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Abstract: Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction
causes various cosmetic problems. UV radiation’s activation of the cyclic adenosine monophos-
phate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding
protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway
for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due
to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73,
can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-
mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via
ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from ker-
atinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs)
and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventu-
ally decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate
that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM)
from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions
of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors
decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to
melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased
in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which
can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase
activity and melanin levels in melanocytes increased following CM-UVB administration, and these
increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes
were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from
keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in
melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and
tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.

Keywords: radiofrequency; ultraviolet B; skin pigmentation

1. Introduction

The skin has protective roles as a barrier organ, as well as a neuro-endocrine func-
tion that stimulates the central nervous, endocrine, and immune systems to coordinate
body homeostasis [1–3]. External stimuli, such as ultraviolet (UV) radiation, lead to the
upregulation of various cytokines, urocortins, corticotropin-releasing hormone (CRH),
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proopiomelanocortin (POMC), and enkephalins, which further stimulates various skin
responses, including melanogenesis [1–4].

Melanogenesis is a complex process that produces melanin in the melanocytes. The ini-
tial steps of melanogenesis involve the hydroxylation of phenylalanine to L-tyrosine [5–7].
L-tyrosine is then hydroxylated to L-dihydroxyphenylalanine (L-DOPA) by tyrosinase.
Tyrosinase further oxidizes L-DOPA to L-DOPAquinone [5–7]. Depending on the pres-
ence of cysteine, L-DOPAquinone changes into either yellow-to-reddish pheomelanin
or brown-to-blackish eumelanin [8–10]. Without cysteine, L-DOPAquinone is changed
into DOPAchrome by tyrosinase-related protein (TRP)-1 and TRP-2, which is then further
synthesized to eumelanin [8–10].

UV upregulates tumor suppressor protein p53, which further stimulates POMC.
POMC is cleaved into adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating
hormone (MSH), β-MSH, and γ-MSH [11–16].

Secreted α-MSH binds to a melanocortin receptor (MC1R) in melanocytes, which
promotes the dissociation of the α subunit and eventually upregulates the activity of adeny-
late cyclase (AC) [17]. ACs generate the second messenger cyclic adenosine monophos-
phate (cAMP) from adenosine triphosphate (ATP) [17]. cAMP leads to the increased
activity of the cAMP-dependent protein kinase (PKA) and the transcription factor cAMP
response element-binding protein (CREB), which sequentially increases the expression of
microphthalmia-associated transcription factor (MITF) [18].

MITF is the main regulator of melanogenesis, modulating the survival, prolifera-
tion, and growth of melanocytes [19]. MITF also stimulates tyrosinase, TRP-1, and TRP-
2 and eventually increases melanogenesis [19]. Aside from the cAMP-dependent pathway,
Wnt/β-catenin, ERK/MAPK, and nitric oxide/cyclic guanosine monophosphate (cGMP)
pathway lead to the upregulation of MITF in melanogenesis [20].

Extracellular adenosine regulates their G-protein-coupled receptors, which are clas-
sified into four types: A1, A2A, A2B, and A3 [21]. A1 and A3 adenosine receptors (ARs)
decrease the activity of AC and lead to the inhibition of cAMP generation; however, A2A
and A2BARs lead to the activation of AC, which increases intracellular cAMP [22,23].

cAMP-mediated PKA activation, which is known to activate CREB, is also involved
in mitochondrial dynamics [24–26]. During the mitochondrial fission process, dynamin-
related protein 1 (DRP1) moves to the surface of mitochondria and is involved in dividing
mitochondria [27]. PKA leads to the phosphorylation of DRP1 at Ser656, which inhibits mi-
tochondrial fission [28]. Moreover, PKA-induced DRP1 phosphorylation at Ser637 inhibits
the translocation of DRP1 to the mitochondrial surface and thus results in mitochondrial
elongation [29,30]. However, the dephosphorylation of DRP1 restored the recruitment of
DRP1 to mitochondria, which caused increased fission [28,31,32].

UV radiation results in mitochondrial elongation and increased melanogenesis [33].
Moreover, the genetic deletion of DRP1 leads to increased expressions of TRP-1 and
MITF [33]. In contrast, increased mitochondrial fragmentation via the inhibition of optic
atrophy type 1 (OPA1), which is involved in mitochondrial fusion, leads to decreased
melanogenesis [33]. In addition, ERK1/2 activation induces the proteasomal degrada-
tion of MITF and thus decreases melanogenesis [34,35], and mitochondrial fission leads
to the activation of ERK1/2 [36]. Therefore, mitochondrial dynamics, such as decreased
mitochondrial fission, are involved in melanogenesis via ERK1/2 [33].

Thus, ATP release from UV-irradiated keratinocytes could be involved in increasing
intracellular cAMP levels in melanocytes via CD39/CD73 and A2A or A2BARs. Since the
cAMP-mediated activation of CREB and MITF is the main pathway of melanogenesis [17],
we believe that UV-induced ATP release from keratinocytes could affect melanogenesis via
CD39/CD73.

Radiofrequency (RF) is a form of electromagnetic energy that generates molecular
agitation in tissues [37]. Moreover, a conducted electric current caused by RF is transformed
into heat [37]. Since the heat generated by RF stimulates collagen synthesis by increasing
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the expression of various heat shock proteins (HSPs), such as HSP47 and HSP70, RF has
been used for skin rejuvenation [38,39].

Previously, our group reported that RF irradiation decreased skin pigmentation by
suppressing melanogenesis via the modulation of HSP70 [40] and increased melanin
removal by elevating autophagy [41].

Although it is known that UV radiation can induce ATP release from keratinocytes and
lead to melanogenesis in melanocytes, it has not yet been revealed whether RF irradiation
can decrease melanogenesis by modulating ATP release.

We hypothesized that RF irradiation decreases ATP release from keratinocytes and
the expressions of CD39, CD73, A2AAR, and A2BAR, which then suppress the activity
of ACs. Decreased AC activity leads to the downregulation of cAMP generation and
PKA, which eventually decreases CREB expression and increases mitochondrial fission.
Decreased CREB expression and increased mitochondrial fission lead to decreased MITF
levels, which eventually decreases melanogenesis. We evaluated the effect of RF irradiation
on melanogenesis by decreasing ATP release from keratinocytes using an in vitro model of
UVB-irradiated keratinocytes and a UVB-irradiated animal model.

2. Results
2.1. RF Irradiation Decreased ATP Release from UV-Radiated Keratinocytes

First, we evaluated whether RF irradiation decreased ATP release from UVB-exposed
keratinocytes. After human keratinocytes were subjected to UVB radiation, RF irradiation
was performed. Forty-eight hours after RF irradiation, ATP levels in the supernatant of
keratinocytes were measured (Figure S1A). The ATP level was significantly increased by
UVB radiation and significantly decreased by RF treatment (Figure 1A).
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Figure 1. CD39/CD73/A2AAR/A2BAR reduction in melanocytes through regulation of ATP release
from UVB/RF-exposed keratinocytes. HEKn were not exposed or exposed to UVB for 5 min (CON or
UVB group), and then RF was irradiated after exposure to UVB (UVB/RF group). (A) ATP release in
the CON group, UVB group, and UVB/RF group was verified using an ATP release assay. (B–F) HEMn
were treated with a supernatant of HEKn (CM-CON), UVB-exposed HEKn (CM-UVB), or UVB and
RF-treated HEKn (CM-UVB/RF) for 48 h. (B) The protein expression of CD39/CD73/A2AAR/A2BAR
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in CM-treated HEMn was measured by Western blot. (C–F) Quantitative graph for Western blot of (B).
Data are presented as the mean ± SD of three independent experiments. **, p < 0.01; ***, p < 0.001,
second bar vs. first bar; $$, p < 0.01, $$$, p < 0.001 third bar vs. second bar (Mann–Whitney U
test). A2AAR, A2A adenosine receptor; A2BAR, A2B adenosine receptor; ATP, adenosine triphosphate;
CD39, ectonucleoside triphosphate diphosphohydrolase-1; CD73, 5′-nucleotidase; CM, conditioned
media; CON, control; HEKn, human epidermal primary keratinocytes; h, hours; HEMn, human
epidermal primary melanocytes; MW, molecular weight; RF, radiofrequency; UVB, ultraviolet B.

2.2. RF Decreased the Expression of CD39, CD73, and the A2A/A2BARs in Melanocytes and
UV-Irradiated Animal Skin

Next, we evaluated whether RF irradiation decreased the expressions of CD39, CD73,
and A2A/A2BARs in melanocytes by decreasing ATP release from keratinocytes. The condi-
tioned media (CM) obtained from CON-, UVB-, or UVB and RF-irradiated keratinocytes
were used to treat human melanocytes (Figure S1B).

The expression of CD39 and CD73 in melanocytes was significantly increased with the
treatment of CM from UVB-irradiated keratinocytes (CM-UVB) and significantly decreased
with the treatment of CM from UVB- and RF-irradiated keratinocytes (CM-UVB/RF)
(Figure 1B–D).

The expression of the A2A/A2BARs in melanocytes significantly increased under
treatment with CM-UVB and significantly decreased under treatment with CM-UVB/RF
(Figure 1B,E,F).

The expression of CD39 and CD73 was also increased by UVB radiation in the skin
of animals subjected to UVB radiation compared with that of control animals that did not
receive UVB radiation. The expressions of CD39 and CD73 were significantly decreased by
RF irradiation (Figure 2A–C).
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Figure 2. RF irradiation reduced CD39/CD73/A2AAR/A2BAR expression in UVB-exposed mouse
skin. Mice were either not exposed or exposed to UVB nine times for 5 min each for 14 d (CON or
UVB group), and then RF irradiation was applied (UVB/RF group). (A) The protein expression of
CD39/CD73/A2AAR/A2BAR in UVB/RF-exposed mouse skin was validated using Western blot. (B–E)
Quantitative graph for Western blot of (A). Data are presented as the mean ± SD of three independent
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experiments. ***, p < 0.001, second bar vs. first bar; $$, p < 0.01; $$$, p < 0.001, third bar vs. second bar
(Mann–Whitney U test). A2AAR, A2A adenosine receptor; A2BAR, A2B adenosine receptor; CD39,
ectonucleoside triphosphate diphosphohydrolase-1; CD73, 5′-nucleotidase; CM, conditioned media;
CON, control; d, days; min, minutes; MW, molecular weight; RF, radiofrequency; UVB, ultraviolet B.

Moreover, the expression of A2A/A2BARs was increased in the skin of animals sub-
jected to UVB radiation and decreased by RF irradiation (Figure 2A,D,E).

2.3. RF Irradiation Decreased AC Activity, cAMP Levels, and PKA Expression in Melanocytes and
Animal Skin

Next, we evaluated whether RF irradiation decreased AC activity in melanocytes by
modulating ATP release from keratinocytes.

The activity of AC was increased in melanocytes via the administration of CM-UVB
and was significantly decreased by CM-UVB/RF treatment (Figure 3A).
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Figure 3. RF irradiation reduced the expression of AC/cAMP/PKA in CM-treated melanocytes
and UVB-exposed mouse skin. (A–C) HEMn were treated with the supernatant of HEKn cells (CM-
CON), UVB-exposed HEKn cells (CM-UVB), or UVB and RF-treated HEKn (CM-UVB/RF) for 48 h.
(A,B) Changes in AC activity (A) and cAMP concentration (B) in CM-treated HEMn were measured
by cAMP XP assay. (C) The mRNA levels of PKA in CM-treated HEMn were determined by qRT-PCR.
(D–G) Mice were not exposed or exposed to UVB nine times for 5 min each for 14 d (CON or UVB
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group), and then RF was applied (UVB/RF group). (D,E) AC activity (D) and cAMP concentration (E)
in UVB/RF-exposed mouse skin were measured using a cAMP XP assay. (F) The protein expression
of PKA in UVB/RF-exposed mouse skin was measured using Western blot. (G) Quantitative graph
of the Western blot of (F). Data are presented as the mean ± SD of three independent experiments.
***, p < 0.001, second bar vs. first bar; $$, p < 0.01, third bar vs. second bar (Mann–Whitney U test).
AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; CM, conditioned media; CON,
control; d, days; min, minutes; MW, molecular weight; PKA, cAMP-dependent protein kinase; h,
hours; HEMn, human epidermal primary melanocytes; qRT-PCR, quantitative real-time polymerase
chain reaction; RF, radiofrequency; UVB, ultraviolet B.

The level of cAMP was increased in melanocytes via the administration of CM-UVB
and was significantly decreased by CM-UVB/RF treatment (Figure 3B).

The expression of PKA was increased in melanocytes via the administration of
CM-UVB, and PKA expression was significantly decreased by CM-UVB/RF treatment
(Figure 3C).

The results suggest that RF irradiation can modulate melanocytes to decrease the
activity of AC and cAMP and the expression of PKA via the culture supernatant of ker-
atinocytes.

In animal skin, the activity of AC, level of cAMP, and expression of PKA were increased
by UVB radiation and decreased by RF irradiation (Figure 3D–G).

2.4. RF Irradiation Decreased the Expression of CREB, Phosphorylation of DRP1, and Expression
of MITF

The expression of CREB in UVB-irradiated mouse skin was significantly increased,
and it was decreased by RF irradiation (Figure 4A).

UVB radiation increased the phosphorylation of DRP1 at Ser637 in animal skin, which
was then decreased by RF irradiation (Figure 4B,C).

The expression of OPA1 and mitofusin 2 (MFN2), which are mitochondrial fusion
markers, was increased by UVB radiation and decreased by RF irradiation (Figure 4B,D,E).

The expression ratio of pERK1/2/ERK1/2 was decreased by UVB radiation and
increased by RF irradiation (Figure 4F,G).

Additionally, pMITF and MITF expression levels increased in the skin of animals
subjected to UVB radiation and decreased by RF irradiation (Figure 4H–J).

2.5. RF Irradiation Decreased Tyrosinase Activity and UVB-Induced Melanin Accumulation

Next, we evaluated whether RF irradiation decreased melanin synthesis. Tyrosinase
activity in melanocytes was increased by the administration of CM-UVB. Upon silencing
CD39, tyrosinase activity was not increased by the administration of CM-UVB compared
with the CON. The increased tyrosinase activity caused by the administration of CM-
UVB was significantly decreased by CM-UVB/RF treatment. However, among silencing
CD39 melanocyte, tyrosinase activity was not different when either CM-UVB or CM-
UVB/RF were treated (Figure 5A).
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Figure 4. RF application decreased CREB/pDRP1/OPA1/MFN2/MITF in UVB-exposed mouse skin.
Mice were either not exposed or exposed to UVB nine times for 5 min each for 14 d (CON or UVB
group), and then RF was irradiated (UVB/RF group). (A) The mRNA levels of CREB in mouse
skin were measured by qRT-PCR. (B) The protein expression of pDRP1/OPA/MFN2 in mouse skin
was measured by Western blot. (C–E) Quantitative graph for Western blot of (B). (F) The protein
expression of pERK1/2/ERK1/2 in mouse skin was determined by Western blot. (G) Quantitative
graph of the Western blot of (F). (H) The protein expressions of pMITF and MITF in mouse skin were
measured by Western blot. (I,J) Quantitative graph for Western blot of (H). Data are presented as
the mean ± SD of three independent experiments. **, p < 0.01; ***, p < 0.001, second bar vs. first
bar; $$, p < 0.01, $$$ < 0.001, third bar vs. second bar (Mann–Whitney U test). CON, control; CREB,
cyclic adenosine monophosphate response element-binding protein; d, days; MFN2, mitofusin 2; min,
minutes; MITF, microphthalmia-associated transcription factor; MW, molecular weight; OPA1, optic
atrophy type 1; pDRP1, phosphorylation of dynamin-related protein 1; pMITF, phosphorylation of
microphthalmia-associated transcription factor; qRT-PCR, quantitative real-time polymerase chain
reaction; RF; RF, radiofrequency; UVB, ultraviolet B.
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Figure 5. RF irradiation reduced tyrosinase activity and melanin accumulation through regulation of
CD39. (A,B) HEMn were treated with the supernatant of HEKn cells (CM-CON), UVB-exposed HEKn
(CM-CON), or UVB- and RF-treated HEKn (CM-UVB/RF) for 48 h. To confirm the regulation by
CD39, after silencing CD39, HEMn were treated with CM-UVB (siCD39/CM-UVB) or CM-UVB/RF
(CM-siCD39/UVB/RF). (A) The tyrosinase activity in CM-treated HEMn was measured using a
tyrosinase activity assay. (B) Melanin accumulation was confirmed by a melanin assay in CM-treated
HEMn. (C–E) Mice were either not exposed or exposed to UVB nine times for 5 min each for 14 d
(CON or UVB group), and then RF was applied (UVB/RF group). (C) The tyrosinase activity in
mouse skin was measured by tyrosinase activity assay. (D) Quantitative graph for Fontana Masson
staining (E). (E) Melanin accumulation was determined by Fontana Masson staining in mouse skin
(scale bar = 50 µm). (F) Summary. Data are presented as the mean ± SD of three independent
experiments. ***, p < 0.001, second bar vs. first bar; $$, p < 0.01; $$$, p < 0.001, vs. second bar,
#, p < 0.05, vs. third bar (Mann–Whitney U test). cAMP, cyclic adenosine monophosphate; CD39,
ectonucleoside triphosphate diphosphohydrolase-1; CD73, 5′-nucleotidase; CM, conditioned media;
CON, control; CREB, cyclic adenosine monophosphate response element-binding protein; MFN2,
mitofusin 2; MITF, microphthalmia-associated transcription factor; MW, molecular weight; OPA1,
optic atrophy type 1; pDRP1, phosphorylation of dynamin-related protein 1; RF, radiofrequency;
siCD39, silencing CD39; UVB, ultraviolet B.
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The melanin content in melanocytes was increased by the administration of CM-UVB.
Upon silencing CD39, melanin content was not increased by the administration of CM-
UVB compared with that of the CON. The increased melanin content by administration of
CM-UVB was significantly decreased by CM-UVB/RF administration. However, among
silencing CD39 melanocyte, melanin content was not different following treatment by either
CM-UVB or CM-UVB/RF (Figure 5B).

The tyrosinase activity in the UVB-irradiated animal skin increased, and it was de-
creased by RF irradiation (Figure 5C). Melanin accumulation in the dermis was evaluated
with Fontana Masson staining. The staining results show that melanin accumulation in the
dermis was increased by UVB radiation and decreased by RF irradiation (Figure 5D,E).

3. Discussion

Melanin in the skin, as a photoprotective pigment, absorbs UV and acts as scavenger
against reactive oxygen/nitrogen species (ROS/RNS) [42]. Proper melanogenesis after UV
exposure is essential for skin protection; however, the overproduction of melanin causes
various cosmetic problems, such as senile lentigines, post-inflammatory hyperpigmentation,
freckles, and dots [43].

Recently, ATP was reported to be involved in melanogenesis [44]. UVB radiation leads
to increased ATP release from keratinocytes and human skin. The administration of ATP to
melanocytes leads to the increased expression of tyrosinase, CREB, and MITF [44]. ATP
is a ligand of P2 receptors that is involved in intracellular Ca2+ mobilization [45], and
ATP-induced melanogenesis is mediated by the P2X7 receptor [44].

Extracellular ATP is changed into adenosine by serial reactions with CD39 and
CD73 [46]. By binding with the A2A or A2BAR, adenosine increases AC activity, which
increases intracellular cAMP expression [22,23].

The purpose of our study was to evaluate whether RF could decrease UVB-induced
melanogenesis via decreasing ATP release from keratinocytes. Thus, we designed an
in vitro model in which CM from UVB-irradiated keratinocytes was administered to
melanocytes. First, we sought to evaluate whether UV radiation increased ATP release from
keratinocytes. ATP levels in the supernatant from UVB-irradiated keratinocytes increased
compared with those of control keratinocytes (Figure 1A). Next, we evaluated how elevated
ATP secretion from keratinocytes affects melanocytes to increase melanogenesis. Upon
treating melanocytes with CM from UVB-irradiated keratinocytes, the expressions of CD39,
CD73, and A2A/A2BARs increased (Figure 1B–F). Moreover, AC activity and cAMP levels
were increased by CM from UVB-irradiated keratinocytes. It seemed that UVB radiation
increased ATP release from keratinocytes, and released extracellular ATP was converted
into adenosine by CD39 and CD73, which stimulated A2A/A2BARs. The upregulation
of A2A/A2BARs led to increased AC activity and increased cAMP levels in melanocytes
(Figure 3A,B). Moreover, increased cAMP was accompanied by an increased expression of
PKA in melanocytes treated with CM from UVB-irradiated keratinocytes (Figure 3C).

Our results also show increased tyrosinase activity and melanin contents in melanocytes
via treatment with CM from UVB-irradiated keratinocytes. When CD39 was silenced by
siCD39, tyrosinase activity and melanin content were not increased by treatment with CM
from UVB-irradiated keratinocytes (Figure 5A,B). This result suggests that melanogenesis
triggered in melanocytes by ATP secretion from keratinocytes could be mediated by CD39.
To the best of our knowledge, this is the first study that shows the role of CD39 and ARs in
UV radiation-induced melanogenesis. UV radiation also led to increased expressions of
CD39, CD73, and A2A/A2BARs, as well as AC activity, cAMP levels, and PKA expression in
animal skin (Figures 2 and 3D–G). Moreover, melanogenesis-related factors such as CREB
and MITF were increased in UV-irradiated animal skin (Figure 4A,H,I).

RF irradiation decreases melanogenesis by increasing HSP70, which inhibits p53,
MC1R, CREB, and MITF in the skin of animals subjected to UVB radiation [40]. We sought
to evaluate whether RF irradiation could modulate ATP release from UVB-irradiated
keratinocytes, which increases melanogenesis in melanocytes. RF irradiation decreased
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ATP levels in keratinocytes subjected to UVB radiation. Moreover, the expressions of CD39,
CD73, A2A/A2BARs, AC activity, cAMP levels, and PKA expression in melanocytes treated
with CM from UVB- and RF-irradiated keratinocytes were lower than those in melanocytes
treated with CM from UVB-irradiated keratinocytes. Tyrosinase activity in melanocytes
was decreased by CM from UVB- and RF-irradiated keratinocytes compared with those of
UVB-irradiated keratinocytes. However, among silencing the CD39 melanocyte, tyrosinase
activity was not different when treated with either CM-UVB or CM-UVB/RF.

Those results show that RF irradiation decreased ATP release from keratinocytes, and
these decreased ATP levels affected melanogenesis in melanocytes. In this study, we did not
evaluate the mechanism by which RF irradiation decreased ATP release in keratinocytes.
Thus, the mechanism of this finding should be evaluated in future studies.

Mitochondrial dynamics, which affect various cell functions, are involved in determin-
ing cell death or survival [47,48]. It was reported that UV radiation induced mitochondrial
dysfunction, which led to cellular damage [49]. Moreover, mitochondrial dynamics are
related to melanogenesis.

The loss of prohibition triggered by 3-isobutyl-1-methylxanthine (IBMX), which pro-
motes mitochondrial homeostasis, resulted in an increased mitochondrial fission and thus
decreased melanogenesis [50,51]. The UV irradiation of B16F1 mouse melanoma cells
at 0.5 and 1 J/cm2 led to mitochondrial elongation and melanogenesis [33]. Since the
phosphorylation of DRP1 at Ser637 via cAMP-mediated PKA activation is known to down-
regulate DRP1 and eventually lead to mitochondrial elongation [29], we evaluated whether
UV-induced DRP1 phosphorylation at Ser637 modulates mitochondrial dynamics via
cAMP-mediated PKA activation. UV-irradiated animal skin had an increased expression of
phosphorylated DRP at Ser637, and RF irradiation decreased this expression (Figure 4B,C).
We did not directly evaluate mitochondrial morphology using any imaging technique.
However, mitochondrial fusion-related proteins such as OPA1 and MFN2 were increased
by UV radiation in animal skin and decreased by RF irradiation (Figure 4B,D,E). Although
we did not observe mitochondrial elongation with imaging, we could infer that increased
phosphorylation of DRP at Ser637 affects mitochondrial dynamics.

Since mitochondrial fission activates ERK and degrades MITF [33], we also evaluated
ERK changes after RF irradiation. UVB radiation decreased the pERK1/2/ERK1/2 ratio,
which was increased by RF irradiation (Figure 4F,G).

Accompanied by ERK upregulation, the expression of MITF and tyrosinase activity in
the skin of animals subjected to UVB radiation was decreased by RF treatment. Melanin
accumulation in UV-irradiated animal skin was also decreased by RF irradiation.

The cosmetic industry has performed extensive research to treat hyperpigmentation-
related problems using various methods, such as cosmetics, chemicals, drugs, or medical
devices [52–54]. RF therapy could be another possible tool to solve cosmetic problems
caused by UV-induced hyperpigmentation.

In conclusion, RF irradiation decreased ATP release from keratinocytes, the expressions
of CD39, CD73, and A2A/A2B AR and the activity of AC in melanocytes, which ultimately
decreased cAMP levels. As a result, the expressions of PKA and CREB also decreased. The
phosphorylation of DRP1 at Ser637, which affects mitochondrial dynamics, was decreased
by RF irradiation. This irradiation also decreased tyrosinase activity and melanin synthesis,
but these decreasing effects were not observed when CD39 was inhibited (Figure 5F).

4. Materials and Methods
4.1. Radiofrequency Irradiation System

A radiofrequency device (POTENZA, Jeisys, Seoul, Republic of Korea) was used in
this study. It has an impedance checking and feedback system which was used to determine
the compensation value by automatically measuring impedance. The most common config-
urations of electrode systems are monopolar, bipolar, and multipolar, including fractional
systems where this effect is achieved by the superposition of RF current paths between
paired electrodes. Bipolar radiofrequency energy was delivered to the skin surface and
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epidermis via a noninvasive electrode tip, SFA tip. The tip consisted of 192 electrodes with
a diameter of 0.2 mm arranged at a spacing of 1 mm, and it is designed to deliver RF energy
at a shallow depth. The RF conditions were 10 W, 100 ms, and 2 pulses. Additionally, the
frequency was 2 MHz, and the wavelength is inversely proportional to the frequency [55].

4.2. In Vitro Model
4.2.1. RF Irradiation in UVB-Exposed Keratinocytes

HEKn (ATCC, Manassas, VA, USA) were cultivated in a Dermal Cell Basal Medium
(ATCC) containing a keratinocyte growth kit (ATCC) in an incubator at 37 ◦C with 5%
CO2. When HEKn reached 70% confluence, RF (2 MHz, 10 W/100 ms) was applied
after exposure to UVB (200 mJ/cm2) for 5 min. UVB used an instrument with a peak
wavelength of 306 nm (G15T8E; SANKYO DENKI, Yokohama, Japan). RF-treated HEKn
were cultured in an incubator at 37 ◦C with 5% CO2 for 48 h, and the cell lysate and
supernatant (conditioned media, CM) were obtained (Figure S1A).

4.2.2. CM Treatment in Melanocytes

HEMn (ATCC) were grown in Dermal Cell Basal Medium (ATCC) with a melanocyte
growth kit (ATCC) in a 37 ◦C/5% CO2 incubator. When HEMn confluence reached 80% in
the dish, the mixture of CM obtained in Section 4.2.1. and standard media (growth media;
GM) was used to treat HEMn for 48 h, and the cell lysate was collected (Figure S1B).

4.2.3. Silencing of CD39 in Melanocytes

When HEMn confluence reached 80% in the dish, transfection with CD39 shRNA
(Santa Cruz Biotechnology, Dallas, TX, USA) was conducted by Lipofectamine 3000 reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. After transfec-
tion, HEMn was treated as described in Section 4.2.2 (Figure S1C).

4.2.4. Measurement of Melanin Content in Cells

To assess the melanin content of HEMn, the cells were seeded at 1 × 104 cells/well
in 96-well plates and incubated for 24 h. After treatment with HEKn supernatant, the
cells were harvested via centrifugation at 12,000× g for 20 min and lysed in 100 µL of 10%
di-methyl sulfoxide and 1 NaOH. After incubation in NaOH solution at 95 ◦C for 20 min,
the absorbance at 490 nm was measured.

4.3. Skin Pigmentation Model

HRM-2 mice hairless mice (6 weeks old, male, 20–25 g), capable of synthesizing
melanin, were obtained from Japan SLC, Inc. (Shizuoka, Japan), and underwent acclima-
tization for 2 weeks. The mice were housed in cages under a 12 h light/dark cycle with
a controlled temperature of approximately 23 ◦C, relative air humidity of approximately
50%, and ad libitum access to food and water.

After the adaptation period, the mice were randomly separated into three groups
as follows:

(1) CON (no exposure to UVB with no irradiated RF);
(2) UVB (exposure to UVB at 200 mJ/cm2 with no irradiated RF);
(3) UVB/RF (exposure to UVB at 200 mJ/cm2 with irradiated RF).

The mice were exposed to UVB for 5 min once every 2 d for 10 d and then for 5 min
every day for 3 d (total of 13 d). Subsequently, the mice were irradiated with RF and
exposed to UVB every 2 d for 28 d (Figure S2).

This study was approved by the Center of Animal Care and Use Ethical Board of
Gachon University (Approval Number LCDI-2020-0115) and executed in accordance with
the Institutional Animal Care and Use Committee.
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4.4. Protein Sample Preparation

Protein extraction (EzRIPA lysis kit; ATTO, Tokyo, Japan) was performed according
to the manufacturer’s instructions. Briefly, 100 mg of frozen tissue was cut into small
pieces, 1 mL of RIPA buffer containing protease inhibitor and phosphatase inhibitor was
added, and then the tissue was homogenized using a Bioprep-24R instrument (Allsheng,
Hangzhou, China). Then, the samples were incubated on ice for 15 min and mixed once
more with sonication. Finally, centrifugation was performed at 14,000× g at 4 ◦C for 15 min,
and the supernatant was transferred to a new tube. Then, protein quantification was
confirmed through bicinchoninic acid assay (Thermo Fisher Scientific, Waltham, MA, USA).

4.5. Assay
4.5.1. ATP Release

An ATP release assay (ATP assay kit; Abcam, Cambridge, UK) was performed accord-
ing to the manufacturer’s instructions. Briefly, standard and keratinocyte were aliquoted
in equal amounts in 96-well plates. Reaction mix solution was prepared by mixing the
reagents included in the kit, and 50 µL was dispensed into each well. The sample and
reaction mix were mixed and incubated for 30 min at room temperature protected from
light. The absorbance was measured at 570 nm.

4.5.2. Adenylate Cyclase

An adenylate cyclase assay (ADCY kit; Mybiosource, Vancouver, BC, Canada) was
performed according to the manufacturer’s instructions. Briefly, 50 µL of standard and
sample was dispensed in a 96-well plate, and 50 µL of the conjugate reagent included in the
kit was added and incubated at 37 ◦C for 1 h. After that, the cells were washed 5 times with
wash buffer for 10 min each, 50 µL of substrate A and 50 µL of substrate B were added, and
the mixture was incubated at 37 ◦C for 15 min in the dark. After that, 50 µL of stop solution
was added, and the absorbance was measured at 450 nm.

4.5.3. Cyclic AMP

A cyclic AMP assay (cAMP XP assay kit; Cell Signaling, MA, USA) was performed
according to the manufacturer’s instructions. Briefly, after preparing cAMP standards, the
samples and standards were aliquoted in equal amounts in 96-well plates. Fifty microliters
of cAMP-HRP conjugate reagent included in the kit was dispensed and incubated for 3 h at
room temperature. After washing 4 times with wash buffer, 100 µL of TMB substrate was
added and incubated for 30 min at room temperature. Then, 100 µL of stop solution was
added, and the absorbance was measured at 450 nm.

4.5.4. Tyrosinase Activity

A tyrosinase activity assay (Tyrosinase activity assay kit; Abcam, Cambridge, UK)
was performed according to the manufacturer’s instructions. Briefly, after dispensing the
same amount of sample in a 96-well plate, 50 µL of the reaction mix included in the kit was
added to the wells and thoroughly mixed, and the absorbance was measured at 510 nm in
30 s intervals during the reaction at 37 ◦C.

4.6. Western Blot

Total protein (30–50 µg) was loaded on an 8–12% polyacrylamide gel and separated
using electrophoresis (Criterion System, Bio-Rad Laboratories, Inc., Hercules, CA, USA).
The separated protein was transferred to a PVDF membrane and blocked with 5% skim
milk. Thereafter, the cells were incubated overnight with a primary antibody listed in
Table S1, washed with tris-buffered saline with 0.1% tween 20, and incubated with a
secondary antibody according to the host. The proteins were visualized with an enhanced
chemiluminescence substrate (Cytiva, Vancouver, BC, Canada) on a digital acquisition
system (Bio-Rad, CA, USA). Individual protein expression values were quantified using
ImageJ software (National Institutes of Health, Maryland, MD, USA), and differences in



Int. J. Mol. Sci. 2023, 24, 5506 13 of 16

protein expression were normalized to the values of β-actin and expressed as relative to
the mean of the CON group.

4.7. Quantitative Real-Time Polymerase Chain Reaction
4.7.1. Extraction of RNA and cDNA Synthesis

RNA extraction (RNAiso Plus; Takara, Shiga, Japan) was performed according to the
manufacturer’s instructions. Fifty milligrams of frozen tissue were cut into small pieces,
1 mL of RNAiso Plus was added, and then the tissue was homogenized with a Bioprep-
24R instrument (Allsheng, Hangzhou, China). Then, the cells were incubated at room
temperature for 5 min and centrifuged at 12,000× g at 4 ◦C for 5 min, and the supernatant
was transferred to a new tube. After, 0.2 mL of chloroform was added, vortexed, incubated
at room temperature for 5 min, and centrifuged 12,000× g at 4 ◦C for 15 min. Then, the
supernatant was transferred to a new tube and 0.5 mL of isopropanol was added. The
solution was mixed, incubated at room temperature for 10 min, and centrifuged 12,000× g
at 4 ◦C for 10 min. After, the RNA was washed with 1 mL of 75% ethanol, and centrifuged
7500× g at 4 ◦C for 5 min. Finally, the supernatant was discarded and the pellet was
maintained and dissolved with diethyl pyrocarbonate-treated water.

cDNA synthesis (PrimeScript™ 1st strand cDNA Synthesis Kit; Takara, Shiga, Japan)
was performed according to the manufacturer’s instructions. Briefly, the extracted RNA
was quantified and converted to cDNA for quantitative real-time polymerase chain reaction
(qRT-PCR).

4.7.2. Quantitative Real-Time Polymerase Chain Reaction

SYBR Green reagent was mixed with 1 µg of the synthesized cDNA template and
10 pmol of the primers (Table S2) was dispensed into a 384-well multiplate. The mixture was
then analyzed using a CFX386 Touch Real-Time PCR System (Bio-Rad, Hercules, CA, USA).

4.8. Preparation of Paraffin-Embedded Tissue

Skin tissue was fixed with cold 4% paraformaldehyde (Sigma-Aldrich, St. Louis,
MO, USA). The fixed tissue samples were washed for 30 min for embedding, and a tissue
processor (Thermo Fisher Scientific) was used to generate a paraffin block of skin tissue.
Paraffin blocks were cut to 7 µm using a microtome (Leica, Wetzlar, Germany) and dried
at 60 ◦C for 24 h for mounting to coated slides (MUTO PURE CHEMICALS CO., LTD.,
Tokyo, Japan).

4.9. Fontana-Masson Stain

Fontana-Masson staining (Fontana-Masson Stain Kit; ScyTek, Logan, UT, USA) was
performed according to the manufacturer’s instructions. Briefly, the slides were deparaf-
finized, and the skin tissue was incubated at 60 ◦C for 30 min in Fontana ammonia silver
solution (ScyTek, West Logan, UT, USA). Then, after rinsing 3 times with distilled water,
the dyed areas other than melanin were removed with 0.2% gold chloride solution and 5%
sodium thiosulfate solution. Thereafter, nuclear staining was performed with Nuclear Fast
Red Solution stain, followed by a dehydration process, and then a cover slide was mounted
and observed under a microscope.

4.10. Statistical Analysis

We performed Kruskal–Wallis tests to compare the three groups, followed by a Mann–
Whitney U test for post hoc comparisons. This study was validated using an unpaired t
test. All the results are presented as the mean ± standard deviation, and statistical analyses
were performed using SPSS v.22 (IBM Corporation; Armonk, NY, USA).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24065506/s1.
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