
processor is a 32-bit RISC-V architecture IP developed by Nuclei Systems Technology for
low-power, small-area scenarios. The XuanTie E902 is an extremely low-power, low-cost
embedded CPU core, which provides the operating efficiency and performance of a 32-bit
embedded CPU at the cost of an 8-bit CPU. And the XuanTieE902 has been widely used
in Al accelerators, industry control MCU, and wireless MCU. It is important to note that
neither of these two open-source processors integrates the hybrid encryption accelerator.
From the data in the Table 5, it is evident that the resource utilization of our proposed design
without the accelerator is diminished by 57.3% when compared to the Hummingbird E203.
Furthermore, with the inclusion of the accelerator, the resource utilization of our proposed
design experiences a reduction of 39.1%. In comparison to the XuanTie E902, the resource
utilization of our proposed design without the accelerator showcases a substantial decrease
of 76.3%. With the accelerator, the resource utilization of our proposed design is reduced
by 66.2%. This improvement can be attributed to the optimized pipeline architecture and
efficient utilization of lookup tables and flip-flops in our design. Compared to the two-level
variable-length pipeline of the Hummingbird E203, the pipeline architecture designed in
this paper is more concise, simplifying data processing and reducing resource requirements.
In comparison to the XuanTie E902, this paper extensively employs module reuse in the
design, minimizing the utilization of lookup tables and flip-flops to the maximum extent.

Table 5. Comparison based on FPGA platforms.

Design Platform LUTs FFs DSP/BRAM
This work with accelerator xc7al100t 9312 4390 4/0
This work without accelerator xc7al100t 6663 2949 4/0
[41] zyng-7000 11,262 11,237 0/0
[42] xc7al00t 27,146 13,434 0/64

4.3. ASIC Implementation

To further validate the proposed processor design architecture, we use Synopsys
Design Compiler to synthesize the processor alongside two other open-source processors
using the 90 nm CMOS process, and the synthesis results are given in Table 6. The back-end
place and route procedure was carried out using Synopsys’ Integrated Circuit Compiler,
with the final layout of the proposed processor core displayed in Figure 14. Table 6 enumerates
several pivotal parameters, encompassing CoreMark performance, logic gate count, and
chip area. In comparison to the Hummingbird E203, our processor attains a 10% reduction
in power consumption coupled with a 32.5% decrease in circuit area. Similarly, when
compared to the XuanTie E902, our processor showcases a 34.8% reduction in power
consumption and a 57.1% contraction in circuit area.

’
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Table 6. Comparison based on the 90 nm CMOS process.

This Work [41] [42]
CoreMark (CoreMark/MHz) 2.36 2.14 2.69
Platforms (nm) 90 90 90
Voltages (V) 1 1 1
Frequency (MHz) 50 16 50
Gates (K) 40.3 61.8 114
Area (mm?) 0.27 0.4 0.63
Power (mW/MHz) 0.0288 0.032 0.0442
Technology CMOS 90 nm
Frequency 50 MHz
Area 0.193 mm’

Figure 14. Layout of the processor.

5. Conclusions

This paper introduces a low-power RISC-V processor enriched with an integrated
hardware hybrid algorithm accelerator, catering to IoT applications. The hardware accelera-
tor yields substantial throughput enhancements in contrast to conventional software-based
approaches. The processor core was meticulously designed and subsequently assessed on
both an FPGA platform and 90 nm CMOS technology. The outcomes affirm that the pro-
posed processor core exhibits diminished resource consumption in terms of area and power
when compared to two open-source RISC-V IoT processors. This design achieves an effec-
tive equilibrium between performance and resource utilization, rendering it well-suited for
IoT applications. Future work includes support for multiple encryption algorithms and
further optimization for lower power consumption and higher throughput.
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IoT Internet of Things

RISC-V  Reduced Instruction Set Computing—Five
ISA Instruction Set Architecture

AES Advanced Encryption Standard

RSA Rivest-Shamir-Adleman

MD5 Message Digest Algorithm 5

SHA-2 Secure Hash Algorithm 2

FPGA Field-Programmable Gate Array
CMOS Complementary Metal-Oxide-Semiconductor
ECC Elliptic Curve Cryptography

CPU Central Processing Unit

ALU Arithmetic Logical Unit

SHA-256  Secure Hash Algorithm 256-bit

ASIC Application-Specific Integrated Circuit
FSM Finite State Machine

RAW Read After Write

LUT Look Up Table
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