Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,243)

Search Parameters:
Keywords = CH4 concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1664 KB  
Article
Effect of Moderate Level (2.5%) of Tannic Acid and Tannivin (Quebracho Tannins) on the Time Course of Rumen Fermentation of Total Mixed Ration In Vitro
by Ludmila Křížová, Vladimír Králik, Kateřina Dadáková, Petr Malý, Lucie Ondrová and Tomáš Kašparovský
Ruminants 2026, 6(1), 6; https://doi.org/10.3390/ruminants6010006 - 20 Jan 2026
Abstract
Tannins are known for their ability to modify digestion and reduce CH4 emissions in ruminants. Novel forages able to tolerate water deficits often contain low-to-moderate levels of dietary tannins. The aim of the study was to compare the effect of tannic acid [...] Read more.
Tannins are known for their ability to modify digestion and reduce CH4 emissions in ruminants. Novel forages able to tolerate water deficits often contain low-to-moderate levels of dietary tannins. The aim of the study was to compare the effect of tannic acid (hydrolysable tannin, HT) and Tannivin (quebracho, condensed tannins, CTs) added to a total mixed ration at a concentration of 2.5% on rumen fermentation over time using in vitro methods. The substrates were incubated with buffered rumen fluid at 39 °C for 0, 3, 6, 12, 24, and 48 h to study dry matter (DM) degradability, tannin disappearance, utilizable protein (uCP), and rumen fermentation parameters. In parallel, gas production was measured using the ANKOM-RF Gas Production System. Gas composition was determined after 24 and 48 h of incubation. DM degradability was influenced by the incubation time (p < 0.001), reaching approximately 50% after 48 h, with a similar course of degradability for both tannin types. Tannin disappearance was significantly influenced by the type of tannins and the incubation time (both p < 0.001), reaching 50% in HTs and 39% in CTs within the first 6 h of fermentation. Production of individual and total VFA and uCP increased during incubation (p < 0.001) but were not influenced by the tannin type. However, the formation of uCP was relatively stable over time. Ammonia-N production increased during the first 12 h of fermentation with both tannin types and the increase continued with HTs (p < 0.001). Gas and methane production increased during fermentation and the increase was more substantial in HTs (p < 0.001). Our results suggest that at moderate concentrations, tannins mainly affect protein metabolism, with a minor effect on rumen fermentation. Full article
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Ultrasonic–Laser Hybrid Treatment for Cleaning Gasoline Engine Exhaust: An Experimental Study
by Bauyrzhan Sarsembekov, Madi Issabayev, Nursultan Zharkenov, Altynbek Kaukarov, Isatai Utebayev, Akhmet Murzagaliyev and Baurzhan Zhamanbayev
Vehicles 2026, 8(1), 22; https://doi.org/10.3390/vehicles8010022 - 20 Jan 2026
Abstract
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and [...] Read more.
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and infrared (IR) laser exposure. An original hybrid system integrating an ultrasonic emitter and an IR laser module was developed. Four operating modes were examined: no treatment, ultrasound only, laser only, and combined ultrasound–laser treatment. The concentrations of CH, CO, CO2, and O2, as well as exhaust gas temperature, were measured at idle and under operating engine speeds. The experimental results show that ultrasound provides a substantial reduction in CO concentration (up to 40%), while IR laser exposure effectively decreases unburned hydrocarbons CH (by 35–40%). The combined treatment produces a synergistic effect, reducing CH and CO by 38% and 43%, respectively, while increasing the CO2 fraction and decreasing O2 content, indicating more complete post-oxidation of combustion products. The underlying physical mechanisms responsible for the purification were identified as acoustic coagulation of particulates, oxidation, and photodissociation of harmful molecules. The findings support the hypothesis that combined ultrasonic and laser treatment can enhance real-time exhaust gas purification efficiency. It is demonstrated that physical treatment of the gas phase not only lowers the persistence of by-products but also promotes more complete oxidation processes within the flow. Full article
(This article belongs to the Special Issue Intelligent Mobility and Sustainable Automotive Technologies)
Show Figures

Figure 1

16 pages, 1278 KB  
Article
Cost–Benefit Analysis of Greenhouse Gas Emissions Resulting from the Management of Low-Content Methane in Post-Mining Goafs
by Alicja Krzemień, Pedro Riesgo Fernández, Artur Badylak, Gregorio Fidalgo Valverde and Francisco Javier Iglesias Rodríguez
Appl. Sci. 2026, 16(2), 989; https://doi.org/10.3390/app16020989 - 19 Jan 2026
Viewed by 57
Abstract
Methane emissions from underground coal mines are a significant source of greenhouse gases (GHGs) and a major safety concern. In highly methane-prone operations, a large proportion of emissions comes from low-content abandoned mine methane (LCAMM) accumulated in post-mining goafs, where concentrations usually stay [...] Read more.
Methane emissions from underground coal mines are a significant source of greenhouse gases (GHGs) and a major safety concern. In highly methane-prone operations, a large proportion of emissions comes from low-content abandoned mine methane (LCAMM) accumulated in post-mining goafs, where concentrations usually stay below 30% CH4. Building on the Research Fund for Coal and Steel (RFCS) REM project, this paper presents a cost–benefit analysis of a comprehensive scheme for capturing, transporting, and utilising LCAMM from post-mining goafs for electricity generation. The concept involves long-reach directional boreholes drilled behind isolation dams, a dedicated methane-reduced drainage system connected to a surface methane drainage station, and four 2 MWe gas engines designed to run on a 20–40% CH4 mixture. Greenhouse gas performance is evaluated by comparing a “business-as-usual” scenario in which post-mining methane is combusted in gas engines to produce electricity without further GHG cost–benefit consideration. The results indicate that the project can achieve a positive net present value, highlighting the role of LCAMM utilisation for methane-intensive coal mines. The paper also explores the monetisation of non-emitted methane using the European Union Emissions Trading System (EU ETS), as well as social cost benchmarks and penalty levels consistent with the emerging EU Methane Emissions Regulation (EU MER). Full article
Show Figures

Figure 1

17 pages, 2376 KB  
Article
Chitosan Nanoparticles as a Biostimulant During In Vitro Multiplication of Vanilla Using Temporary Immersion Bioreactors
by Víctor Adrián Delgado-Rivera, María Karen Serrano-Fuentes, José María Rivera-Villanueva, Juan Antonio Pérez-Sato and Jericó Jabín Bello-Bello
Molecules 2026, 31(2), 328; https://doi.org/10.3390/molecules31020328 - 18 Jan 2026
Viewed by 93
Abstract
This research aimed to assess the effect of chitosan nanoparticles (ChNPs) during in vitro shoot proliferation of vanilla using temporary immersion bioreactors (TIB). TIB culture is a biotechnological process that uses semiautomated containers for the production of explants exposed in liquid culture medium. [...] Read more.
This research aimed to assess the effect of chitosan nanoparticles (ChNPs) during in vitro shoot proliferation of vanilla using temporary immersion bioreactors (TIB). TIB culture is a biotechnological process that uses semiautomated containers for the production of explants exposed in liquid culture medium. Concentrations of control, 25, 50, 100, 200, and 400 mg/L ChNPs were evaluated in Murashige and Skoog culture medium. Morphological characterization of ChNPs was performed using scanning electron microscopy. At 60 days of culture, survival (%), development variables, photosynthetic pigment content, lipid peroxidation expressed in malondialdehyde, total phenolic content (TPC), hydrogen peroxide (H2O2) content, and total antioxidant capacity (TAC) expressed in trolox equivalents were evaluated. The data were analyzed with analysis of variance, with a Tukey test (p ≤ 0.05) using SPSS statistics software, version 29. The results revealed that the greatest survival (%) was obtained at concentrations of control, 25, and 50 mg/L ChNPs, while the lowest survival (%) was observed at concentrations of 400 mg/L ChNPs. Growth stimulation was found, as well as an increase in chlorophyll and β-carotene at concentrations of 25 and 50 mg/L ChNPs. The level of H2O2 increased at 25 and 50 mg/L ChNPs. Lipid peroxidation showed no differences among treatments. TPC increased at 100 and 200 mg/L ChNPs, while TAC increased at 200 and 400 mg/L ChNPs. In conclusion, the administration of ChNPs at low concentrations can stimulate growth, while at high concentrations they can inhibit it, a response known as hormesis or hormetic effect. Full article
(This article belongs to the Special Issue Green Chemistry and Molecular Tools in Agriculture)
Show Figures

Graphical abstract

18 pages, 1011 KB  
Article
Effects of Glycerol Fatty Acid Esters on Growth Performance, Methane Emissions, and Rumen Microbial Flora of Dabieshan Beef Cattle
by Junjie Nie, Xinye Li, Yongchang Luo, Hongxian Li, Yong Zhu, Chao Chen and Jinling Hua
Vet. Sci. 2026, 13(1), 92; https://doi.org/10.3390/vetsci13010092 - 16 Jan 2026
Viewed by 173
Abstract
Glycerol fatty acid esters (GFAEs) exhibit potential applications in ruminant production, including enhancing animal performance, improving nutrient utilization, and modulating rumen function. However, studies on indigenous Dabieshan beef cattle are lacking. This study aimed to evaluate GFAE’s effects on their performance, meat quality, [...] Read more.
Glycerol fatty acid esters (GFAEs) exhibit potential applications in ruminant production, including enhancing animal performance, improving nutrient utilization, and modulating rumen function. However, studies on indigenous Dabieshan beef cattle are lacking. This study aimed to evaluate GFAE’s effects on their performance, meat quality, and rumen function. Thirty 2-year-old cattle (294.73 ± 3.21 kg; mean ± SD), were randomly divided into three groups (n = 10): on a dry matter (DM) basis, CON (basal diet), 0.05 GFAE (basal + 0.05% GFAE), 0.1 GFAE (basal + 0.1% GFAE), fed for 60 days. The crude protein (CP) digestibility of the 0.05 GFAE group showed a significant 4.55% increase compared with the CON group, while that of the 0.1 GFAE group was significantly elevated by 2.76% relative to the CON group. For key meat quality indices of Dabieshan beef cattle, compared with the CON group, the 0.05 GFAE and 0.1 GFAE groups showed increases in L value by 10.14% and 7.11%, respectively (p = 0.042); decreases in shear force by 5.24% and 1.48%, respectively (p = 0.024); and increases in ether extract(EE) content by 10.91% and 2.33%, respectively (p = 0.019). Compared with the CON group, the 0.05 GFAE and 0.1 GFAE groups showed significant alterations in key serum biochemical indices of Dabieshan beef cattle: TP (total protein) levels elevated significantly by 6.44% and 13.04%, respectively (p = 0.010); total antioxidant capacity (T-AOC) increased significantly by 33.96% and 46.23%, respectively (p = 0.001); UREA concentrations decreased significantly, by 22.67% and 33.53%, respectively (p = 0.002); superoxide dismutase (SOD) activity rose significantly, by 7.30% and 7.99%, respectively (p = 0.020); and malondialdehyde (MDA) content declined significantly, by 20.25% and 28.03%, respectively (p = 0.040). Relative to the CON group, dietary supplementation with GFAE significantly increased ruminal butyrate concentrations, with the 0.05 GFAE and 0.1 GFAE supplemented groups exhibiting respective increments of 17.38% and 18.03% (p = 0.025). Both Groups 0.05 GFAE and 0.1 GFAE reduced CH4 emissions (p = 0.005) and elevated Prevotella abundance (p = 0.001). The study findings revealed that dietary supplementation with GFAE at concentrations of 0.05% and 0.1% of dry matter resulted in substantial decreases in daily methane emissions, representing respective reductions of 6.91% and 11.63% compared to the control group (p = 0.005). At the species level of the rumen microbial community, the relative abundance of the genus Prevotella_sp. was significantly elevated by 60.52% and 38.48% in the 0.05 GFAE and 0.1 GFAE groups, respectively, when contrasted with the CON group (p = 0.001). Collectively, these results demonstrate that the inclusion of dietary 0.05% GFAE supplementation conferred multifaceted benefits to Dabieshan beef cattle, thereby highlighting its potential as a viable strategy to enhance the sustainability of beef cattle production systems. Full article
Show Figures

Figure 1

16 pages, 2811 KB  
Article
Construction of Flexible Kaolin/Chitin Composite Aerogels and Their Properties
by Meng He, Yujia Huang, Zhicheng Cui, Ziyue Cheng, Weiwei Cao, Gan Wang, Wei Yao and Mengna Feng
Gels 2026, 12(1), 76; https://doi.org/10.3390/gels12010076 - 15 Jan 2026
Viewed by 89
Abstract
In this work, kaolin/chitin (K/Ch) composite aerogels with different mass ratios were successfully fabricated via a freeze–drying approach. The influence of kaolin content on the microstructure, properties and hemostatic performance of the composite aerogels was systematically investigated. The results demonstrated that the incorporation [...] Read more.
In this work, kaolin/chitin (K/Ch) composite aerogels with different mass ratios were successfully fabricated via a freeze–drying approach. The influence of kaolin content on the microstructure, properties and hemostatic performance of the composite aerogels was systematically investigated. The results demonstrated that the incorporation of kaolin endowed the chitin-based aerogels with tunable porous structures, excellent water absorption capacity (up to 4282% for K0.25/Ch2), and enhanced water retention (73.7% for K2/Ch2 at 60 min). Moreover, the K/Ch composite aerogels exhibited good biodegradability, no cytotoxicity (cell viability > 91.9%), and no hemolysis (hemolysis rate < 1.5% at all test concentrations). In vitro hemostatic evaluations revealed that the composite aerogels exhibited rapid blood coagulation (blood clotting time of 16 s for K2/Ch2) with a blood coagulation index (BCI) as low as 0.5%, which was attributed to the synergistic effect of the physical adsorption of chitin and the coagulation cascade activation by kaolin. These findings indicated that the K/Ch composite aerogels could be used as novel natural hemostatic materials for potential effective and rapid hemostasis. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels (2nd Edition))
Show Figures

Figure 1

18 pages, 1062 KB  
Article
Evaluating the Antiproliferative Effects of Tri(2-Furyl)- and Triphenylphosphine-Gold(I) Pyridyl- and Pyrimidine-Thiolate Complexes
by Kyle Logan Wilhelm, Shyam Pokhrel, Drew Stolpman, Charli Worth, Sonal Mehta, Raul A. Villacob, Bernd Zechmann, Ahmad A. L. Ahmad, Joseph Taube, Mitchell R. M. Bruce, Alice E. Bruce and Touradj Solouki
Biomolecules 2026, 16(1), 154; https://doi.org/10.3390/biom16010154 - 15 Jan 2026
Viewed by 544
Abstract
Two series of tri(2-furyl)- and triphenylphosphine-gold(I) complexes, with pyridyl- and pyrimidine-thiolate ligands containing electron-donating (-CH3) and electron-withdrawing (-CF3) substituents were synthesized and investigated for cell viability inhibitions. Prior results indicate that several of the gold(I) complexes in these series [...] Read more.
Two series of tri(2-furyl)- and triphenylphosphine-gold(I) complexes, with pyridyl- and pyrimidine-thiolate ligands containing electron-donating (-CH3) and electron-withdrawing (-CF3) substituents were synthesized and investigated for cell viability inhibitions. Prior results indicate that several of the gold(I) complexes in these series have high antifungal properties. The observed link between antifungal and anticancer activity provided motivation to investigate their antiproliferative effects, reported here. The synthesized compounds from both series were characterized by 1H, 13C, and 31P NMR spectroscopy, mass spectrometry (MS), infrared and UV-Vis spectroscopy, and solution stability studies. In addition, an X-ray crystallographic study was conducted on one of the gold(I) complexes. Analyte solubilities in McCoy’s 5A cell media were evaluated by ICP-MS. Initial screening studies were conducted on the two series to evaluate cell viability using the SK-BR-3 cell line. All ten gold(I) complexes exhibited sub-µM cytotoxicity and the most potent representatives, one from each series, were selected for further evaluation in four additional cell lines. Half-maximal effective concentrations (EC50) were determined for the MCF7 and MDA-MB-231 malignant mammary cell lines as well as the two control cell lines, HEK293T and MCF10A, to probe for specificity. Results indicate significant selectivity towards inhibition of cancer cells compared to non-transformed for tri(2-furyl)- and triphenylphosphine-gold(I) complexes with the 3,5-dimethylpyrimidine thiolate ligand when dissolved in cell media. Additional studies including 1% DMSO as a solubilizing agent revealed its significant impact on cellular responses. Full article
Show Figures

Figure 1

16 pages, 1713 KB  
Article
Astragalus Straw Inhibited Methane Emissions by Regulating Ruminal Fermentation Parameters and Microbial Community Dynamics in Lanzhou Fat-Tailed Sheep
by Juanshan Zheng, Wangmei Feng, Chi Ma, Xiang Pan, Tong Wang, Honghe Li, Junsong Zhang, Xiaofang Feng, Na Jiao, Siqiu Yang and Penghui Guo
Agriculture 2026, 16(2), 216; https://doi.org/10.3390/agriculture16020216 - 14 Jan 2026
Viewed by 172
Abstract
Methane (CH4), a significant greenhouse gas, ranks second only to carbon dioxide in its contribution to global warming. The application of Chinese herbs as a strategy to mitigate CH4 emissions in ruminants has shown promise. However, there is limited information [...] Read more.
Methane (CH4), a significant greenhouse gas, ranks second only to carbon dioxide in its contribution to global warming. The application of Chinese herbs as a strategy to mitigate CH4 emissions in ruminants has shown promise. However, there is limited information regarding the efficacy of Chinese herb straw in reducing CH4 emissions in ruminants. This research aimed to investigate the beneficial effects of varying levels of Astragalus straw supplementation on methane emissions and to elucidate the underlying molecular mechanisms. The study examined the effects of different supplementation levels (0%, 5%, 10%, 15%, 20%) on in vitro rumen fermentation, CH4 emissions, and ruminal microbial community in Lanzhou fat-tailed sheep using an in vitro fermentation method. The findings indicated that IVDMD, gas production, and CH4 production significantly decreased with increasing levels of Astragalus straw supplementation (p < 0.05). Simultaneously, the lowest levels of AA, AA/PA, and NH3-N, along with the highest concentrations of PA, BA, and MCP, were observed in the 20% supplementation group after 48 h of fermentation. In addition, supplementation with Astragalus straw resulted in an increased abundance of Bacteroidota, Spirochaetota, and Actinobacteriota, while decreasing the abundance of Firmicutes, Fibrobacterota, and Verrucomicrobiota. At the genus level, there was an observed increase in the abundance of Prevotella and Streptococcus, accompanied by a decrease in Rikenellaceae_RC9_gut_group. In conclusion, the supplementation of Astragalus straw has the potential to reduce CH4 production by altering ruminal fermentation patterns, fermentation parameters, and microbial dynamics. Full article
Show Figures

Figure 1

15 pages, 2596 KB  
Article
Ultrasonic-Formic Acid Pretreatment Coupled with Metal Ion/Deep Eutectic Synergistic Catalysis: Efficient Conversion of Biomass to 5-Hydroxymethylfurfural
by Xiaowei Zhuang, Yue Liu, Zhijun Wu, Yongshun Feng, Xin Pan and Hui Qiao
Polymers 2026, 18(2), 218; https://doi.org/10.3390/polym18020218 - 14 Jan 2026
Viewed by 219
Abstract
This study developed a two-step conversion strategy for the efficient conversion of bamboo waste into 5-hydroxymethylfurfural (HMF). First, ultrasonic-assisted formic acid pretreatment was used at 80 °C for 3 h, removing approximately 83.7% of hemicellulose and 76.5% of lignin from the biomass, with [...] Read more.
This study developed a two-step conversion strategy for the efficient conversion of bamboo waste into 5-hydroxymethylfurfural (HMF). First, ultrasonic-assisted formic acid pretreatment was used at 80 °C for 3 h, removing approximately 83.7% of hemicellulose and 76.5% of lignin from the biomass, with a cellulose recovery of 93.5%. The ultrasonic step significantly enhanced the chemical action of formic acid through cavitation, allowing formic acid to penetrate deeper into the biomass, thereby more effectively removing hemicellulose and lignin. Subsequently, glucose was obtained through an enzymatic hydrolysis. In the second step of HMF preparation, citric acid in the hydrolysate was combined with ChCl to form an acidic deep eutectic solvent (DES), and metal chlorides were added as Lewis acid catalysts. Experiments results showed that when the ChCl–citric acid ratio was 2:1, and the Ca2+ concentration was 100 mM, an HMF yield of 51.9% was obtained at 220 °C for 1.5 h. This study provides an efficient, mild, and environmentally friendly method for the high-value valorization of waste bamboo. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1384 KB  
Article
Bioprotective Effect of a Bacteriocin-Producing Lactococcus lactis Strain Against Enterococcus faecium Isolated from Egyptian Tallaga Cheese
by Seila Agún, Olivia Youssef, Sally Ashry, Beatriz Martínez, Lucía Fernández, Ana Rodríguez, Youssef Abdelshahid and Pilar García
Antibiotics 2026, 15(1), 81; https://doi.org/10.3390/antibiotics15010081 - 13 Jan 2026
Viewed by 175
Abstract
Background/Objectives: Tallaga cheese is an artisanal form of traditional Egyptian soft white Damietta cheese, characterized by high moisture, elevated salinity, and a limited shelf life, which collectively increase its vulnerability to microbial contamination. Typically produced from raw or minimally heated cow or [...] Read more.
Background/Objectives: Tallaga cheese is an artisanal form of traditional Egyptian soft white Damietta cheese, characterized by high moisture, elevated salinity, and a limited shelf life, which collectively increase its vulnerability to microbial contamination. Typically produced from raw or minimally heated cow or buffalo milk, Tallaga cheese represents a relevant model for studying emerging food safety challenges. Methods/Results: This study revealed marked variability among commercial samples and, unexpectedly, a general absence of typical lactic acid bacteria (LAB) such as Lactococcus spp. Instead, enterococci, microorganisms increasingly associated with antimicrobial resistance and virulence traits, emerged as the dominant LAB group, with the detection of Enterococcus faecium strains posing particular concern for dairy safety. To address these challenges, the antimicrobial potential of isolated LAB was evaluated against Latilactobacillus sakei (CECT 906). Twelve bacteriocin-producing strains were identified: ten Enterococcus faecalis, one E. faecium, and one Lactococcus lactis. Enterococci demonstrated robust tolerance to stress conditions, including high salt concentrations, emphasizing their persistence in dairy environments. Given the relevance of controlling resistant and potentially virulent strains such as E. faecium, the bioprotective capacity of two bacteriocinogenic L. lactis strains (IPLA 1064 and AHRI ST9) was assessed using a laboratory-scale cheese model. Both strains effectively inhibited E. faecium AHRI CH4, achieving reductions of 2.6 and 3.6 log units (99.9%). Conclusions: These findings underscore the relevance of bacteriocin-producing L. lactis as natural biopreservatives to mitigate emerging threats related to antimicrobial-resistant food-borne pathogens in dairy products. Full article
Show Figures

Figure 1

18 pages, 2064 KB  
Article
Non-Invasive Acidic Pretreatment Technology of Anaerobic Digestion of Waste-Activated Sludge (WAS) on Biogas Production: Unveiling the Role of Extracellular Polymeric Substances (EPSs) and Pharmaceutical Degradation
by Dragana S. Žmukić, Ljiljana Milovanović, Nataša Slijepčević, Nataša Duduković, Đurđa Kerkez, Lila Boudahmane, Emilie Caupos, Julien Le Roux, Régis Moilleron and Anita S. Leovac Maćerak
Molecules 2026, 31(2), 269; https://doi.org/10.3390/molecules31020269 - 13 Jan 2026
Viewed by 131
Abstract
Non-invasive acidic pretreatments using acetic acid (1–5 mM) and citric acid (0.02–0.1 g g−1 TS) were investigated to enhance anaerobic digestion (AD) of waste-activated sludge (WAS). Both pretreatments improved short-term process stability, with pH (6.5–7.1) and alkalinity (1000–5000 mg CaCO3 L [...] Read more.
Non-invasive acidic pretreatments using acetic acid (1–5 mM) and citric acid (0.02–0.1 g g−1 TS) were investigated to enhance anaerobic digestion (AD) of waste-activated sludge (WAS). Both pretreatments improved short-term process stability, with pH (6.5–7.1) and alkalinity (1000–5000 mg CaCO3 L−1) remaining within optimal ranges during 10-day digestion. Acetic acid markedly enhanced solubilization and acidification, increasing volatile fatty acids to ~2500 mg L−1 (+67% vs. control), whereas citric acid achieved ~2000 mg L−1 (+37%). EPS analysis revealed pronounced redistribution of polysaccharides and proteins, with acetic acid inducing stronger disruption of the EPS matrix (SB-EPS polysaccharides up to 34.1 mg eq Glc mL−1). Specific methane yield increased from 28.5 mL CH4 g−1 VS (control) to 101.7 mL CH4 g−1 VS with acetic acid (3.6-fold) and to 73.8 mL CH4 g−1 VS with citric acid (2.5-fold). Gompertz modeling confirmed higher maximum methane potential, ~68% higher maximum methane production rates, and reduced lag phases for both pretreatments. In contrast, pharmaceutical concentrations (31 compounds) were largely unaffected by acid pretreatment, with significant reductions observed only for selected biodegradable molecules. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

15 pages, 1963 KB  
Article
Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater
by Prakriti Sapkota, Sunith B. Madduri and Raghava R. Kommalapati
Water 2026, 18(2), 191; https://doi.org/10.3390/w18020191 - 12 Jan 2026
Viewed by 156
Abstract
Heavy metals released from industrial effluents accumulate in the human body through the ecosystem, causing several health disorders. This study investigated the removal of cadmium (Cd2+) using Micellar-Enhanced Ultrafiltration (MEUF). This study employed sodium dodecyl sulfate (SDS) and flat-sheet polyethersulfone (PES) [...] Read more.
Heavy metals released from industrial effluents accumulate in the human body through the ecosystem, causing several health disorders. This study investigated the removal of cadmium (Cd2+) using Micellar-Enhanced Ultrafiltration (MEUF). This study employed sodium dodecyl sulfate (SDS) and flat-sheet polyethersulfone (PES) ultrafiltration membranes to separate Cd2+ ions from lab-simulated water. The experiments involved examining the removal efficiency of membranes without SDS usage, optimizing SDS concentration for Cd2+ removal, and evaluating the long-term membrane performance. Other parameters include analyzing the removal percentage of varying Cd2+ at constant SDS dosage, examining the effect of pH, and electrolyte concentrations on the removal of Cd2+. Several analytical characterizations were performed, such as FT-IR, and SEM. The FTIR confirms the aromatic C-H group at 620–867 cm−1, the sulfone group at 1100–1200 cm−1, and the ether group at 1230–1270 cm−1 and the SEM analysis indicates no significant fouling, which aligns with the stable flux observed over time. The result showed that the optimum SDS concentration for Cd2+ removal was 1 Critical Micellar Concentration (CMC), achieving over 99% removal. The presence of an electrolyte decreased Cd2+ removal efficiency, while the pH (3 to 9) had no effect on removal. Our findings suggest that the SDS-aided ultrafiltration process is suitable for eliminating Cd2+ from wastewater. Full article
Show Figures

Graphical abstract

19 pages, 7965 KB  
Article
An Open-Path Eddy-Covariance Laser Spectrometer for Simultaneous Monitoring of CO2, CH4, and H2O
by Viacheslav Meshcherinov, Iskander Gazizov, Bogdan Pravuk, Viktor Kazakov, Sergei Zenevich, Maxim Spiridonov, Shamil Gazizov, Gennady Suvorov, Olga Kuricheva, Yuri Lebedev, Imant Vinogradov and Alexander Rodin
Sensors 2026, 26(2), 462; https://doi.org/10.3390/s26020462 - 10 Jan 2026
Viewed by 226
Abstract
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using [...] Read more.
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using the eddy-covariance method. The instrument utilizes two interband cascade lasers operating at 2.78 µm and 3.24 µm within a novel four-pass M-shaped optical cell, which provides high signal power and long-term field operation without requiring active air sampling. Two detection techniques—tunable diode laser absorption spectroscopy (TDLAS) and a simplified wavelength modulation spectroscopy (sWMS)—were implemented and evaluated. Laboratory calibration demonstrated linear responses for all gases (R2 ≈ 0.999) and detection precisions at 10 Hz of 311 ppb for CO2, 8.87 ppb for CH4, and 788 ppb for H2O. Field tests conducted at a grassland site near Moscow showed strong correlations (R = 0.91 for CO2 and H2O, R = 0.74 for CH4) with commercial LI-COR LI-7200 and LI-7700 analyzers. The TDLAS mode demonstrated lower noise and greater stability under outdoor conditions, while sWMS provided baseline-free spectra but was more sensitive to power fluctuations. E-CAHORS combines high precision, multi-species sensing capability with low power consumption (10 W) and a compact design (4.2 kg). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 1597 KB  
Article
Thermal and Fat Organic Loading Effects on Anaerobic Digestion of Dairy Effluents
by Juana Fernández-Rodríguez, Montserrat Pérez and Diana Francisco
Biomass 2026, 6(1), 8; https://doi.org/10.3390/biomass6010008 - 9 Jan 2026
Viewed by 145
Abstract
The untreated discharge of dairy industry wastewater, characterized by high organic and nutrient loads, poses a severe eutrophication threat, leading to oxygen depletion and the disruption of aquatic ecosystems, which necessitates advanced treatment strategies. Anaerobic digestion (AD) represents an effective and sustainable alternative, [...] Read more.
The untreated discharge of dairy industry wastewater, characterized by high organic and nutrient loads, poses a severe eutrophication threat, leading to oxygen depletion and the disruption of aquatic ecosystems, which necessitates advanced treatment strategies. Anaerobic digestion (AD) represents an effective and sustainable alternative, converting organic matter into biogas while minimizing sludge production and contributing to Circular Economy strategies. This study investigated the effects of fat concentration and operational temperature on the anaerobic digestion of dairy effluents. Three types of effluents, skimmed, semi-skimmed, and whole substrates, were evaluated under mesophilic 35 °C and thermophilic 55 °C conditions to degrade substrates with different fat content. Low-fat effluents exhibited higher COD removal, shorter lag phases, and stable activity under mesophilic conditions, while high-fat substrates delayed start-up due to accumulation of fatty acids and brief methanogen inhibition. Thermophilic digestion accelerated hydrolysis and methane production but demonstrated increased sensitivity to lipid-induced inhibition. Kinetic modeling confirmed that the modified Gompertz model accurately described mesophilic digestion with rapid microbial adaptation, while the Cone model better captured thermophilic, hydrolysis-limited kinetics. The thermophilic operation significantly enhanced methane productivity, yielding 105–191 mL CH4 g−1VS compared to 54–70 mL CH4 g−1VS under mesophilic conditions by increasing apparent hydrolysis rates and reducing lag phases. However, the mesophilic process demonstrated superior operational stability and robustness during start-up with fat-rich effluents, which otherwise suffered delayed methane formation due to lipid hydrolysis and volatile fatty acid (VFA) inhibition. Overall, the synergistic interaction between temperature and fat concentration revealed a trade-off between methane productivity and process stability, with thermophilic digestion increasing methane yields up to 191 mL CH4 g−1 VS but reducing COD removal and robustness during start-up, whereas mesophilic operation ensured more stable performance despite lower methane yields. Full article
Show Figures

Figure 1

17 pages, 1626 KB  
Article
Syngas Production from Liquid and Solid Fractions of Swine Manure in a 0.5 kWth Chemical Looping Gasification Unit
by Yldeney Domingos, Margarita de Las Obras Loscertales, María T. Izquierdo and Alberto Abad
Energies 2026, 19(2), 317; https://doi.org/10.3390/en19020317 - 8 Jan 2026
Viewed by 212
Abstract
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward [...] Read more.
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward net-negative carbon emissions. The experimental campaign was conducted at 900 °C in a continuously operated 0.5 kWth CLG unit consisting of two interconnected fluidized bed reactors (fuel and air). Ilmenite was employed as the oxygen carrier to provide the oxygen required for gasification. This study focuses on the gasification of raw swine manure, comprising both solid and liquid fractions. The solid fraction was introduced via a screw feeder, while the liquid fraction was simulated by injecting an ammonia–water solution as gasifying agents (water or ammonia + water). The effect of the liquid fraction on syngas composition, carbon conversion, and nitrogen species (N2, NH3, N2O, NO2, and NO) was evaluated at ammonia concentrations typical of swine manure (800–5600 mg/L). Results showed an average syngas composition for solid and liquid fraction feeding of ~31% CO2, 20% CO, 41% H2, 7% CH4, and 0.5% C2 hydrocarbons, with 91–96% carbon conversion. Benzene and naphthalene dominated the tar compounds. CO2 capture potential reached 60%, with nitrogen mainly converted to N2. Full article
Show Figures

Graphical abstract

Back to TopTop