Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Preconditioning of BonAlive Granules
2.3. Cell Culture
2.4. Microscopic Images of BG and MG63 Osteoblast-Like Cells
2.5. CCK-8 Assay to Establish the Proliferation Rate of the Cells
- I.
- Non-treated (non-adherent) test plates: (1) complete MEM medium alone without cells (to assess background CCK-8 reactivity); (2) complete MEM medium with bioglass particles; (3) MG63 cells seeded onto bioglass granules in complete MEM medium; (4) MG63 cells placed into wells without bioglass granules.
- II.
- TC-treated test plates: (1) complete MEM medium alone without cells (for background CCK-8 reactivity); (2) MG63 cells in complete MEM medium (positive control) to verify cell viability and proliferation.
2.6. Statistical Analyses
3. Results
3.1. Microscopic Characterization of BG and MG63 Osteoblast-Like Cells
3.2. Investigation of the Proliferation of MG63 Cells on Bioglass Surface with CCK-8 Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Wang, Y.; Yu, C.; Zhang, X.; Wang, Y.; Yu, T.; Wu, T. Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery. Adv. Fiber Mater. 2025, 7, 240–253. [Google Scholar] [CrossRef]
- Du, D.; Asaoka, T.; Ushida, T.; Furukawa, K.S. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 2014, 6, 045002. [Google Scholar] [CrossRef] [PubMed]
- Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef] [PubMed]
- El-Rashidy, A.A.; Roether, J.A.; Harhaus, L.; Kneser, U.; Boccaccini, A.R. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater. 2017, 62, 1–28. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Maroothynaden, J.; Hench, L.L. Bioglass® stimulation of embryonic long-bones in altered loading environments. J. Gravit. Physiol. 2001, 8, P79–P80. [Google Scholar]
- Oonishi, H.; Kushitani, S.; Yasukawa, E.; Iwaki, H.; Hench, L.L.; Wilson, J.; Tsuji, E.; Sugihara, T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin. Orthop. Relat. Res. 1997, 334, 316–325. [Google Scholar] [CrossRef]
- Gerhardt, L.-C.; Boccaccini, A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 2010, 3, 3867–3910. [Google Scholar] [CrossRef]
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Sergi, R.; Bellucci, D.; Cannillo, V. A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. Coatings 2020, 10, 757. [Google Scholar] [CrossRef]
- García-Lamas, L.; Lozano, D.; Jiménez-Díaz, V.; Bravo-Giménez, B.; Sánchez-Salcedo, S.; Jiménez-Holguín, J.; Abella, M.; Desco, M.; Vallet-Regi, M.; Cecilia-López, D.; et al. Enriched mesoporous bioactive glass scaffolds as bone substitutes in critical diaphyseal bone defects in rabbits. Acta Biomater. 2024, 180, 104–114. [Google Scholar] [CrossRef]
- Bernardo, M.P.; Ferreira, F.V.; Oliveira, L.F.; Mattoso, L.H.C.; Lopes, J.H. Revolutionizing bone regeneration: 3D printing of PLA/MFBG composites with advanced healing properties. Mater. Today Chem. 2025, 43, 02447. [Google Scholar] [CrossRef]
- Garimella, A.; Ghosh, S.B.; Bandyopadhyay-Ghosh, S. Biomaterials for bone tissue engineering: Achievements to date and future directions. Biomed. Mater. 2024, 20, 012001. [Google Scholar] [CrossRef]
- Van Vugt, T.A.G.; Heidotting, J.; Arts, J.J.; Ploegmakers, J.J.W.; Jutte, P.C.; Geurts Jan, A.P. Mid-term clinical results of chronic cavitary long bone osteomyelitis treatment using S53P4 bioactive glass: A multi-center study. J. Bone Jt. Infect. 2021, 6, 413–421. [Google Scholar] [CrossRef]
- De Buys, M.; Moodley, K.; Cakic, J.N.; Pietrzak, J.R.T. Staphylococcus aureus colonization and periprosthetic joint infection in patients undergoing elective total joint arthroplasty: A narrative review. EFORT Open Rev. 2023, 8, 680–689. [Google Scholar] [CrossRef]
- Jones, J.R.; Brauer, D.S.; Hupa, L.; Greenspan, D.C. Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glass Sci. 2016, 7, 423–434. [Google Scholar] [CrossRef]
- Oliver, J.N.; Su, Y.; Lu, X.; Kuo, P.-H.; Du, J.; Zhu, D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact. Mater. 2019, 4, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B.S.; Dodda, J.M.; El-Khordagui, L.K.; Focarete, M.L.; Maroti, P.; Toth, L.; Pacilio, S.; El-Habashy, S.E.; Boateng, J.; Catanzano, O.; et al. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater. 2024, 184, 1–21. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-17:2023; Biological Evaluation of Medical Devices—Part 17: Toxicological Risk Assessment of Medical Device Constituents. 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2023.
- Thangaraju, P.; Varthya, S.B. ISO 10993: Biological evaluation of medical devices. In Medical Device Guidelines and Regulations Handbook; Springer International Publishing: Cham, Switzerland, 2022; pp. 163–187. [Google Scholar]
- U.S. Food and Drug Administration. Use of International Standard ISO 10993-1: Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process; U.S. Department of Health and Human Services: Silver Spring, MD, USA, 2023. Available online: https://www.fda.gov/media/142959/download (accessed on 28 July 2025).
- Anusavice, K.J. Phillips’ Science of Dental Materials, 10th ed.; WB Saunders: Philadelphia, PA, USA, 1996. [Google Scholar]
- Staehlke, S.; Rebl, H.; Nebe, B. Phenotypic stability of the human MG-63 osteoblastic cell line at different passages. Cell Biol. Int. 2019, 43, 22–32. [Google Scholar] [CrossRef]
- Yoo, K.J.; Jang, W.Y.; Chang, J.H. Bioresorption and Biomineralization of S53P4 Bioactive Glass in Neutral Tris Buffer and Citric Acid Solution. ACS Omega 2024, 9, 43678–43688. [Google Scholar] [CrossRef]
- Ciraldo, F.E.; Boccardi, E.; Melli, V.; Westhauser, F.; Boccaccini, A.R. Tackling bioactive glass excessive in vitro bioreactivity: Preconditioning approaches for cell culture tests. Acta Biomater. 2018, 75, 3–10. [Google Scholar] [CrossRef]
- Grela, E.; Kozłowska, J.; Grabowiecka, A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018, 120, 303–311. [Google Scholar] [CrossRef]
- Tallósy, S.P.; Janovák, L.; Nagy, E.; Deák, Á.; Juhász, Á.; Csapó, E.; Buzás, N.; Dékány, I. Adhesion and inactivation of Gram-negative and Gram-positive bacteria on photoreactive TiO2/polymer and Ag–TiO2/polymer nanohybrid films. Appl. Surf. Sci. 2016, 371, 139–150. [Google Scholar] [CrossRef]
- Venkei, A.; Ungvári, K.; Eördegh, G.; Janovák, L.; Urbán, E.; Turzó, K. Photocatalytic enhancement of antibacterial effects of photoreactive nanohybrid films in an in vitro Streptococcus mitis model. Arch. Oral Biol. 2020, 117, 104837. [Google Scholar] [CrossRef] [PubMed]
- Tallósy Sz, P.; Janovák, L.; Ménesi, J.; Nagy, E.; Juhász, Á.; Balázs, L.; Deme, I.; Buzás, N.; Dékány, I. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films. Environ. Sci. Pollut. Res. 2014, 21, 11155–11167. [Google Scholar] [CrossRef] [PubMed]
- Price, N.; Bendall, S.P.; Frondoza, C.; Jinnah, R.H.; Hungerford, D.S. Human osteoblast-like cells (MG63) proliferate on abioactive glass surface. J. Biomed. Mater. Res. 1997, 37, 301–448. [Google Scholar] [CrossRef]
- ISO 10993-14:2001; Biological Evaluation of Medical Devices–Part 14: Identification and Quantification of Degradation Products from Ceramics. 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- Di Caprio, N.; Burdick, J.A. Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomater. 2023, 165, 4–18. [Google Scholar] [CrossRef]
- Achilli, T.M.; Meyer, J.; Morgan, J.R. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther. 2012, 12, 1347–1360. [Google Scholar] [CrossRef]
- Santini, M.T.; Rainaldi, G.; Romano, R.; Ferrante, A.; Clemente, S.; Motta, A.; Indovina, P.L. MG-63 human osteosarcoma cells grown in monolayer and as three-dimensional tumor spheroids present a different metabolic profile. NMR Study 2004, 557, 148–154. [Google Scholar] [CrossRef]
- De Luca, A.; Raimondi, L.; Salamanna, F.; Carina, V.; Costa, V.; Bellavia, D.; Alessandro, R.; Fini, M.; Giavaresi, G. Relevance of 3d culture systems to study osteosarcoma environment. J. Exp. Clin. Cancer Res. 2018, 37, 2. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, H.; Liu, J.; Deng, Y.; Zhang, N. Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis. 2021, 12, 629. [Google Scholar] [CrossRef]
Time (h) | 24 h | 48 h | 72 h | 96 h | 168 h |
---|---|---|---|---|---|
OD ± SE | 0.254 ± 0.004 | 0.362 ± 0.014 | 0.546 ± 0.043 | 0.952 ± 0.094 | 1.518 ± 0.072 |
p Values, Pairwise Comparisons of Groups Kruskal–Wallis Test | |||||
---|---|---|---|---|---|
Sample 1 vs. Sample 2 | 24 h | 48 h | 72 h | 96 h | 168 h |
MEM vs. MEM + BG | 0.976 N.S. | 0.943 N.S. | 0.972 N.S. | 0.972 N.S. | 0.619 N.S. |
MEM vs. MEM + BG + MG63 | * 0.012 | ** 0.006 | ** 0.006 | ** 0.007 | ** 0.004 |
MEM vs. MEM + MG63 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 |
MEM + BG vs. MEM + BG + MG63 | * 0.014 | * 0.013 | * 0.012 | * 0.012 | * 0.015 |
MEM + BG vs. MEM + MG63 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 | *** p < 0.001 |
MEM + BG + MG63 vs. MEM + MG63 | * 0.014 | * 0.035 | * 0.034 | * 0.034 | * 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, V.; Polgár, B.; Nemes, V.Á.; Dergez, T.; Janovák, L.; Maróti, P.; Rendeki, S.; Turzó, K.; Patczai, B. Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study. J. Funct. Biomater. 2025, 16, 275. https://doi.org/10.3390/jfb16080275
Schmidt V, Polgár B, Nemes VÁ, Dergez T, Janovák L, Maróti P, Rendeki S, Turzó K, Patczai B. Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study. Journal of Functional Biomaterials. 2025; 16(8):275. https://doi.org/10.3390/jfb16080275
Chicago/Turabian StyleSchmidt, Valentin, Beáta Polgár, Vanda Ágnes Nemes, Tímea Dergez, László Janovák, Péter Maróti, Szilárd Rendeki, Kinga Turzó, and Balázs Patczai. 2025. "Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study" Journal of Functional Biomaterials 16, no. 8: 275. https://doi.org/10.3390/jfb16080275
APA StyleSchmidt, V., Polgár, B., Nemes, V. Á., Dergez, T., Janovák, L., Maróti, P., Rendeki, S., Turzó, K., & Patczai, B. (2025). Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study. Journal of Functional Biomaterials, 16(8), 275. https://doi.org/10.3390/jfb16080275