Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (925)

Search Parameters:
Keywords = CCK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 (registering DOI) - 2 Aug 2025
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 (registering DOI) - 30 Jul 2025
Viewed by 147
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 156
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

13 pages, 2153 KiB  
Article
Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study
by Valentin Schmidt, Beáta Polgár, Vanda Ágnes Nemes, Tímea Dergez, László Janovák, Péter Maróti, Szilárd Rendeki, Kinga Turzó and Balázs Patczai
J. Funct. Biomater. 2025, 16(8), 275; https://doi.org/10.3390/jfb16080275 - 29 Jul 2025
Viewed by 250
Abstract
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® [...] Read more.
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® granules). Microscopic visualization was performed to directly observe the interactions between the cells and the material. Osteoblast-like cells were examined on non-adherent test plates, on tissue culture (TC)-treated plates and on the surface of the bioglass to assess the differences. Cell survival and proliferation were monitored using a CCK-8 optical density assay. Comparing the mean OD of MG63 cells in MEM on TC-treated plates with cells on BG, we detected a significant difference (p < 0.05), over each time of observation. The sustained cell proliferation confirmed the non-cytotoxic property of the bioglass, as the cell number increased continuously at 48, 72, 96, and 168 h and even did not plateau after 168 h. Since the properties of bioglasses can vary significantly depending on their composition and environment, a thorough characterization of their biocompatibility is crucial to ensure their effective and appropriate application—for example, during hip and knee prosthesis insertion. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

20 pages, 9891 KiB  
Article
3D-Printed Poly (l-lactic acid) Scaffolds for Bone Repair with Oriented Hierarchical Microcellular Foam Structure and Biocompatibility
by Cenyi Luo, Juan Xue, Qingyi Huang, Yuxiang Deng, Zhixin Zhao, Jiafeng Li, Xiaoyan Gao and Zhengqiu Li
Biomolecules 2025, 15(8), 1075; https://doi.org/10.3390/biom15081075 - 25 Jul 2025
Viewed by 324
Abstract
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a [...] Read more.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO2) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized. The combination of FDM and SC-CO2 foaming technology enables a continuous extrusion foaming process for preparing oriented multi-stage microporous scaffolds. The mechanical strength of the scaffold reached 15.27 MPa, meeting the requirements for bone repair in a low-load environment. Notably, the formation of open pores on the surface of the oriented multi-stage microporous scaffold positively affected cell proliferation, differentiation, and activity, as well as the expression of anti-inflammatory and pro-inflammatory factors. In vitro cell experiments (such as CCK-8) showed that the cell proliferation rate in the oriented multi-stage microporous scaffold reached 100–300% after many days of cultivation. This work provides a strategy for the design and manufacture of PLLA scaffolds with hierarchical microcellular structures and biocompatibility for bone repair. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

9 pages, 635 KiB  
Article
Osteogenic Potential of Osteolforte: Gene and Protein-Level Evaluation in Human Bone Marrow Stromal Cells
by Da-Sol Kim, Soo-Kyung Bae, Yeon-Ju Kwak, Geum-Joung Youn and Hye-Ock Jang
Curr. Issues Mol. Biol. 2025, 47(8), 588; https://doi.org/10.3390/cimb47080588 - 24 Jul 2025
Viewed by 255
Abstract
Osteolforte, a compound with potential bone-regenerative properties, was investigated for its effects on human bone marrow stromal cells (hBMSCs). This study aimed to evaluate its impact on cell viability, osteogenic differentiation, and both gene and protein expression using a combination of assays, [...] Read more.
Osteolforte, a compound with potential bone-regenerative properties, was investigated for its effects on human bone marrow stromal cells (hBMSCs). This study aimed to evaluate its impact on cell viability, osteogenic differentiation, and both gene and protein expression using a combination of assays, including CCK-8, Alizarin Red S staining, Quantitative Real-Time PCR (qRT-PCR), and Western blot analysis. The results demonstrated that Osteolforte significantly enhanced osteogenic differentiation in hBMSCs. Alizarin Red S staining revealed increased mineralization, indicating elevated calcium deposition. Gene expression analysis showed an upregulation of key osteogenic markers, including runt-related transcription factor-2 (RUNX-2), collagen type I (COL-1), and bone morphogenetic protein-2 (BMP-2), supporting the role of Osteolforte in promoting osteoblastic activity. In particular, the elevated expression of RUNX-2—a master transcription factor in osteoblast differentiation along with COL-1, a major bone matrix component, and BMP-2, a key bone morphogenetic protein—highlights the compound’s osteogenic potential. In conclusion, Osteolforte enhances early-stage osteogenesis and mineralization in hBMSCs and represents a promising candidate for bone regeneration. Full article
Show Figures

Figure 1

16 pages, 8218 KiB  
Article
Lead Induces Mitochondrial Dysregulation in SH-SY5Y Neuroblastoma Cells via a lncRNA/circRNA–miRNA–mRNA Interdependent Networks
by Yu Wang, Xuefeng Shen, Ruili Guan, Zaihua Zhao, Tao Wang, Yang Zhou, Xiaoming Chen, Jianbin Zhang, Wenjing Luo and Kejun Du
Int. J. Mol. Sci. 2025, 26(14), 6851; https://doi.org/10.3390/ijms26146851 - 17 Jul 2025
Viewed by 241
Abstract
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated [...] Read more.
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated with 10 μM lead acetate. Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Mitochondrial ultrastructure and quantity were analyzed via transmission electron microscopy (TEM). Key mitochondrial dynamics proteins were examined by Western blot. Comprehensive transcriptome sequencing, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and mRNAs, was performed followed by functional enrichment and ceRNA network construction. Selected RNAs and hub genes were validated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Lead exposure significantly reduced SH-SY5Y cell viability and induced mitochondrial damage (decreased quantity, swelling, fragmentation). Western blot confirmed an imbalance in mitochondrial dynamics, as indicated by decreased mitofusin 2 (MFN2), increased total and phosphorylated dynamin-related protein 1 (DRP1). Transcriptomic analysis revealed widespread differential expression of lncRNAs, circRNAs, miRNAs, and mRNAs. Enrichment analysis highlighted mitochondrial function and oxidative stress pathways. A ceRNA network identified five key hub genes: SLC7A11, FOS, HMOX1, HGF, and NR4A1. All validated RNA and hub gene expression patterns were consistent with sequencing results. Our study demonstrates that lead exposure significantly impairs mitochondrial quantity and morphology in SH-SY5Y cells, likely via disrupted mitochondrial dynamics. We reveal the potential regulatory mechanisms of lead-induced neurotoxicity involving ceRNA networks, identifying hub genes crucial for cellular stress response. This research provides a foundational framework for developing therapeutic strategies against lead-induced neurotoxicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 3597 KiB  
Article
Effects of Canine IL-12 on the Immune Response Against the Canine Parvovirus VP2 Protein
by Shiyan Wang, Wenjie Jiao, Dannan Zhao, Yuzhu Gong, Jingying Ni, Huawei Wu, Jige Du, Tuanjie Wang and Chunsheng Yin
Vaccines 2025, 13(7), 758; https://doi.org/10.3390/vaccines13070758 - 16 Jul 2025
Viewed by 345
Abstract
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines [...] Read more.
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines remains imperative for effective CPV control. Methods: Recombinant CPV VP2 protein (rVP2) and canine interlukine 12 protein (rcIL-12) were expressed using the Bac-to-Bac baculovirus expression system and the biological activity of these proteins was assessed through hemagglutination, Cell Counting Kit-8 (CCK8) and IFN-γ induction assays. The combined immunoenhancement effect of rVP2 and rcIL-12 protein was evaluated in puppies. Results: Both rVP2 and rcIL-12 were successfully expressed and purified, exhibiting confirmed antigenicity, immunogenicity, and bioactivity. Co-administration of rVP2 with rcIL-12 elicited higher neutralizing antibody titer (6–7 times higher), complete challenge protection efficiency (no clinical symptoms and tissue and organ lesions), fewer viral shedding (decreasing significantly 8-day post challenge) and superior viral blockade (lower viral load in the organism) compared to rVP2 alone. Conclusions: Our findings demonstrate that rVP2 co-administered with rcIL-12 induces robust protective immunity in puppies and significantly mitigated the inhibitory effects of maternal antibodies. This represents a promising strategy for enabling earlier vaccination in puppies and rational design of CPV subunit vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

23 pages, 1877 KiB  
Article
Synthesis and Cytotoxicity Evaluation of Denitroaristolochic Acids: Structural Insights and Mechanistic Implications in Nephrotoxicity
by Jianfei Gao, Mengtong Zhao, Jianhua Su, Yi Gao, Xiaofeng Zhang, Yongzhao Ding, Xiaoping Liu, Yang Luan and Chun Hu
Biomolecules 2025, 15(7), 1014; https://doi.org/10.3390/biom15071014 - 14 Jul 2025
Viewed by 291
Abstract
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the [...] Read more.
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the phenanthrene core. Process optimization significantly improved yields: aryl bromide intermediate A reached 50.8% yield via bromination refinement, while arylboronic ester intermediate B overcame selectivity limitations. Combining Darzens condensation with Wittig reaction enhanced throughput, achieving 88.4% yield in the key cyclization. Structures were confirmed by NMR and mass spectra. CCK-8 cytotoxicity assays in human renal proximal tubular epithelial cells revealed distinct toxicological profiles: DAA-III and DAA-IV exhibited IC50 values of 371 μM and 515 μM, respectively, significantly higher than the nitro-containing prototype AA-I (270 μM), indicating that the absence of nitro group attenuates but does not eliminate toxicity, potentially via altered metabolic activation. DAA-II and DAA-V showed no detectable cytotoxicity within assay limits, suggesting reduced toxicological impact. Structure–activity analysis exhibited that the nitro group is not essential for cytotoxicity, with methoxy substituents exerting limited influence on potency. This challenges the conventional DNA adduct-dependent toxicity paradigm, implying alternative mechanisms like oxidative stress or mitochondrial dysfunction may mediate damage in denitro derivatives. These systematic findings provide new perspectives for AA analog research and a foundation for the rational use and safety assessment of Aristolochiaceae plants. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

30 pages, 1661 KiB  
Review
Gut Hormones and Inflammatory Bowel Disease
by Jonathan Weng and Chunmin C. Lo
Biomolecules 2025, 15(7), 1013; https://doi.org/10.3390/biom15071013 - 14 Jul 2025
Viewed by 519
Abstract
Obesity-driven inflammation disrupts gut barrier integrity and promotes inflammatory bowel disease (IBD). Emerging evidence highlights gut hormones—including glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide YY (PYY), cholecystokinin (CCK), and apolipoprotein A4 (APOA4)—as key regulators of metabolism and mucosal immunity. [...] Read more.
Obesity-driven inflammation disrupts gut barrier integrity and promotes inflammatory bowel disease (IBD). Emerging evidence highlights gut hormones—including glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide YY (PYY), cholecystokinin (CCK), and apolipoprotein A4 (APOA4)—as key regulators of metabolism and mucosal immunity. This review outlines known mechanisms and explores therapeutic prospects in IBD. GLP-1 improves glycemic control, induces weight loss, and preserves intestinal barrier function, while GLP-2 enhances epithelial repair and reduces pro-inflammatory cytokine expression in animal models of colitis. GIP facilitates lipid clearance, enhances insulin sensitivity, and limits systemic inflammation. PYY and CCK slow gastric emptying, suppress appetite, and attenuate colonic inflammation via neural pathways. APOA4 regulates lipid transport, increases energy expenditure, and exerts antioxidant and anti-inflammatory effects that alleviate experimental colitis. Synergistic interactions—such as GLP-1/PYY co-administration, PYY-stimulated APOA4 production, and APOA4-enhanced CCK activity—suggest that multi-hormone combinations may offer amplified therapeutic benefits. While preclinical data are promising, clinical evidence supporting gut hormone therapies in IBD remains limited. Dual GIP/GLP-1 receptor agonists improve metabolic and inflammatory parameters, but in clinical use, they are associated with gastrointestinal side effects that warrant further investigation. Future research should evaluate combination therapies in preclinical IBD models, elucidate shared neural and receptor-mediated pathways, and define optimal strategies for applying gut hormone synergy in human IBD. These efforts may uncover safer, metabolically tailored treatments for IBD, particularly in patients with coexisting obesity or metabolic dysfunction. Full article
(This article belongs to the Special Issue Metabolic Inflammation and Insulin Resistance in Obesity)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials
by Sumeyya Deniz Aybek, Mucahit Secme, Hasan Ilhan, Leyla Acik, Suheyla Pinar Celik and Gonca Gulbay
Molecules 2025, 30(14), 2936; https://doi.org/10.3390/molecules30142936 - 11 Jul 2025
Viewed by 291
Abstract
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive [...] Read more.
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The in vitro anticancer activity of ZER@MOF-5 was studied in a human breast cancer cell line (MCF-7) using the CCK-8 assay. The interaction of ZER@MOF-5 with pBR322 plasmid DNA was assessed by gel electrophoresis. The antimicrobial effect of ZER@MOF-5 was examined in gram-positive and gram-negative bacterial strains and yeast strains using the microdilution method. The free radical scavenging activity was assessed using the DPPH assay. Cytotoxicity assay revealed a notable enhancement in the anticancer activity of zerumbone upon its encapsulation into MOF-5. The IC50 value for ZER@MOF-5 was found to be 57.33 µg/mL, which was lower than that of free zerumbone (IC50: 89.58 µg/mL). The results of the DNA-binding experiment indicate that ZER@MOF-5 can bind to target DNA and cause a conformational change in DNA. The results of the antibacterial activity experiment showed that the antibacterial ability of ZER@MOF-5 was limited compared to free zerumbone. The results of the DPPH assay demonstrated that the antioxidant activity of free zerumbone was higher than that of ZER@MOF-5. MOFs encapsulate compounds within their porous crystalline structure, which leads to prolonged circulation time compared to single ligands. Although the unique structure of MOFs may limit their antibacterial and antioxidant activity in the short term, it may increase therapeutic efficacy in the long term. However, to fully understand the long-term antibacterial and antioxidant effects of the ZER@MOF-5, further comprehensive in vitro and in vivo experiments are necessary. This finding indicates that the MOF-5 could potentially be an impressive carrier for the oral administration of zerumbone. Full article
Show Figures

Figure 1

20 pages, 6229 KiB  
Article
Integrating Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Inonotus obliquus Polysaccharide in the Treatment of Rheumatoid Arthritis
by Yuan Fu, Tianyi Jiang, Xizhu Fang, Yifang Chen, Jiawei Li, Shengnan Huang, Fangfang Li and Dan Jin
Pharmaceuticals 2025, 18(7), 1017; https://doi.org/10.3390/ph18071017 - 8 Jul 2025
Viewed by 491
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect [...] Read more.
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect on RA is still unclear. Thus, this study aimed to reveal the effect of IOP on MH7A cells and collagen-induced arthritis (CIA) rats and to investigate the molecular mechanism of IOP in RA. Methods: In this study, network pharmacology was used to identify the key signaling pathways in IOP treatment of RA. The effect of IOP was verified in rats with CIA. We performed CCK-8, EdU, colony formation assay, cell apoptosis, cell migration and invasion, Western blot analysis, and immunofluorescence to elucidate the effect of IOP on the proliferation, apoptosis, migration and invasion of MH7A cells and revealed its modulation of the NF-κB and NLRP3 inflammasome signaling pathways. Results: IOP treatment of CIA rats significantly alleviated joint swelling, synovial tissue proliferation and erosion, and reduced the expression of inflammatory factors TNF-α, IL-6, IL-1β and IL-18. In vitro, IOP significantly inhibited the proliferation, migration, and invasion abilities of TNF-α-stimulated MH7A cells and promoted their apoptosis. Mechanistically, IOP inhibited the NF-κB and NLRP3 inflammasome activation. Conclusions: This study revealed that IOP exerts anti-RA effects by downregulating the NF-κB and NLRP3 inflammasome signaling pathways, promoting cell apoptosis, and inhibiting the expression of inflammatory cytokines, representing a promising therapeutic option for RA. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Graphical abstract

17 pages, 1966 KiB  
Article
Development of INER-PP-F11N as the Peptide-Radionuclide Conjugate Drug Against CCK2 Receptor-Overexpressing Tumors
by Ming-Cheng Chang, Chun-Tang Chen, Ping-Fang Chiang, I-Chung Tang, Cheng-Liang Peng, Yuh-Feng Wang, Yi-Jou Tai and Ying-Cheng Chiang
Int. J. Mol. Sci. 2025, 26(14), 6565; https://doi.org/10.3390/ijms26146565 - 8 Jul 2025
Viewed by 402
Abstract
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, [...] Read more.
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, biodistribution, SPECT/CT imaging, and therapeutic responses in CCK2R-expressing tumor xenograft mice. The metabolic stability of [111In]In/[177Lu]Lu-INER-PP-F11N remained above 90% for up to 144 h after labeling, indicating that the compound is highly stable under in vitro conditions. INER-PP-F11N showed 27% and 11% higher cellular uptake and internalization than PP-F11N, respectively. In vivo SPECT/CT imaging confirmed that INER-PP-F11N could accumulate at the tumor site of mice 24 h after receiving the two radiopharmaceutical agents. Biodistribution analysis revealed a significantly greater tumor uptake and reduced accumulation of INER-PP-F11N in the kidneys compared with PP-F11N. Furthermore, INER-PP-F11N significantly inhibited the growth of the CCK2R-overexpressing tumors in mice. The INER-PP-F11N radiopharmaceutical was superior as a theragnostic agent compared with the current PP-F11N. Our study suggests that INER-PP-F11N may be an innovative radiopharmaceutical agent for CCK2R-overexpressing tumors. Full article
Show Figures

Graphical abstract

20 pages, 18100 KiB  
Article
Targeting p-FGFR1Y654 Enhances CD8+ T Cells Infiltration and Overcomes Immunotherapy Resistance in Esophageal Squamous Cell Carcinoma by Regulating the CXCL8–CXCR2 Axis
by Hong Luo, Liwei Wang, Hui Gao, Daijun Zhou, Yu Qiu, Lijia Yang, Jing Li, Dan Du, Xiaoli Huang, Yu Zhao, Zhongchun Qi, Yue Zhang, Xuemei Huang, Lihan Sun, Tao Xu and Dong Li
Biomedicines 2025, 13(7), 1667; https://doi.org/10.3390/biomedicines13071667 - 8 Jul 2025
Viewed by 469
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is a fatal malignant tumor. Several studies have demonstrated that immune checkpoint inhibitors can provide clinical benefits to patients with ESCC. However, the single-agent efficacy of these agents remains limited. Although combination therapies (e.g., radiotherapy, chemotherapy) can [...] Read more.
Background: Esophageal squamous cell carcinoma (ESCC) is a fatal malignant tumor. Several studies have demonstrated that immune checkpoint inhibitors can provide clinical benefits to patients with ESCC. However, the single-agent efficacy of these agents remains limited. Although combination therapies (e.g., radiotherapy, chemotherapy) can help to overcome immunotherapy resistance in ESCC, their severe side effects limit clinical application. This study aimed to explore new resistance mechanisms to immunotherapy in ESCC and identify novel molecular targets to overcome immunotherapy resistance. Methods: We employed immunohistochemistry staining to examine the p-FGFR1Y654 in tumor samples obtained from 103 patients with ESCC, in addition to evaluating CD8+ T cell infiltration. In vitro expression, western blotting, CCK-8, 5-bromo-2′-deoxyuridine incorporation assays, and migration assays were used to confirm the impact of AZD4547 on p-FGFR1Y654 expression and the proliferation and migration in ESCC cell lines. Through RNA sequencing analysis, databases such as the Cancer Genome Atlas (TCGA) and Gene Set Cancer Analysis (GSCA), and the reconstruction of transgenic mice using the humanized immune system, we validated the correlation between the expression of p-FGFR1Y654 and CD8+ T cell infiltration. We also explored how p-FGFR1Y654 recruits myeloid-derived suppressor cells (MDSCs) through the CXCL8–CXCR2 axis to suppress the therapeutic efficacy of immunotherapy in ESCC. Finally, the tumor-suppressive effects of AZD4547 combined with immunotherapy were confirmed in vivo in tumor-bearing mice with a humanized immune system. Results: We found that the inhibition of p-FGFR1Y654 expression in ESCC can enhance CD8+ T cell infiltration by suppressing the CXCL8-–XCR2 recruitment of MDSCs. AZD4547, combined with immunotherapy, further promotes immunotherapeutic efficacy in ESCC. Conclusions: In conclusion, our study presents a promising model for combination therapy in ESCC immunotherapy. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

13 pages, 3320 KiB  
Article
Regulation of Human Lung Adenocarcinoma Cell Proliferation by LncRNA AFAP-AS1 Through the miR-508/ZWINT Axis
by Sultan F. Kadasah and Abdulaziz M. S. Alqahtani
Int. J. Mol. Sci. 2025, 26(13), 6532; https://doi.org/10.3390/ijms26136532 - 7 Jul 2025
Viewed by 350
Abstract
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung [...] Read more.
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung adenocarcinoma cell proliferation via miR-508-3p and ZWINT. Human lung adenocarcinoma A549 cells were transfected with siRNA constructs against AFAP1-AS1 (si-AFAP1-AS1) to silence its expression. Cell proliferation was evaluated via CCK-8 and colony-forming assays. Apoptosis was assessed using AO/EB staining, and invasion was determined via Transwell assay. The interaction between AFAP1-AS1, miR-508-3p, and ZWINT was confirmed via dual luciferase reporter assay and qRT-PCR analysis. Data were analysed using appropriate statistical tests. AFAP1-AS1 was significantly upregulated in lung adenocarcinoma cells compared to normal BEAS-2B cells. Silencing of AFAP1-AS1 resulted in a marked reduction in A549 cell proliferation and colony development, as observed in CCK-8 and colony formation assays. The AO/EB assay showed a significant increase in apoptosis (30 ± 4.4%) in si-AFAP1-AS1 transfected cells compared to control si-NC (3 ± 1.2%). In addition, knockdown of AFAP1-AS1 led to an upsurge of pro-apoptotic Bax and decline of anti-apoptotic Bcl-2 expression. The dual luciferase assay established the interaction between AFAP1-AS1 and miR-508-3p. Furthermore, ZWINT, identified as a target of miR-508-3p, was significantly upregulated in lung adenocarcinoma tissues. Overexpression of ZWINT rescued the inhibitory effects of AFAP1-AS1 silencing on cell proliferation, colony formation, and apoptosis, while also reversing the reduction in cell invasion. AFAP1-AS1 accelerates the development of lung adenocarcinoma by cell proliferation, apoptosis, and invasion via the miR-508-3p/ZWINT axis. Thus, targeting AFAP1-AS1 or its downstream regulatory axis could offer novel therapeutic approaches in lung adenocarcinoma treatment. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Figure 1

Back to TopTop