Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = CAPN3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2919 KiB  
Article
The Identification of Proteolytic Substrates of Calpain-5 with N-Terminomics
by Jozsef Gal, Antoine Dufour, Daniel Young, Eddy S. Yang and James W. Geddes
Int. J. Mol. Sci. 2025, 26(13), 6459; https://doi.org/10.3390/ijms26136459 - 4 Jul 2025
Viewed by 286
Abstract
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we [...] Read more.
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we employed an N-terminomics approach called TAILS (Terminal amine isotopic labeling of substrates) to quantitatively compare the N-terminal peptides detected in parental and CAPN5-deficient SH-SY5Y neuroblastoma cells. Thirty neo-N-termini corresponding to 29 protein groups and 24 unique proteins were detected to be depleted in the CAPN5−/− cells. A subset of the identified putative substrates was further studied with CAPN5 co-immunoprecipitation, in vitro calcium-induced CAPN5 proteolysis assay, and their cellular fragmentation patterns were compared in parental and CAPN5-deficient SH-SY5Y cells. Here, we provide evidence for CAPN5-mediated proteolysis of the synaptic proteins DLGAP4, IQSEC1 and MPDZ, the neurodegeneration-related EWS, hnRNPU, TFG and UGP2, the DNA replication regulator MCM3, and the neuronal differentiation regulator LMTK1. Our data provide new relevance for neovascular inflammatory vitreoretinopathy (NIV), a progressive eye disease caused by pathogenic mutations in CAPN5. Data are available via ProteomeXchange with identifier PXD064313. Full article
Show Figures

Figure 1

21 pages, 2878 KiB  
Article
Genomic Analysis of Adaptability and Genetic Structure of Jabal Akhdar Goats: Evidence of Positive Selection in an Indigenous Omani Breed
by Zainab Mohammad, Hussain Bahbahani, Ahmad Alfoudari, Kaadhia Al Kharousi, Al Abeer Al Hamrashdi, Al Ghalya Al Toobi and Mohammad Al Abri
Biology 2025, 14(7), 761; https://doi.org/10.3390/biology14070761 - 25 Jun 2025
Viewed by 358
Abstract
Jabal Akhdar goats, native to Oman’s high-altitude Jabal Akhdar mountain range, are recognized for their high growth rate, remarkable twinning rate, and adaptability to harsh environmental conditions. This study assesses the genetic structure, inbreeding levels, effective population size (Ne), and [...] Read more.
Jabal Akhdar goats, native to Oman’s high-altitude Jabal Akhdar mountain range, are recognized for their high growth rate, remarkable twinning rate, and adaptability to harsh environmental conditions. This study assesses the genetic structure, inbreeding levels, effective population size (Ne), and linkage disequilibrium (LD) of Jabal Akhdar goats while identifying genomic regions under positive selection that may contribute to their environmental adaptation. The SNP genotypes from 72 Jabal Akhdar goats and two desert breeds from Egypt (153 Barki and 60 Saidi) revealed a clear genetic distinction between both groups. Within the Jabal Akhdar goats, genetic differentiation was also identified among the three sampled villages, indicating a village-specific genetic structure. The Jabal Akhdar breed exhibited a moderate level of inbreeding (FROH = 0.16), greater than that of the Barki and Saidi breeds. Additionally, Jabal Akhdar goats displayed greater LD and lower Ne levels compared to the Egyptian breeds. Analysis of runs of homozygosity (ROH) and extended haplotype homozygosity-based statistics (iHS and Rsb) identified 93 genomic regions exhibiting signatures of positive selection (80 from ROH, 5 from iHS, and 8 from Rsb). These regions harbor genes associated with traits essential for environmental adaptability, including hypoxia tolerance (SUCNR1, ANGPTL1, MITF, MTUS2), muscle development and function (MBNL1, ACTC1, CAPN5), fertility (GNRHR, CCNA1, SPAG1), UV radiation resistance (UVRAG, BRCA1), bone development (SOST, MEOX1), and lipid metabolism for energy utilization (DGAT2, G6PC, SUCLG2). The results of this study provide valuable insights for identifying causative variants and haplotypes underlying the Jabal Akhdar goat’s superior adaptability. These findings can guide breeders in designing conservation strategies and improving the productivity of this unique indigenous breed. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

11 pages, 847 KiB  
Article
Assessment of Genetic Diversity and Productive Traits in Crossbreed Cattle in the Caribbean Region, Colombia
by Andrés Rodríguez-Serrano, Marcos Ahumada-Velasco and Jesús María Cárdenas Beltrán
Genes 2025, 16(6), 677; https://doi.org/10.3390/genes16060677 - 30 May 2025
Viewed by 651
Abstract
Objectives: Evaluate the genetic diversity and productive traits of crossbred cattle in the Caribbean region of Colombia, through analyses derived from the assessment of the genome-wide single-nucleotide polymorphism (SNP). Methods: A total of 590 individuals and 66,098 SNPs were analyzed by principal components [...] Read more.
Objectives: Evaluate the genetic diversity and productive traits of crossbred cattle in the Caribbean region of Colombia, through analyses derived from the assessment of the genome-wide single-nucleotide polymorphism (SNP). Methods: A total of 590 individuals and 66,098 SNPs were analyzed by principal components analysis (PCA) and detection of runs of homozygosity (ROH). The population was composed of 531 heifers marked as crossbreed and a group of 59 heifers marked as purebred Gyr. Additionally, allele frequencies were calculated for commercially important traits (CSN2, CSN3, LGB, DGAT1, GH1, CAPN1_316, CAPN1_350, CAPN1_4751, CAST_282, CAST_2870, and CAST_2959). Results: Global differences in PCA were 7.35%, and principal components explained 1.94% and 5.41% of the variation. Five ROH islands were identified in crossbred animals on chromosomes 2, 5, 7, 8, and 12. The majority of observed ROH classes were shorter than 2 Mb, 54% in crossbreed cattle and 47% in Gyr cattle. Individual inbreeding was 5.2% in crossbreed and 12% in Gyr cattle. Both groups had similar allelic and genotypic frequencies for most of the evaluated commercial traits. Only a wide variation was observed in the genes related to growth hormone (GH1) and Calpastatin (CAST_2870 and CAST_22959). Crossbreed heifers had desired allele frequencies for better milk production and quality in the genes CSN2, LGB, DGAT1, and GH1, as well as in the genes CAST_2870 and CAST_2959. Conclusions: Crossbreed cattle in the Colombian Caribbean region possess high genetic diversity and desirable allele frequencies to implement breeding and intense selection programs aimed at improving production yields. Full article
Show Figures

Figure 1

16 pages, 8964 KiB  
Article
Multi-Omics-Based Analysis of the Effect of Longevity Genes on the Immune Relevance of Colorectal Cancer
by Yichu Huang, Guangtao Min, Hongpeng Wang and Lei Jiang
Biomedicines 2025, 13(5), 1085; https://doi.org/10.3390/biomedicines13051085 - 30 Apr 2025
Viewed by 642
Abstract
Background: Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, with its incidence and recurrence rates steadily rising. To explore the relationship between CRC and longevity-associated genes (LAGs), and to offer new therapeutic avenues for CRC treatment, we developed a [...] Read more.
Background: Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, with its incidence and recurrence rates steadily rising. To explore the relationship between CRC and longevity-associated genes (LAGs), and to offer new therapeutic avenues for CRC treatment, we developed a prognostic model based on these genes to predict the outcomes for CRC patients. Additionally, we conducted an immune correlation analysis. Methods: We conducted a comprehensive analysis of the effects of 81 LAGs in CRC by integrating multiple omics datasets. This analysis led to the identification of two distinct molecular subtypes and revealed that alterations in LAGs across various layers were linked to clinicopathological features, prognosis, and cell infiltration characteristics within the tumor microenvironment (TME). The training and validation cohorts for the models were derived from the TCGA-COAD, TCGA-READ, and GSE35279 datasets. Subsequently, we developed a risk score model, and the Kaplan–Meier method was employed to estimate overall survival (OS). Ultimately, we established a prognostic model based on five LAGs: BEDN3, EXOC3L2, CDKN2A, IL-13, and CAPN9. Furthermore, we assessed the correlations between the risk score and factors such as immune cell infiltration, microsatellite instability, and the stem cell index. Results: Our comprehensive bioinformatics analysis revealed a strong association between longevity genes and CRC. The risk score derived from the five newly identified LAGs was determined to be an independent prognostic factor for CRC. Patients categorized by this risk score demonstrated significant differences in immune status and microsatellite instability. Conclusions: Our comprehensive multi-omic analysis of LAGs highlighted their potential roles in the tumor immune microenvironment, clinicopathological features, and prognosis, offering new insights for the treatment of CRC. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

35 pages, 31411 KiB  
Article
The Role of Integrin β1D Mislocalization in the Pathophysiology of Calpain 3-Related Limb–Girdle Muscular Dystrophy
by Andrea Valls, Cristina Ruiz-Roldán, Jenita Immanuel, Sonia Alonso-Martín, Eduard Gallardo, Roberto Fernández-Torrón, Mario Bonilla, Ana Lersundi, Aurelio Hernández-Laín, Cristina Domínguez-González, Juan Jesús Vílchez, Pablo Iruzubieta, Adolfo López de Munain and Amets Sáenz
Cells 2025, 14(6), 446; https://doi.org/10.3390/cells14060446 - 17 Mar 2025
Viewed by 1009
Abstract
Limb–girdle muscular dystrophy R1 (LGMDR1) is characterized by progressive proximal muscle weakness due to mutations in the CAPN3 gene. Little is known about CAPN3’s function in muscle, but its loss results in aberrant sarcomere formation. Human muscle structure was analyzed in this study, [...] Read more.
Limb–girdle muscular dystrophy R1 (LGMDR1) is characterized by progressive proximal muscle weakness due to mutations in the CAPN3 gene. Little is known about CAPN3’s function in muscle, but its loss results in aberrant sarcomere formation. Human muscle structure was analyzed in this study, with observations including integrin β1D isoform (ITGβ1D) mislocalization, a lack of Talin-1 (TLN1) in the sarcolemma and the irregular expression of focal adhesion kinase (FAK) in LGMDR1 muscles, suggesting a lack of integrin activation with an altered sarcolemma, extracellular matrix (ECM) assembly and signaling pathway deregulation, which may cause frailty in LGMDR1 muscle fibers. Additionally, altered nuclear morphology, centrosome distribution and microtubule organization have been found in muscle cells derived from LGMDR1 patients. Full article
(This article belongs to the Special Issue Muscle Structure and Function in Health and Disease)
Show Figures

Figure 1

22 pages, 1816 KiB  
Article
The Association Between Statin Drugs and Rhabdomyolysis: An Analysis of FDA Adverse Event Reporting System (FAERS) Data and Transcriptomic Profiles
by Robert Morris, Kun Bu, Weiru Han, Savanah Wood, Paola M. Hernandez Velez, Jacob Ward, Ariana Crescitelli, Madison Martin and Feng Cheng
Genes 2025, 16(3), 248; https://doi.org/10.3390/genes16030248 - 21 Feb 2025
Cited by 2 | Viewed by 3780
Abstract
Background/Objectives: Rhabdomyolysis, a dangerous breakdown of skeletal muscle, has been reported as an adverse event in those prescribed a statin therapy for the treatment of hypercholesterolemia. Statin drugs are some of the most prescribed treatments for elevated cholesterol levels. The purpose of this [...] Read more.
Background/Objectives: Rhabdomyolysis, a dangerous breakdown of skeletal muscle, has been reported as an adverse event in those prescribed a statin therapy for the treatment of hypercholesterolemia. Statin drugs are some of the most prescribed treatments for elevated cholesterol levels. The purpose of this comparative study was to determine the association between the statin drugs used and the risk of rhabdomyolysis using the FDA Adverse Event Reporting System (FAERS) and transcriptomic data. Methods: A disproportionality analysis was performed to compare the risk of rhabdomyolysis between the reference statin drug (simvastatin) and the treatment group, with patient age assessed as a possible confounder. In addition, association rule mining was utilized to both identify other adverse events that frequently presented with rhabdomyolysis and identify possible drug-drug interactions (DDIs). Finally, public transcriptomic data were explored to identify the possible genetic underpinnings highlighting these differences in rhabdomyolysis risk across statins. Results: Rhabdomyolysis is a commonly reported adverse event for patients treated with statins, particularly those prescribed simvastatin. Simvastatin was associated with a more than 2-fold increased likelihood of rhabdomyolysis compared to other statins. Men were twice as likely to report rhabdomyolysis than women regardless of statin treatment, with the highest risk observed for pravastatin (ROR = 2.30, p < 0.001) and atorvastatin (ROR = 2.03, p < 0.0001). Several possible DDIs were identified, including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole, which may elevate rhabdomyolysis risk through impaired muscle function and delayed statin metabolism. Finally, nine myopathic genes were identified as possible regulators of statin-induced rhabdomyolysis, including DYSF, DES, PLEC, CAPN3, SCN4A, TNNT1, SDHA, MYH7, and PYGM in primary human muscle cells. Conclusions: Simvastatin was associated with the highest risk of rhabdomyolysis. The risk of rhabdomyolysis was more pronounced in men than women. Several possible DDIs were identified including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole. Full article
(This article belongs to the Section Toxicogenomics)
Show Figures

Figure 1

19 pages, 340 KiB  
Review
Evaluation of Risk Factors and a Gene Panel as a Tool for Unexplained Infertility Diagnosis by Next-Generation Sequencing
by Eglė Jašinskienė, Ieva Sniečkutė, Ignas Galminas, Lukas Žemaitis, Mantas Simutis and Marija Čaplinskienė
Medicina 2025, 61(2), 271; https://doi.org/10.3390/medicina61020271 - 5 Feb 2025
Viewed by 1161
Abstract
Background and Objective: Unexplained infertility is a major challenge in reproductive medicine and requires advanced diagnostic approaches to identify the underlying factors accurately. This study aims to evaluate the utility of risk factor analysis and a gene panel in diagnosing unexplained infertility using [...] Read more.
Background and Objective: Unexplained infertility is a major challenge in reproductive medicine and requires advanced diagnostic approaches to identify the underlying factors accurately. This study aims to evaluate the utility of risk factor analysis and a gene panel in diagnosing unexplained infertility using the next-generation sequencing (NGS) technology. Our study aimed to characterize and identify risk and genetic factors associated with unexplained infertility. Materials and methods: A cohort of patients with unexplained infertility was comprehensively screened for risk factors and genetic variations using a targeted gene panel (10 couples with unexplained infertility (UI) and 36 fertile couples). 108 articles were selected (58 on female infertility and 50 on male infertility) presenting genes that may be associated with unexplained infertility. A gene panel for unexplained infertility was compiled based on the literature data. A customized virtual panel was created from the exome sequencing data. Results: In the female group, controls had a higher mean age, while in the male patients, both groups were similar in terms of age. Both gender groups had comparable BMI values. No significant associations (p > 0.05) between risk factors and unexplained infertility were found when evaluating anthropometric parameters and other sociodemographic characteristics. In two male patients (20%), a molecular defect was detected in NGS variants classified aspossible benign and probably benign In particular, missense variants were identified in the UGT2B7 and CATSPER2 genes, A molecular defect classified as probably damaging was found in five female patients (50%). In particular, missense variants were identified in the CAPN10, MLH3, HABP2, IRS1, GDF9, and SLC19A1 genes. Conclusions: The study emphasizes that unexplained infertility is often related to mechanisms beyond causative mutations and highlights the need for integrative genomic research involving broader gene panels and multi-faceted approaches, including transcriptomics and epigenetics, to uncover latent genetic predispositions. Full article
(This article belongs to the Section Obstetrics and Gynecology)
20 pages, 1503 KiB  
Review
The Dynamic Evolution of Eosinophilic Esophagitis
by Amir Farah, Tarek Assaf, Jawad Hindy, Wisam Abboud, Mostafa Mahamid, Edoardo Vincenzo Savarino and Amir Mari
Diagnostics 2025, 15(3), 240; https://doi.org/10.3390/diagnostics15030240 - 21 Jan 2025
Viewed by 2713
Abstract
Eosinophilic esophagitis (EoE) is a chronic, immune-mediated inflammatory condition of the esophagus characterized by eosinophilic infiltration, and hallmark symptoms of esophageal dysfunction such as dysphagia and food impaction. Over the past three decades, EoE has been recognized as a distinct clinical entity, distinguished [...] Read more.
Eosinophilic esophagitis (EoE) is a chronic, immune-mediated inflammatory condition of the esophagus characterized by eosinophilic infiltration, and hallmark symptoms of esophageal dysfunction such as dysphagia and food impaction. Over the past three decades, EoE has been recognized as a distinct clinical entity, distinguished from gastroesophageal reflux disease (GERD) through advancements in diagnostic techniques, particularly endoscopy with biopsy. The rising global prevalence of EoE reflects enhanced diagnostic awareness, evolving criteria, and environmental along with lifestyle changes. The etiology of EoE is multifactorial, involving genetic predispositions, immune dysregulation, the gut microbiome, and environmental triggers, including dietary allergens and aeroallergens. Key mechanisms include a type 2 helper T-cell (Th2)-driven immune response, epithelial barrier dysfunction, and genetic variants such as CAPN14 and TSLP. Chronic inflammation leads to tissue remodeling, fibrosis, and esophageal narrowing, contributing to disease progression and complications. Management strategies have evolved to include dietary elimination, proton pump inhibitors, topical corticosteroids, biologics, and endoscopic interventions for fibrostenotic complications. Emerging therapies targeting cytokines such as interleukin (IL)-4, IL-5, and IL-13, alongside novel diagnostic tools like the esophageal string test and Cytosponge, offer promising avenues for improved disease control and non-invasive monitoring. Long-term surveillance combining endoscopic and histological evaluations with biomarkers and non-invasive tools is critical to optimizing outcomes and preventing complications. Future research should address gaps in understanding the role of the esophageal microbiome, refine therapeutic approaches, and develop personalized strategies to improve disease management and patient quality of life. Full article
Show Figures

Figure 1

21 pages, 4921 KiB  
Article
Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma
by Angélica Luna-Nophal, Fernando Díaz-Castillo, Vanessa Izquierdo-Sánchez, Jesús B. Velázquez-Fernández, Mario Orozco-Morales, Luis Lara-Mejía, Johana Bernáldez-Sarabia, Noemí Sánchez-Campos, Oscar Arrieta, José Díaz-Chávez, Jorge-Ismael Castañeda-Sánchez, Alexei-Fedorovish Licea-Navarro and Saé Muñiz-Hernández
Mar. Drugs 2025, 23(1), 32; https://doi.org/10.3390/md23010032 - 10 Jan 2025
Cited by 1 | Viewed by 1470
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some [...] Read more.
Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some species of marine snails have been demonstrated to be potential sources of novel anticancer molecules. This study analyzed the anticancer effects in vitro and in vivo of two peptides found in C. californicus. The effects of s-cal14.1b and s-cal14.2b on cell proliferation, apoptosis, and cytotoxicity were evaluated in 2D and 3D cultures of MPM-derived cells. Proteomics analysis of 3D cultures treated with conotoxins was performed to examine changes in expression or abundance. And the therapeutic effects of both conotoxins were evaluated in MPM mouse xenografts. s-cal14.1b and s-cal14.2b induced apoptosis and cytotoxicity in 2D and 3D cultures. However, only s-cal14.1b modified spheroid growth. Approximately 600 proteins exhibited important differential expression, which was more heterogeneous in H2452 vs MSTO-211H spheroids. The in silico protein functional analysis showed modifications in the biological pathways associated with carcinogenesis. CAPN1, LIMA1, ANXA6, HUWE1, PARP1 or PARP4 proteins could be potential cell targets for conotoxins and serve as biomarkers in MPM. Finally, we found that both conotoxins reduced the tumor mass in MPM xenografts; s-cal14.1b reached statistical significance. Based on these results, s-cal14.1b and s-cal14.2b conotoxins could be potential therapeutic drugs for MPM neoplasms with no apparent side effects on normal cells. Full article
Show Figures

Graphical abstract

16 pages, 2541 KiB  
Article
Genetics of Exertional Heat Illness: Revealing New Associations and Expanding Heterogeneity
by Nyamkhishig Sambuughin, Ognoon Mungunsukh, Michael G. Klein, Mingqiang Ren, Peter Bedocs, Josh B. Kazman, Kristen Cofer, Liam P. Friel, Beth McNally, Kyung Kwon, Mark C. Haigney, Jeffrey C. Leggit, Marzena Pazgier, Patricia A. Deuster and Francis G. O’Connor
Int. J. Mol. Sci. 2024, 25(20), 11269; https://doi.org/10.3390/ijms252011269 - 19 Oct 2024
Viewed by 2057
Abstract
Environmental heat stress represents a pervasive threat to warfighters, athletes, and occupational workers, impacting performance and increasing the risk of injury. Exertional heat illness (EHI) is a spectrum of clinical disorders of increasing severity. While frequently predictable, EHI can occur unexpectedly and may [...] Read more.
Environmental heat stress represents a pervasive threat to warfighters, athletes, and occupational workers, impacting performance and increasing the risk of injury. Exertional heat illness (EHI) is a spectrum of clinical disorders of increasing severity. While frequently predictable, EHI can occur unexpectedly and may be followed by long-term comorbidities, including cardiovascular dysfunction and exercise intolerance. The objective of this study was to assess genetic factors contributing to EHI. Whole-exome sequencing was performed in a cohort of 53 cases diagnosed with EHI. Rare variants in prioritized gene sets were analyzed and classified per published guidelines. Clinically significant pathogenic and potentially pathogenic variants were identified in 30.2% of the study cohort. Variants were found in 14 genes, including the previously known RYR1 and ACADVL genes and 12 other genes (CAPN3, MYH7, PFKM, RYR2, TRPM4, and genes for mitochondrial disorders) reported here for the first time in EHI. Supporting structural and functional studies of the TRPM4 p.Arg905Trp variant show that it impairs the thermal sensitivity of the TRPM4 channel, revealing a potentially new molecular mechanism contributing to EHI susceptibility. Our study demonstrates associations between EHI and genes implicated in muscle disorders, cardiomyopathies, thermoregulation, and oxidative phosphorylation deficiencies. These results expand the genetic heterogeneity of EHI and shed light on its molecular pathogenesis. Full article
(This article belongs to the Special Issue Role of Mutations and Polymorphisms in Various Diseases)
Show Figures

Figure 1

13 pages, 20689 KiB  
Article
Diagnosis of Two Unrelated Syndromes of Prader-Willi and Calpainopathy: Insight from Trio Whole Genome Analysis and Isodisomy Mapping
by Mario Cuk, Busra Unal, Andjela Bevanda, Connor P. Hayes, McKenzie Walker, Feruza Abraamyan, Robert Beluzic, Kristina Crkvenac Gornik, David Ozretic, Maja Prutki, Qian Nie, Honey V. Reddi and Arezou A. Ghazani
Genes 2024, 15(7), 946; https://doi.org/10.3390/genes15070946 - 19 Jul 2024
Cited by 1 | Viewed by 1735
Abstract
Purpose: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). Methods: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged [...] Read more.
Purpose: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). Methods: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. Results: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2–15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. Conclusion: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes. Full article
(This article belongs to the Special Issue Precision Medicine and Genetics)
Show Figures

Figure 1

15 pages, 1632 KiB  
Article
Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout (Oncorhynchus mykiss) Skeletal Muscle
by Daniela Aravena-Canales, Valentina Valenzuela-Muñoz, Cristian Gallardo-Escarate, Alfredo Molina and Juan Antonio Valdés
Int. J. Mol. Sci. 2024, 25(14), 7586; https://doi.org/10.3390/ijms25147586 - 10 Jul 2024
Cited by 4 | Viewed by 1769
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have [...] Read more.
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout. Full article
(This article belongs to the Special Issue Fish Nutrition Program and Epigenetic Regulation)
Show Figures

Graphical abstract

34 pages, 17104 KiB  
Article
Temporal Transcriptome Dynamics of Longissimus dorsi Reveals the Mechanism of the Differences in Muscle Development and IMF Deposition between Fuqing Goats and Nubian Goats
by Yuan Liu, Xianfeng Wu, Qian Xu, Xianyong Lan and Wenyang Li
Animals 2024, 14(12), 1770; https://doi.org/10.3390/ani14121770 - 12 Jun 2024
Cited by 2 | Viewed by 2135
Abstract
In this study, we measured the growth performance and intramuscular fat (IMF) content of the Longissimus dorsi (LD) of Fuqing goats (FQs) and Nubian goats (NBYs), which exhibit extreme phenotypic differences in terms of their production and meat quality traits. RNA-Seq analysis was [...] Read more.
In this study, we measured the growth performance and intramuscular fat (IMF) content of the Longissimus dorsi (LD) of Fuqing goats (FQs) and Nubian goats (NBYs), which exhibit extreme phenotypic differences in terms of their production and meat quality traits. RNA-Seq analysis was performed, and transcriptome data were obtained from the LD tissue of 3-month fetuses (E3), 0-month lambs (0M), 3-month lambs (3M), and 12-month lambs (12M) to reveal the differences in the molecular mechanisms regulating the muscle development and IMF deposition between FQs and NBYs. The results showed that a higher body weight and average daily gain were observed in the NBYs at three developmental stages after birth, whereas a higher IMF content was registered in the FQs at 12M. Additionally, transcriptome profiles during the embryonic period and after birth were completely different for both FQs and NBYs. Moreover, DEGs (KIF23, CCDC69, CCNA2, MKI67, KIF11, RACGAP1, NUSAP1, SKP2, ZBTB18, NES, LOC102180034, CAPN6, TUBA1A, LOC102178700, and PEG10) significantly enriched in the cell cycle (ko04110) at E3 (FQs vs. NBYs), and DEGs (MRPS7, RPS8, RPL6, RPL4, RPS11, RPS10, RPL5, RPS6, RPL8, RPS13, RPS24, RPS15, RPL23) significantly enriched in ribosomes (ko03010) at 0M (FQs vs. NBYs) related to myogenic differentiation and fusion were identified. Meanwhile, the differences in glucose and lipid metabolism began at the E3 timepoint and continued to strengthen as growth proceeded in FQs vs. NBYs. DEGs (CD36, ADIROQR2, ACACA, ACACB, CPT1A, IGF1R, IRS2, LDH-A, PKM, HK2, PFKP, PCK1, GPI, FASN, FADS1, ELOVL6, HADHB, ACOK1, ACAA2, and ACSL4) at 3M (FQs vs. NBYs) and 12M (FQs vs. NBYs) significantly enriched in the AMPK signaling pathway (ko04152), insulin resistance (ko04931), the insulin signaling pathway (ko04910), fatty acid metabolism (ko01212), and glycolysis/gluconeogenesis (ko00010) related to IMF deposition were identified. Further, the results from this study provide the basis for future studies on the mechanisms regulating muscle development and IMF deposition in different breeds of goats, and the candidate genes identified could be used in the selection process. Full article
Show Figures

Figure 1

13 pages, 1708 KiB  
Case Report
Genetic Linkage between CAPN5 and TYR Variants in the Context of Albinism and Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy Absence: A Case Report
by Mirjana Bjeloš, Ana Ćurić, Mladen Bušić, Benedict Rak and Biljana Kuzmanović Elabjer
Int. J. Mol. Sci. 2024, 25(12), 6442; https://doi.org/10.3390/ijms25126442 - 11 Jun 2024
Viewed by 1636
Abstract
We present a case involving a patient whose clinical phenotype aligns with oculocutaneous albinism (OCA), yet exhibits a complex genotype primarily characterized by variants of unknown significance (VUS). An 11-year-old boy manifested iris hypopigmentation and translucency, pronounced photophobia, diminished visual acuity and stereopsis, [...] Read more.
We present a case involving a patient whose clinical phenotype aligns with oculocutaneous albinism (OCA), yet exhibits a complex genotype primarily characterized by variants of unknown significance (VUS). An 11-year-old boy manifested iris hypopigmentation and translucency, pronounced photophobia, diminished visual acuity and stereopsis, nystagmus, reduced pigmentation of the retina, and foveal hypoplasia. Genetic testing was performed. A heterozygous missense VUS CAPN5 c.230A>G, p.(Gln77Arg), a heterozygous missense VUS TYR c.1307G>C, p.(Gly436Ala), and a heterozygous missense variant TYR c.1205G>A, p.(Arg402Gln) which was classified as a risk factor, were identified. We hypothesized that the TYR c.1307G>C, p.(Gly436Ala) variant is in genetic disequilibrium with the TYR c.1205G>A, p.(Arg402Gln) variant leading to deficient expression of melanogenic enzymes in retinal cells, resulting in the manifestation of mild OCA. Additionally, this study represents the case where we did not detect chiasmal misrouting in visual evoked potentials, nor did we observe a shift in the distribution of ganglion cell thickness from a temporal to a central position. Moreover, our patient’s case supports the probable benign nature of the CAPN5 c.230A>G, p.(Gln77Arg) variant. Full article
(This article belongs to the Special Issue Molecular Insight into Retinal Diseases)
Show Figures

Figure 1

11 pages, 250 KiB  
Review
Unraveling the Genetic Foundations of Broiler Meat Quality: Advancements in Research and Their Impact
by Tian Lu, Bahareldin Ali Abdalla Gibril, Jiguo Xu and Xinwei Xiong
Genes 2024, 15(6), 746; https://doi.org/10.3390/genes15060746 - 6 Jun 2024
Cited by 3 | Viewed by 4372
Abstract
As societal progress elevates living standards, the focus on meat consumption has shifted from quantity to quality. In broiler production, optimizing meat quality has become paramount, prompting efforts to refine various meat attributes. Recent advancements in sequencing technologies have revealed the genome’s complexity, [...] Read more.
As societal progress elevates living standards, the focus on meat consumption has shifted from quantity to quality. In broiler production, optimizing meat quality has become paramount, prompting efforts to refine various meat attributes. Recent advancements in sequencing technologies have revealed the genome’s complexity, surpassing previous conceptions. Through experimentation, numerous genetic elements have been linked to crucial meat quality traits in broiler chickens. This review synthesizes the current understanding of genetic determinants associated with meat quality attributes in broilers. Researchers have unveiled the pivotal insights detailed herein by employing diverse genomic methodologies such as QTL-based investigations, candidate gene studies, single-nucleotide polymorphism screening, genome-wide association studies, and RNA sequencing. These studies have identified numerous genes involved in broiler meat quality traits, including meat lightness (COL1A2 and ACAA2), meat yellowness (BCMO1 and GDPD5), fiber diameter (myostatin and LncIRS1), meat pH (PRDX4), tenderness (CAPN1), and intramuscular fat content (miR-24-3p and ANXA6). Consequently, a comprehensive exploration of these genetic elements is imperative to devise novel molecular markers and potential targets, promising to revolutionize strategies for enhancing broiler meat quality. Full article
(This article belongs to the Special Issue Poultry Breeding: Genetics and Genomics)
Back to TopTop