Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = CD-Bar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4712 KB  
Article
Bond Properties of Steel Bar in Polyoxymethylene-Fiber-Reinforced Coral Aggregate Concrete
by Zhuolin Xie, Lin Chen, Lepeng Huang, Junlong Jin, Jianmin Hua, Pow-Seng Yap and Yi Zhang
Polymers 2025, 17(21), 2954; https://doi.org/10.3390/polym17212954 - 6 Nov 2025
Viewed by 729
Abstract
The rapid expansion of island and reef infrastructure has intensified the demand for sustainable concrete materials, yet the scarcity of conventional aggregates and freshwater severely constrains their supply. More critically, the fundamental bonding mechanism between steel reinforcement and coral aggregate concrete (CAC) remains [...] Read more.
The rapid expansion of island and reef infrastructure has intensified the demand for sustainable concrete materials, yet the scarcity of conventional aggregates and freshwater severely constrains their supply. More critically, the fundamental bonding mechanism between steel reinforcement and coral aggregate concrete (CAC) remains poorly understood due to the highly porous, ion-rich nature of coral aggregates and the complex interfacial reactions at the steel–cement–coral interface. Moreover, the synergistic effect of polyoxymethylene (POM) fibers in modifying this interfacial behavior has not yet been systematically quantified. To fill this research gap, this study develops a C40-grade POM-fiber-reinforced CAC and investigates the composition–property relationship governing its bond performance with steel bars. A comprehensive series of pull-out tests was conducted to examine the effects of POM fiber dosage (0, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%), protective layer thickness (32, 48, and 67 mm), bar type, and anchorage length (2 d, 3 d, 5 d, and 6 d) on the interfacial bond behavior. Results reveal that a 0.6% POM fiber addition optimally enhanced the peak bond stress and restrained radial cracking, indicating a strong fiber-bridging contribution at the micro-interface. A constitutive bond–slip model incorporating the effects of fiber content and c/d ratio was established and experimentally validated. The findings elucidate the multiscale coupling mechanism among coral aggregate, POM fiber, and steel reinforcement, providing theoretical and practical guidance for the design of durable, low-carbon marine concrete structures. Full article
(This article belongs to the Special Issue Polymers in Civil Engineering)
Show Figures

Figure 1

18 pages, 6073 KB  
Article
Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
by Bedour Almalki, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef and Nazeeha S. Alkayal
Polymers 2025, 17(18), 2443; https://doi.org/10.3390/polym17182443 - 9 Sep 2025
Viewed by 636
Abstract
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil [...] Read more.
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil and water ecosystems has led to poor water quality. Noble metal nanoparticles (MNPs), for instance, Pd, Ag, Pt, and Au, have emerged as promising solutions for addressing environmental pollution. However, the practical utilization of MNPs faces challenges as they tend to aggregate and lose stability. To overcome this issue, the reverse double-solvent method (RDSM) was utilized to synthesis melamine-based porous polyaminals (POPs) as a supportive material for the in situ growing of silver nanoparticles (Ag NPs). The porous structure of melamine-based porous polyaminals, featuring aminal-linked (-HN-C-NH-) and triazine groups, provides excellent binding sites for capturing Ag+ ions, thereby improving the dispersion and stability of the nanoparticles. The resulting material exhibited ultrafine particle sizes for Ag NPs, and the incorporation of Ag NPs within the porous polyaminals demonstrated a high surface area (~279 m2/g) and total pore volume (1.21 cm3/g), encompassing micropores and mesopores. Additionally, the Ag NPs@POPs showcased significant capacity for CO2 capture (2.99 mmol/g at 273 K and 1 bar) and effectively removed Cu (II), with a remarkable removal efficiency of 99.04%. The nitrogen-rich porous polyaminals offer promising prospects for immobilizing and encapsulating Ag nanoparticles, making them outstanding adsorbents for selectively capturing carbon dioxide and removing metal ions. Pursuing this approach holds immense potential for various environmental applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 3641 KB  
Article
Effective CdS:(Ce, Ga) Nanoparticles for Photocatalytic H2 Production Under Artificial Solar Light Exposer
by Pedda Thimmula Poojitha, Radhalayam Dhanalakshmi, Mohammad Rezaul Karim, Sung Jin An, Kummara Madhusudana Rao, Siva Pratap Reddy Mallem and Young Lae Kim
J. Compos. Sci. 2025, 9(1), 34; https://doi.org/10.3390/jcs9010034 - 13 Jan 2025
Cited by 1 | Viewed by 1439
Abstract
To encounter the burgeoning energy demands of the future, it is imperative to focus on the progress of innovative and profitable techniques for hydrogen (H2) evolution, coupled with an enriched stability of photocatalysts. In this work, we have effectually prepared CdS, [...] Read more.
To encounter the burgeoning energy demands of the future, it is imperative to focus on the progress of innovative and profitable techniques for hydrogen (H2) evolution, coupled with an enriched stability of photocatalysts. In this work, we have effectually prepared CdS, CdS:Ce, and CdS:(Ce, Ga) nanoparticles through a chemical refluxing method at 120 °C. Comprehensive structural analysis confirmed the effectual incorporation of Ce and Ga ions in the place of Cd2+ in a CdS matrix. Morphology analysis indicates that the prepared samples are irregularly shaped nanoparticles. Chemical analysis confirmed that the Ce and Ga ions incorporated in the Cd site occurred with 3+ and 4+ valence states. All the samples were assessed for H2 production through water splitting via artificial solar light irradiation. Amid all the samples, CdS:(Ce, Ga) nanoparticles portrayed a giant H2 evolution efficacy (3012 µmol h−1g−1) in 300 min, which is 13.9 times larger than that of the bar CdS sample. Thus, we firmly propose that CdS:(Ce, Ga) samples are authentic and potent candidates for efficient photocatalytic H2 production in sterile environments. Full article
Show Figures

Figure 1

21 pages, 4140 KB  
Article
Investigation of the Seismic Performance of a Multi-Story, Multi-Bay Special Truss Moment Steel Frame with X-Diagonal Shape Memory Alloy Bars
by Dimitrios S. Sophianopoulos and Maria I. Ntina
Appl. Sci. 2024, 14(22), 10283; https://doi.org/10.3390/app142210283 - 8 Nov 2024
Cited by 2 | Viewed by 1909
Abstract
In this work, the seismic response of a multi-story, multi-bay special truss moment frame (STMF) with Ni-Ti shape memory alloys (SMAs) incorporated in the form of X-diagonal braces in the special segment is investigated. The diameter of the SMAs per diagonal in each [...] Read more.
In this work, the seismic response of a multi-story, multi-bay special truss moment frame (STMF) with Ni-Ti shape memory alloys (SMAs) incorporated in the form of X-diagonal braces in the special segment is investigated. The diameter of the SMAs per diagonal in each floor was initially determined, considering the expected ultimate strength of the special segment, developed when the frame reaches its target drift and the desirable collapse mechanism, i.e., the formation of plastic hinges, according to the performance-based plastic design procedure. To further investigate the response of the structure with the SMAs incorporated, half the calculated SMA diameters were introduced. Continuing, three more cases were investigated: the mean value of the SMA diameter was introduced at each floor (case DC1), half the SMA diameter of case DC1 (case DC2), and twice the SMA diameter of case DC1 (case CD3). Dynamic time history analyses under seven benchmark earthquakes were conducted using commercial nonlinear Finite Element software (SeismoStruct 2024). Results were presented in the form of top-displacement time histories, the SMAs force–displacement curves, and maximum inter-story drifts, calculating also maximum SMA displacements. The analysis outcomes highlight the potential of the SMAs to be considered as a novel material in the seismic retrofit of steel structures. Both design approaches presented exhibit a certain amount of effectiveness, depending on the distribution, with the placement of the SMA bars and the seismic excitation considered. Further research is suggested to fully understand the capabilities of the use of SMAs as dissipation devices in steel structures. Full article
(This article belongs to the Special Issue Seismic and Energy Retrofitting of Existing Buildings)
Show Figures

Figure 1

11 pages, 3030 KB  
Article
Vapor-Driven Crosslinked Hydroxypropyl-β-Cyclodextrin Electrospun Nanofibrous Membranes for Ultrafast Dye Removal
by Xinmiao Xu, Yi Zhang, Yong Chen and Yu Liu
Chemistry 2024, 6(4), 506-516; https://doi.org/10.3390/chemistry6040029 - 25 Jun 2024
Viewed by 1679
Abstract
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking [...] Read more.
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking hydroxypropyl-β-cyclodextrin (HP-β-CD)/polyvinyl alcohol (PVA)/laponite electrospun membranes can build interconnected structures and lead to the formation of a porous hierarchical layer. In addition, the incorporation of inorganic salt, laponite, can alter the crosslinking process, resulting in membranes with improved hydrophilicity and highly maintained electrospun nanofibrous morphology, which contributes to an ultrafast water flux of 1.0 × 105 Lh−1m−2bar−1. Due to the synergetic effect of strong host–guest interaction and electrostatic interaction, the membranes exhibit suitable rejection toward anionic dyes with a high removal efficiency of >99% within a short time and achieve accurate separation for cationic against anionic dyes, accompanied by suitable recyclability with >97% separation efficiency after at least four separation–regenerations. The prepared membranes with remarkable separation efficiency and ultrafast permeation properties might be a promising candidate for high-performance membranes in water treatment. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Figure 1

22 pages, 9329 KB  
Article
Examining Transcriptomic Alterations in Rat Models of Intracerebral Hemorrhage and Severe Intracerebral Hemorrhage
by Shaik Ismail Mohammed Thangameeran, Sheng-Tzung Tsai, Hock-Kean Liew and Cheng-Yoong Pang
Biomolecules 2024, 14(6), 678; https://doi.org/10.3390/biom14060678 - 11 Jun 2024
Cited by 5 | Viewed by 2804 | Correction
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, [...] Read more.
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, revealing distinct principal component segments of normal rats compared to ICH and severe ICH rats. We employed heatmaps and volcano plots to identify differentially expressed genes and utilized bar plots and KEGG pathway analysis to elucidate the molecular pathways involved. We identified a multitude of differentially expressed genes in both the ICH and severe ICH models. Our results revealed 5679 common genes among the normal, ICH, and severe ICH groups in the upregulated genes group, and 1196 common genes in the downregulated genes, respectively. A volcano plot comparing these groups further highlighted common genes, including PDPN, TIMP1, SERPINE1, TUBB6, and CD44. These findings underscore the complex interplay of genes involved in inflammation, oxidative stress, and neuronal damage. Furthermore, pathway enrichment analysis uncovered key signaling pathways, including the TNF signaling pathway, protein processing in the endoplasmic reticulum, MAPK signaling pathway, and Fc gamma R-mediated phagocytosis, implicated in the pathogenesis of ICH. Full article
Show Figures

Figure 1

14 pages, 4177 KB  
Article
Influence of the Material Mechanical Properties on Cutting Surface Quality during Turning
by Il-Seok Kang and Tae-Ho Lee
Processes 2024, 12(6), 1171; https://doi.org/10.3390/pr12061171 - 7 Jun 2024
Cited by 1 | Viewed by 2374
Abstract
In cutting processing, the mechanical properties of the material are very important, and the optimal cutting conditions, depending on strength, hardness, and elongation, affect the quality of the machined surface. Therefore, this study was conducted to obtain optimized cutting conditions such as the [...] Read more.
In cutting processing, the mechanical properties of the material are very important, and the optimal cutting conditions, depending on strength, hardness, and elongation, affect the quality of the machined surface. Therefore, this study was conducted to obtain optimized cutting conditions such as the tool depth of the cut, cutting speed, and feed rate, considering the mechanical properties of the material. AISI 1045 cold-drawn (CD) bars showed an average tensile strength of 695.31 MPa in the tensile test and an average value of 308.6 HV in the Vickers hardness measurement. AISI 1020 CD bars showed a 22.66% lower average tensile strength of 537.74 MPa and an average of 198.77 HV in the hardness measurement. Therefore, AISI 1020 showed a 32.62% higher elongation than AISI 1045. In the measurement results for surface roughness after cutting, different results were observed depending on the strength and elongation at a feed rate of 0.05 mm/rev. AISI 1045 exhibited the highest machining quality, with a surface roughness of approximately 0.374 µm at a cutting speed of 150 m/min, and the cutting depth was 0.4 mm at a feed rate of 0.05 mm/rev. Alternatively, AISI 1020, which had relatively low strength and hardness with high elongation, exhibited the highest machining quality with a roughness of 0.383 µm with similar cutting parameters as AISI 1045. Full article
Show Figures

Graphical abstract

14 pages, 263 KB  
Review
Ustekinumab or Vedolizumab after Failure of Anti-TNF Agents in Crohn’s Disease: A Review of Comparative Effectiveness Studies
by Mohmmed Tauseef Sharip, Nilanga Nishad, Lushen Pillay, Nilkantsingh Goordyal, Samuel Goerge and Sreedhar Subramanian
J. Clin. Med. 2024, 13(8), 2187; https://doi.org/10.3390/jcm13082187 - 10 Apr 2024
Cited by 8 | Viewed by 5347
Abstract
Background: Anti-tumour necrosis factor (TNF) agents are effective in Crohn’s disease (CD), but some patients lose responsiveness and require alternative biologic therapy. Until recently, ustekinumab and vedolizumab were the only other biological agents approved for use in CD. There are no randomised trials [...] Read more.
Background: Anti-tumour necrosis factor (TNF) agents are effective in Crohn’s disease (CD), but some patients lose responsiveness and require alternative biologic therapy. Until recently, ustekinumab and vedolizumab were the only other biological agents approved for use in CD. There are no randomised trials which compare the efficacy of these two agents in patients with anti-TNF refractory disease, but several retrospective cohort studies have compared their effectiveness in this setting. Aim: To review the effectiveness of ustekinumab and vedolizumab in anti-TNF refractory patients with CD. Methods: We included studies that compared the effectiveness of ustekinumab and vedolizumab in treating patients with anti-TNF refractory CD. We recorded the sample size, primary and secondary outcome measures and whether the studies employed adjustments for appropriate confounders. Results: Fourteen studies were included with a total sample size of 5651, of whom 2181 (38.6%) were treated with vedolizumab and the rest were treated with ustekinumab (61.4%). Of the fourteen studies included, eight found ustekinumab to be more effective in achieving clinical remission/steroid-free remission in the induction phase or during maintenance therapy (at least 1-year post-treatment) or that treatment persistence rates with ustekinumab were higher than with vedolizumab. Only one study reported vedolizumab to be superior during the maintenance phase in terms of clinical remission or treatment persistence rates. Biochemical outcomes were reported in five studies, two of which showed superiority for ustekinumab at 14 weeks and the other at 52 weeks. Only two studies reported endoscopic and/or radiologic outcomes; of these, one study showed ustekinumab to be significantly better at achieving endoscopic and radiologic responses. Adverse outcomes were broadly comparable, barring a single study which reported a lower hospitalisation rate for severe infection with ustekinumab. Conclusions: Most studies found ustekinumab to be more effective or non-inferior to vedolizumab in treating patients with anti-TNF refractory CD. Although many studies adjusted appropriately for confounders, the possibility of residual confounding remains and further data from prospective studies are warranted to confirm these findings. Further studies are required to compare these two therapies to other emerging therapies, such as Janus-kinase inhibitors. Full article
(This article belongs to the Special Issue Current Status, Challenges and Future Directions in Crohn's Disease)
16 pages, 3059 KB  
Article
Can Shockwave Treatment Elicit a Molecular Response to Enhance Clinical Outcomes in Pressure Ulcers? The SHOck Waves in wouNds Project
by Mirosław Sopel, Izabela Kuberka, Izabela Szczuka, Jakub Taradaj, Joanna Rosińczuk and Robert Dymarek
Biomedicines 2024, 12(2), 359; https://doi.org/10.3390/biomedicines12020359 - 3 Feb 2024
Cited by 4 | Viewed by 1959
Abstract
Wound healing requires the coordinated interaction of dermis cells, the proper deposition of extracellular matrix, re-epithelialization, and angiogenesis. Extracorporeal shock wave (ESW) is a promising therapeutic modality for chronic wounds. This study determined the biological mechanisms activated under ESW, facilitating the healing of [...] Read more.
Wound healing requires the coordinated interaction of dermis cells, the proper deposition of extracellular matrix, re-epithelialization, and angiogenesis. Extracorporeal shock wave (ESW) is a promising therapeutic modality for chronic wounds. This study determined the biological mechanisms activated under ESW, facilitating the healing of pressure ulcers (PUs). A group of 10 patients with PUs received two sessions of radial ESW (300 + 100 pulses, 2.5 bars, 0.15 mJ/mm2, 5 Hz). Histomorphological and immunocytochemical assessments were performed on tissue sections obtained from the wound edges before the ESW (M0) and after the first (M1) and second (M2) ESW. The proliferation index of keratinocytes and fibroblasts (Ki-67), the micro-vessels’ density (CD31), and the number of myofibroblasts (α-SMA) were evaluated. The involvement of the yes-associated protein (YAP1) in sensing mechanical strain, and whether the nuclear localization of YAP1, was shown. The increased proliferative activity of epidermal cells and skin fibroblasts and the increased number of myofibroblasts, often visible as integrated cell bands, were also demonstrated as an effect of wound exposure to an ESW. The results indicate that the major skin cells, keratinocytes, and fibroblasts are mechanosensitive. They intensify proliferation and extracellular matrix remodeling in response to mechanical stress. A significant improvement in clinical wound parameters was also observed. Full article
Show Figures

Figure 1

18 pages, 10219 KB  
Article
Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes
by Stefania Mottola and Iolanda De Marco
Polymers 2024, 16(1), 29; https://doi.org/10.3390/polym16010029 - 20 Dec 2023
Cited by 9 | Viewed by 1886
Abstract
In this study, corticosteroid–β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a [...] Read more.
In this study, corticosteroid–β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of β-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 °C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 ± 0.180 μm and 0.131 ± 0.070 μm in the case of DEX and PRED, respectively. Job’s method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release. Full article
Show Figures

Figure 1

21 pages, 5068 KB  
Article
Influence of Supercritical Carbon Dioxide on the Activity and Conformational Changes of α-Amylase, Lipase, and Peroxidase in the Solid State Using White Wheat Flour as an Example
by Milena Ivanović, Željko Knez and Maja Leitgeb
Foods 2023, 12(24), 4499; https://doi.org/10.3390/foods12244499 - 16 Dec 2023
Cited by 4 | Viewed by 1979
Abstract
Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, [...] Read more.
Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35–50 °C), pressure (200 bar and 300 bar), and exposure time (1–6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, β-sheet, and β-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures. Full article
Show Figures

Figure 1

14 pages, 5101 KB  
Article
Effects of ZIF-L Morphology on PI@PDA@PEI/ZIF-L Composite Membrane’s Adsorption and Separation Properties for Heavy Metal Ions
by Hui Cao, Ziyue Jiang, Jing Tang and Qiong Zhou
Polymers 2023, 15(23), 4600; https://doi.org/10.3390/polym15234600 - 1 Dec 2023
Cited by 4 | Viewed by 2249
Abstract
Composite polymolecular separation membranes were prepared by combining multi-branched ZIF-L with high-porosity electrospinning nanofibers PI. Meanwhile, PDA and PEI were introduced into the membrane in order to improve its adhesion. The new membrane is called the “PI@PDA@PEI/ZIF-L-4” composite membrane. Compared with the PI@PDA@PEI/ZIF-8 [...] Read more.
Composite polymolecular separation membranes were prepared by combining multi-branched ZIF-L with high-porosity electrospinning nanofibers PI. Meanwhile, PDA and PEI were introduced into the membrane in order to improve its adhesion. The new membrane is called the “PI@PDA@PEI/ZIF-L-4” composite membrane. Compared with the PI@PDA@PEI/ZIF-8 composite membrane, the new membrane’s filtration rates for heavy metal ions such as Cd2+, Cr3+, and Pb2+ were increased by 7.0%, 6.6%, and 9.3%, respectively. Furthermore, the new membrane has a permeability of up to 1140.0 L·m−2·h−1·bar−1, and displayed a very stable performance after four repeated uses. The separation mechanism of the PI@PDA@PEI/ZIF-L composite membrane was analyzed further in order to provide a basis to support the production of separation membranes with a high barrier rate and high flux. Full article
(This article belongs to the Special Issue New Polymeric Materials for Extreme Environments)
Show Figures

Figure 1

17 pages, 6067 KB  
Article
Study on Process Parameters in Hydrothermal Liquefaction of Rice Straw and Cow Dung: Product Distribution and Application of Biochar in Wastewater Treatment
by Asiful H. Seikh, Hamad F. Alharbi, Ibrahim A. Alnaser, Mohammad R. Karim, Jabair A. Mohammed, Muhammad Omer Aijaz, Ahmed Hassan and Hany S. Abdo
Processes 2023, 11(9), 2779; https://doi.org/10.3390/pr11092779 - 18 Sep 2023
Cited by 6 | Viewed by 2370
Abstract
In this study, rice straw (RS) and cow dung (CD) waste were hydrothermally processed for the recovery of bio-oil and biochar. The hydrothermal experiments were performed in a 5 L capacity reactor under the following process conditions: temperature (240–340 °C), solvent to biomass [...] Read more.
In this study, rice straw (RS) and cow dung (CD) waste were hydrothermally processed for the recovery of bio-oil and biochar. The hydrothermal experiments were performed in a 5 L capacity reactor under the following process conditions: temperature (240–340 °C), solvent to biomass ratios of 1:1, 1:2, 2:1, 1:3 and 3:1, a time of 1 h and a pressure of 15 bar. The HTL products were characterized via FTIR, SEM and GC–MS (gas chromatography mass spectrometry). It was seen that the maximum bio-oil yield was 32.5 wt% and the biochar yield was 18.5 wt% for the 2:1 RS:CD mixture at a temperature of 320 °C. The bio-oil contained hexadecane, heptadecane, octadecane and other hydrocarbons, and their presence was confirmed by GC–MS. The biochar was analyzed, and it was used in wastewater treatment to remove the colorants. The biochar also showed some promising results in the colorants removal study, with an efficiency of more than 76%. Full article
(This article belongs to the Special Issue Preparation of Biochar and Biochar Composites and Their Application)
Show Figures

Figure 1

21 pages, 5716 KB  
Article
Impact of Particulate Matter (PM10 and PM2.5) from a Thermoelectric Power Plant on Morpho-Functional Traits of Rhizophora mangle L. Leaves
by Mariana Ayala-Cortés, Hugo Alberto Barrera-Huertas, Jacinto Elías Sedeño-Díaz and Eugenia López-López
Forests 2023, 14(5), 976; https://doi.org/10.3390/f14050976 - 9 May 2023
Cited by 8 | Viewed by 3173
Abstract
A conventional thermoelectric plant (TP) in the sandy bar of the Tampamachoco Lagoon (Gulf of Mexico slope) emits particulate matter (PM) transporting trace metals that affect a mangrove forest. Wind transports the emission plume from north to south in the northerly wind season [...] Read more.
A conventional thermoelectric plant (TP) in the sandy bar of the Tampamachoco Lagoon (Gulf of Mexico slope) emits particulate matter (PM) transporting trace metals that affect a mangrove forest. Wind transports the emission plume from north to south in the northerly wind season (NWS); the dry season (DS) showed calm periods. We analyzed whether PM2.5 and PM10 emissions from the TP and their trace metals impact Rhizophora mangle leaves. The experimental design included three sampling sites along the main lagoon axis (north to south) during the NWS and DS. Mangrove leaves were collected; PM was obtained with a cascade impactor and trace elements were analyzed by atomic absorption spectrophotometry. Leaves were measured and tested for metal and chlorophyll content, and for metal detection with SEM-EDX. Calm periods in the DS promote high atmospheric PM concentrations. Wet deposition in the NWS caused the highest trace metal deposition on mangrove leaves. A north-to-south gradient was identified on the mangrove forest, being the south site of the lagoon where lower chlorophyll and leaf area, higher stomatal width and density, and higher Cd concentrations were recorded. The morpho-physiological modifications observed on mangrove leaves affect functions such as photosynthesis and gas exchange. Full article
(This article belongs to the Special Issue Biodiversity, Health, and Ecosystem Services of Mangroves)
Show Figures

Figure 1

16 pages, 2486 KB  
Article
Radiofrequency Irradiation Attenuated UVB-Induced Skin Pigmentation by Modulating ATP Release and CD39 Expression
by Kyung-A Byun, Hyoung Moon Kim, Seyeon Oh, Kuk Hui Son and Kyunghee Byun
Int. J. Mol. Sci. 2023, 24(6), 5506; https://doi.org/10.3390/ijms24065506 - 14 Mar 2023
Cited by 2 | Viewed by 4351
Abstract
Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation’s activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine [...] Read more.
Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation’s activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

Back to TopTop