Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = CAM-chem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12991 KiB  
Article
Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images
by Teimurazi Davitashvili and Inga Samkharadze
Processes 2025, 13(7), 2277; https://doi.org/10.3390/pr13072277 - 17 Jul 2025
Viewed by 303
Abstract
Since dust aerosols are one of the major pollutants in Georgia, it is important to study the aeolian desert dust (ADD) invasion to Georgia from the neighboring deserts to find out its contribution to the dust pollution problem. Therefore, the main objective of [...] Read more.
Since dust aerosols are one of the major pollutants in Georgia, it is important to study the aeolian desert dust (ADD) invasion to Georgia from the neighboring deserts to find out its contribution to the dust pollution problem. Therefore, the main objective of this study is to investigate the history, frequency and routes of ADD invasions to the Caucasus (Georgia) using modern models and technologies for 1.5 years. Using WRF-Chem/dust, CAMS and HYSPLIT mathematical models; MODIS satellite images; and PM10 field data, 38 cases of not strong ADD invasions to Georgia were found, and two typical cases are presented and analyzed in this paper. The results of the modeling studies from 15 March 2023 to 15 September 2024 showed that the WRF-Chem/dust (GOCART) v.4.5.1 model simulated the ADD transport to Georgia from the surrounding deserts quite well. Daily monitoring of ADD migration routes showed that in the easternmost region of Georgia (the most vinicultural and agricultural region), the number of ADD invasions was approximately three times higher than in other regions of Georgia, which is a novelty of this study due to the lack of ground dust measurement stations in the easternmost region of Georgia. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

29 pages, 3568 KiB  
Article
Enhancing Laser-Induced Breakdown Spectroscopy Quantification Through Minimum Redundancy and Maximum Relevance-Based Feature Selection
by Manping Wang, Yang Lu, Man Liu, Fuhui Cui, Rongke Gao, Feifei Wang, Xiaozhe Chen and Liandong Yu
Remote Sens. 2025, 17(3), 416; https://doi.org/10.3390/rs17030416 - 25 Jan 2025
Cited by 1 | Viewed by 1162
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a rapid, non-contact analytical technique that is widely applied in various fields. However, the high dimensionality and information redundancy of LIBS spectral data present challenges for effective model development. This study aims to assess the effectiveness of the [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is a rapid, non-contact analytical technique that is widely applied in various fields. However, the high dimensionality and information redundancy of LIBS spectral data present challenges for effective model development. This study aims to assess the effectiveness of the minimum redundancy and maximum relevance (mRMR) method for feature selection in LIBS spectral data and to explore its adaptability across different predictive modeling approaches. Using the ChemCam LIBS dataset, we constructed predictive models with four quantitative methods: random forest (RF), support vector regression (SVR), back propagation neural network (BPNN), and partial least squares regression (PLSR). We compared the performance of mRMR-based feature selection with that of full-spectrum data and three other feature selection methods: competitive adaptive re-weighted sampling (CARS), Regressional ReliefF (RReliefF), and neighborhood component analysis (NCA). Our results demonstrate that the mRMR method significantly reduces the number of selected features while improving model performance. This study validates the effectiveness of the mRMR algorithm for LIBS feature extraction and highlights the potential of feature selection techniques to enhance predictive accuracy. The findings provide a valuable strategy for feature selection in LIBS data analysis and offer significant implications for the practical application of LIBS in predicting elemental content in geological samples. Full article
Show Figures

Figure 1

13 pages, 3343 KiB  
Article
Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications
by Xiai Zhuo, Ruize Zhang, Erbin Shi, Jiahui Liu and Zongcheng Ling
Universe 2024, 10(12), 462; https://doi.org/10.3390/universe10120462 - 19 Dec 2024
Viewed by 1179
Abstract
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In [...] Read more.
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In this study, three hydrated ferrous sulfates were prepared in the laboratory by heating dehydration reactions. These samples were analyzed using X-ray Diffraction (XRD) to confirm their phase and homogeneity. Subsequently, Raman, mid-infrared (MIR) spectra, visible near-infrared (VNIR) spectra, and laser-induced breakdown spectroscopy (LIBS) were measured and analyzed. The results demonstrate that the spectra of three hydrated ferrous sulfates exhibit distinctive features (e.g., the v1 and v3 features of SO42 tetrahedra in their Raman and MIR spectra) that can offer new insights for identifying different ferrous sulfates on Mars and aid in the interpretation of in-situ data collected by instruments such as the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC), SuperCam, and ChemCam, etc. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

30 pages, 13988 KiB  
Article
Complex Validation of Weather Research and Forecasting—Chemistry Modelling of Atmospheric CO2 in the Coastal Cities of the Gulf of Finland
by Georgii Nerobelov, Yuri Timofeyev, Stefani Foka, Sergei Smyshlyaev, Anatoliy Poberovskiy and Margarita Sedeeva
Remote Sens. 2023, 15(24), 5757; https://doi.org/10.3390/rs15245757 - 16 Dec 2023
Cited by 1 | Viewed by 1918
Abstract
The increase of the CO2 content in the atmosphere caused by anthropogenic emissions from the territories of large cities (~70%) is the critical factor in determining the accuracy of emission estimations. Advanced experiment-based methods of anthropogenic CO2 emission estimation are based [...] Read more.
The increase of the CO2 content in the atmosphere caused by anthropogenic emissions from the territories of large cities (~70%) is the critical factor in determining the accuracy of emission estimations. Advanced experiment-based methods of anthropogenic CO2 emission estimation are based on the solution of an inverse problem, using accurate measurements of CO2 content and numerical models of atmospheric transport and chemistry. The accuracy of such models decreases the errors of the emission estimations. The aim of the current study is to adapt numerical weather prediction and atmospheric chemistry model WRF-Chem and validate its capability to simulate atmospheric CO2 for the territories of the two large coastal cities of the Gulf of Finland—St. Petersburg (Russia) and Helsinki (Finland). The research has demonstrated that the WRF-Chem model is able to simulate annual variation, as well as the mean seasonal and diurnal variations of the near-surface CO2 mixing ratio, in Helsinki, at a high spatial resolution (2 km). Correlation between the modelled and measured CO2 mixing ratio is relatively high, at ~0.73, with a mean difference and its standard deviation of 0.15 ± 0.04 and 1.7%, respectively. The differences between the WRF-Chem data and the measurements might be caused by errors in the modelling of atmospheric transport and in a priori CO2 emissions and biogenic fluxes. The WRF-Chem model simulates well the column-averaged CO2 mixing ratio (XCO2) in St. Petersburg (January 2019–March 2020), with a correlation of ~0.95 relative to ground-based spectroscopic measurements by the IR–Fourier spectrometer Bruker EM27/SUN. The error of the XCO2 modelling constitutes ~0.3%, and most likely is related to inaccuracies in chemical boundary conditions and a priori anthropogenic CO2 emissions. The XCO2 time series in St. Petersburg by the WRF-Chem model fits well with global CAMS reanalysis and CarbonTracker-modelled data (the differences are less than ~1%). However, due to much higher spatial resolution (2 vs. over 100 km), the WRF-Chem data are in the best agreement with the ground-based remote measurements of XCO2. According to the study, the modelling errors of XCO2 in St. Petersburg during the whole simulated period are sufficiently minimal to fit the requirement of “Error ≤ 0.2%” in 60% of cases. This requirement should be satisfied to evaluate properly the anthropogenic CO2 emissions of St. Petersburg on a city-scale. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

26 pages, 3631 KiB  
Article
Global Scale Inversions from MOPITT CO and MODIS AOD
by Benjamin Gaubert, David P. Edwards, Jeffrey L. Anderson, Avelino F. Arellano, Jérôme Barré, Rebecca R. Buchholz, Sabine Darras, Louisa K. Emmons, David Fillmore, Claire Granier, James W. Hannigan, Ivan Ortega, Kevin Raeder, Antonin Soulié, Wenfu Tang, Helen M. Worden and Daniel Ziskin
Remote Sens. 2023, 15(19), 4813; https://doi.org/10.3390/rs15194813 - 3 Oct 2023
Cited by 8 | Viewed by 2974
Abstract
Top-down observational constraints on emissions flux estimates from satellite observations of chemical composition are subject to biases and errors stemming from transport, chemistry and prior emissions estimates. In this context, we developed an ensemble data assimilation system to optimize the initial conditions for [...] Read more.
Top-down observational constraints on emissions flux estimates from satellite observations of chemical composition are subject to biases and errors stemming from transport, chemistry and prior emissions estimates. In this context, we developed an ensemble data assimilation system to optimize the initial conditions for carbon monoxide (CO) and aerosols, while also quantifying the respective emission fluxes with a distinct attribution of anthropogenic and wildfire sources. We present the separate assimilation of CO profile v9 retrievals from the Measurements of Pollution in the Troposphere (MOPITT) instrument and Aerosol Optical Depth (AOD), collection 6.1, from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. This assimilation system is built on the Data Assimilation Research Testbed (DART) and includes a meteorological ensemble to assimilate weather observations within the online Community Atmosphere Model with Chemistry (CAM-chem). Inversions indicate an underestimation of CO emissions in CAMS-GLOB-ANT_v5.1 in China for 2015 and an overestimation of CO emissions in the Fire INventory from NCAR (FINN) version 2.2, especially in the tropics. These emissions increments are consistent between the MODIS AOD and the MOPITT CO-based inversions. Additional simulations and comparison with in situ observations from the NASA Atmospheric Tomography Mission (ATom) show that biases in hydroxyl radical (OH) chemistry dominate the CO errors. Full article
Show Figures

Figure 1

38 pages, 12514 KiB  
Article
Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars
by Allan H. Treiman, Nina L. Lanza, Scott VanBommel, Jeff Berger, Roger Wiens, Thomas Bristow, Jeffrey Johnson, Melissa Rice, Reginald Hart, Amy McAdam, Patrick Gasda, Pierre-Yves Meslin, Albert Yen, Amy J. Williams, Ashwin Vasavada, David Vaniman, Valerie Tu, Michael Thorpe, Elizabeth D. Swanner, Christina Seeger, Susanne P. Schwenzer, Susanne Schröder, Elizabeth Rampe, William Rapin, Silas J. Ralston, Tanya Peretyazhko, Horton Newsom, Richard V. Morris, Douglas Ming, Matteo Loche, Stéphane Le Mouélic, Christopher House, Robert Hazen, John P. Grotzinger, Ralf Gellert, Olivier Gasnault, Woodward W. Fischer, Ari Essunfeld, Robert T. Downs, Gordon W. Downs, Erwin Dehouck, Laura J. Crossey, Agnes Cousin, Jade M. Comellas, Joanna V. Clark, Benton Clark, Steve Chipera, Gwenaël Caravaca, John Bridges, David F. Blake and Ryan Andersonadd Show full author list remove Hide full author list
Minerals 2023, 13(9), 1122; https://doi.org/10.3390/min13091122 - 25 Aug 2023
Cited by 8 | Viewed by 3453
Abstract
The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn [...] Read more.
The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn2+)3(PO4)2·8H2O, that cemented the sediment soon after deposition. The nodules appear to have flat faces and linear boundaries and stand above the surrounding siltstone. ChemCam LIBS (laser-induced breakdown spectrometry) shows that the nodules have MnO abundances approximately twenty times those of the surrounding siltstone matrix, contain little CaO, and have SiO2 and Al2O3 abundances similar to those of the siltstone. A deconvolution of APXS analyses of nodule-bearing targets, interpreted here as representing the nodules’ non-silicate components, shows high concentrations of MnO, P2O5, and FeO and a molar ratio P/Mn = 2. Visible to near-infrared reflectance of the nodules (by ChemCam passive and Mastcam multispectral) is dark and relatively flat, consistent with a mixture of host siltstone, hematite, and a dark spectrally bland material (like pyrolusite, MnO2). A drill sample at the site is shown to contain minimal nodule material, implying that analyses by the CheMin and SAM instruments do not constrain the nodules’ mineralogy or composition. The fact that the nodules contain P and Mn in a small molar integer ratio, P/Mn = 2, suggests that the nodules contained a stoichiometric Mn-phosphate mineral, in which Fe did (i.e., could) not substitute for Mn. The most likely such minerals are laueite and strunzite, Mn2+Fe3+2(PO4)2(OH)2·8H2O and –6H2O, respectively, which occur on Earth as alteration products of other Mn-bearing phosphates including vivianite. Vivianite is a common primary and diagenetic precipitate from low-oxygen, P-enriched waters. Calculated phase equilibria show Mn-bearing vivianite could be replaced by laueite or strunzite and then by hematite plus pyrolusite as the system became more oxidizing and acidic. These data suggest that the nodules originated as vivianite, forming as euhedral crystals in the sediment, enclosing sediment grains as they grew. After formation, the nodules were oxidized—first to laueite/strunzite yielding the diagnostic P/Mn ratio, and then to hematite plus an undefined Mn oxy-hydroxide (like pyrolusite). The limited occurrence of these Mn-Fe-P nodules, both in space and time (i.e., stratigraphic position), suggests a local control on their origin. By terrestrial analogies, it is possible that the nodules precipitated near a spring or seep of Mn-rich water, generated during alteration of olivine in the underlying sediments. Full article
Show Figures

Figure 1

19 pages, 2584 KiB  
Article
On Integral INICS Aromaticity of Pyridodiazepine Constitutional Isomers and Tautomers
by Małgorzata Jarończyk, Sławomir Ostrowski and Jan Cz. Dobrowolski
Molecules 2023, 28(15), 5684; https://doi.org/10.3390/molecules28155684 - 27 Jul 2023
Cited by 4 | Viewed by 1683
Abstract
The structure, energetics, and aromaticity of c.a. 100 constitutional isomers and tautomers of pyrido[m,n]diazepines (m = 1, 2; n = 2, 3, 4, 5; m ≠ n) were studied at the B3LYP/cc-pVTZ level. The pyrido[1,3]diazepines appear the most, while pyrido[2,4]diazepines are the least [...] Read more.
The structure, energetics, and aromaticity of c.a. 100 constitutional isomers and tautomers of pyrido[m,n]diazepines (m = 1, 2; n = 2, 3, 4, 5; m ≠ n) were studied at the B3LYP/cc-pVTZ level. The pyrido[1,3]diazepines appear the most, while pyrido[2,4]diazepines are the least stable (ca. 26 kcal/mol). In the pyrido[1,n]diazepine group (n = 2–5), the [1,5] isomers are higher in energy by ca. 4.5 kcal/mol and the [1,4] ones by ca. 7 kcal/mol, and the pyrido[1,2]diazepines are the least stable (ca. 20 kcal/mol). All the most stable pyrido[1,n]diazepines have N-atoms near the ring’s junction bond but on opposite sites. The most stable [2,n]-forms are also those with the pyridine ring N6-atom near the junction bond. Surprisingly, for the [1,2]-, [1,3]-, and [1,4]-isomer condensation types of pyridine and diazepine rings, the same N9 > N7 > N6 > N8 stability pattern obeys. The stability remains similar in a water medium simulated with the Polarizable Continuum Model of the solvent and is conserved when calculated using the CAM-B3LYP or BHandHlyp functionals. The ring’s aromaticity in the pyridine[m,n]diazepines was established based on the integral INICS index resulting from the NICSzz-scan curves’ integration. The integral INICS index is physically justified through its relation to the ringcurrent as demonstrated by Berger, R.J.F., et al. Phys. Chem. Chem. Phys. 2022, 24, 624. The six-membered pyrido rings have negative INICSZZ indices and can be aromatic only if they are not protonated at the N-atom. All protonated pyrido and seven-membered rings exhibit meaningful positive INICSZZ values and can be assigned as antiaromatic. However, some non-protonated pyrido rings also have substantial positive INICSZZ indices and are antiaromatic. A weak linear correlation (R2 = 0.72) between the INICSZZ values of the pyridine I(6) and diazepine I(7) rings exists and is a consequence of the communication between the π-electron systems of the two rings. The juxtaposition of the INICS descriptor of the six- and seven-membered rings and diverse electron density parameters at the Ring Critical Points (RCP) revealed good correlations only with the Electrostatic Potentials from the electrons and nuclei (ESPe and ESPn). The relationships with other RCP parameters like electron density and its Laplacian, total energy, and the Hamiltonian form of kinetic energy density were split into two parts: one nearly constant for the six-membered rings and one linearly correlating for the seven-membered rings. Thus, most of the electron density parameters at the RCP of the six-membered rings of pyridodiazepines practically do not change with the diazepine type and the labile proton position. In contrast, those of the seven-membered rings display aromaticity changes in the antiaromatic diazepine with its ring structural modifications. Full article
(This article belongs to the Special Issue Computational and Theoretical Studies on Isomeric Organic Compounds)
Show Figures

Graphical abstract

25 pages, 3389 KiB  
Article
When Convolutional Neural Networks Meet Laser-Induced Breakdown Spectroscopy: End-to-End Quantitative Analysis Modeling of ChemCam Spectral Data for Major Elements Based on Ensemble Convolutional Neural Networks
by Yan Yu and Meibao Yao
Remote Sens. 2023, 15(13), 3422; https://doi.org/10.3390/rs15133422 - 6 Jul 2023
Cited by 30 | Viewed by 3326
Abstract
Modeling the quantitative relationship between target components and measured spectral information is an essential part of laser-induced breakdown spectroscopy (LIBS) analysis. However, many traditional multivariate analysis algorithms must reduce the spectral dimension or extract the characteristic spectral lines in advance, which may result [...] Read more.
Modeling the quantitative relationship between target components and measured spectral information is an essential part of laser-induced breakdown spectroscopy (LIBS) analysis. However, many traditional multivariate analysis algorithms must reduce the spectral dimension or extract the characteristic spectral lines in advance, which may result in information loss and reduced accuracy. Indeed, improving the precision and interpretability of LIBS quantitative analysis is a critical challenge in Mars exploration. To solve this problem, this paper proposes an end-to-end lightweight quantitative modeling framework based on ensemble convolutional neural networks (ECNNs). This method eliminates the need for dimensionality reduction of the raw spectrum along with other pre-processing operations. We used the ChemCam calibration dataset as an example to verify the effectiveness of the proposed approach. Compared with partial least squares regression (a linear method) and extreme learning machine (a nonlinear method), our proposed method resulted in a lower root-mean-square error for major element prediction (54% and 73% lower, respectively) and was more stable. We also delved into the internal learning mechanism of the deep CNN model to understand how it hierarchically extracts spectral information features. The experimental results demonstrate that the easy-to-use ECNN-based regression model achieves excellent prediction performance while maintaining interpretability. Full article
Show Figures

Graphical abstract

18 pages, 12581 KiB  
Article
The Stratosphere-to-Troposphere Transport Related to Rossby Wave Breaking and Its Impact on Summertime Ground-Level Ozone in Eastern China
by Hongyue Wang, Wuke Wang, Ming Shangguan, Tianyi Wang, Jin Hong, Shuyun Zhao and Jintao Zhu
Remote Sens. 2023, 15(10), 2647; https://doi.org/10.3390/rs15102647 - 19 May 2023
Cited by 12 | Viewed by 2753
Abstract
In summertime, eastern China experiences severe ozone pollution. Stratosphere-to-troposphere transport (STT), as the primary natural source of tropospheric ozone, may have a non-negligible contribution to ground-level ozone. Rossby wave breaking (RWB) is a leading mechanism that triggers STT, which can be categorized as [...] Read more.
In summertime, eastern China experiences severe ozone pollution. Stratosphere-to-troposphere transport (STT), as the primary natural source of tropospheric ozone, may have a non-negligible contribution to ground-level ozone. Rossby wave breaking (RWB) is a leading mechanism that triggers STT, which can be categorized as anticyclonic wave breakings (AWBs) and cyclonic wave breakings (CWBs). This study uses an objective method to diagnose AWBs and CWBs and to investigate their influence on the surface ozone in eastern China using ground-based ozone observations, satellite ozone data from AIRS, a stratospheric ozone tracer simulated by CAM-chem, and meteorological fields from MERRA-2. The results indicate that AWBs occur mainly and frequently over northeast China, while CWBs occur mostly over the northern Sea of Japan. STTs triggered by AWBs mainly have sinking areas over the North China Plain, increasing the ground-level ozone concentrations by 5–10 ppbv in eastern China. The downwelling zones in the CWBs extend from Mongolia to the East China Sea, potentially causing an elevation of 5–10 ppbv of ozone in both central and eastern China. This study gives an overview of the impacts of AWBs and CWBs on surface ozone in eastern China and helps to improve our understanding of summertime ozone pollution in eastern China. Full article
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
Wavelength Calibration for the LIBS Spectra of the Zhurong Mars Rover
by Yizhong Zhang, Xin Ren, Zhaopeng Chen, Wangli Chen, Zhenqiang Zhang, Xiangfeng Liu, Weiming Xu, Jianjun Liu and Chunlai Li
Remote Sens. 2023, 15(6), 1494; https://doi.org/10.3390/rs15061494 - 8 Mar 2023
Cited by 9 | Viewed by 2976
Abstract
China’s first Mars rover, Zhurong, landed on the southern region of Utopia Planitia, Mars, on 14 May 2021 (UTC). Zhurong is equipped with the Mars Surface Composition Detection Package (MarSCoDe), which analyzes the Martian surface’s material composition. Composed of laser-induced breakdown spectroscopy (LIBS), [...] Read more.
China’s first Mars rover, Zhurong, landed on the southern region of Utopia Planitia, Mars, on 14 May 2021 (UTC). Zhurong is equipped with the Mars Surface Composition Detection Package (MarSCoDe), which analyzes the Martian surface’s material composition. Composed of laser-induced breakdown spectroscopy (LIBS), short-wave infrared spectroscopy (SWIR), and a microimaging camera, MarsCoDe can work at a distance of 1.6–7 m to analyze element abundance and the mineralogy of targets on the Martian surface. Analysis shows that the wavelengths of MarSCoDe onboard LIBS spectra acquired within the same probe period will have different degrees of drift, leading to deviation in qualitative and quantitative elemental analysis. This paper finds that the spectrum drift follows a quadratic function relationship with the CCD temperature of the MarSCoDe spectrometer, based on which a wavelength calibration method is established. According to the function, the drift of a certain channel is calculated by the corresponding CCD temperature, and then the wavelength of the spectrum is calibrated by the drift. The accuracy of this calibration method for the position of peak wavelength in the LIBS spectrum can reach about 1/5 of the apparatus spectral width, and the cross-validation analysis using a norite standard sample shows that it is comparable to the wavelength calibration accuracy of the ChemCam onboard data product. Full article
Show Figures

Graphical abstract

17 pages, 4503 KiB  
Article
The Long-Term Trends and Interannual Variability in Surface Ozone Levels in Beijing from 1995 to 2020
by Jin Hong, Wuke Wang, Zhixuan Bai, Jianchun Bian, Mengchu Tao, Paul Konopka, Felix Ploeger, Rolf Müller, Hongyue Wang, Jinqiang Zhang, Shuyun Zhao and Jintao Zhu
Remote Sens. 2022, 14(22), 5726; https://doi.org/10.3390/rs14225726 - 12 Nov 2022
Cited by 7 | Viewed by 2796
Abstract
Tropospheric ozone is an important atmospheric pollutant as well as an efficient greenhouse gas. Beijing is one of the cities with the most serious ozone pollution. However, long-term date of observed ozone in Beijing are limited. In this paper, we combine the measurements [...] Read more.
Tropospheric ozone is an important atmospheric pollutant as well as an efficient greenhouse gas. Beijing is one of the cities with the most serious ozone pollution. However, long-term date of observed ozone in Beijing are limited. In this paper, we combine the measurements of the In-service Aircraft for a Global Observing System (IAGOS), ozonesonde observations as well as the recently available ozone monitoring network observations to produce a unique data record of surface ozone (at 14:00 Beijing time) in Beijing from 1995 to 2020. Using this merged dataset, we investigate the variability in surface ozone in Beijing on multiple timescales. The long-term change is primarily characterized by a sudden drop in 2011–2012 with an insignificant linear trend during the full period. Based on CAM-chem model simulations, meteorological factors played important roles in the 2011–2012 ozone drop. Before and after this sudden drop, ozone levels in Beijing increased significantly by 0.42 ± 0.27 ppbv year−1 before 2011 and 0.43 ± 0.41 ppbv year−1 after 2013. We also found a substantial increase in the amplitude of the ozone annual cycle in Beijing, which has not been documented in previous studies. This is consistent with ozone increases in summer and ozone decreases in winter. In addition, the results by the Ensemble Empirical Mode Decomposition (EEMD) analysis indicate significant interannual variations in ozone levels in Beijing with different time oscillation periods, which may be associated with natural variabilities and subsequent changes in meteorological conditions. Full article
Show Figures

Graphical abstract

18 pages, 2132 KiB  
Article
A New Spectral Transformation Approach and Quantitative Analysis for MarSCoDe Laser-Induced Breakdown Spectroscopy (LIBS) Data
by Guobin Jin, Zhongchen Wu, Zongcheng Ling, Changqing Liu, Wang Liu, Wenxi Chen and Li Zhang
Remote Sens. 2022, 14(16), 3960; https://doi.org/10.3390/rs14163960 - 15 Aug 2022
Cited by 11 | Viewed by 3161
Abstract
Zhurong rover successfully landed on the southern of Utopia Planet of Mars on 15 May 2021. One laser-induced breakdown spectroscopy (LIBS) system, the main payload of the Mars Surface Composition Detector (MarSCoDe), was installed on the Zhurong rover aimed to measure the elements [...] Read more.
Zhurong rover successfully landed on the southern of Utopia Planet of Mars on 15 May 2021. One laser-induced breakdown spectroscopy (LIBS) system, the main payload of the Mars Surface Composition Detector (MarSCoDe), was installed on the Zhurong rover aimed to measure the elements and their abundance in Martian regolith. Now, there are three sets of LIBS system (ChemCam, SuperCam and MarSCoDe) working on Mars at difference landing sites with diverse geologic features. For Mars exploration, cross-validation is necessary to expand the model compatibility, test data validity, and get more available data of the same type payloads. Spectral transformation approach is the first step and crucial for cross-validation of LIBS analysis model. Herein, a new 4-step spectral transformation approach was proposed to transform the LIBS spectra between three different LIBS systems (i.e., ChemCam, MarSCoDe, SDU-LIBS (recorded by self-built LIBS system)), whose data were partly different in spectral characteristics. Based on this approach, SDU-LIBS and MarSCoDe spectra data were transformed into ChemCam uniform and then the three kinds of LIBS data can have more similar spectral features and share one PLS (partial least squares) model for quantitative analysis. Our approach enables to make up the signal differences between different LIBS systems and gets acceptable quantitative analysis results of SDU-LIBS and MarSCoDe spectra using quantitative PLS model built by ChemCam calibration sample set. This work verified feasibility and availability of our approach for cross validation of different LIBS systems. Based on this method, MarSCoDe data were analyzed and got the preliminary satisfying results although no analysis model of laboratory replica payload was available under the existing conditions. Full article
Show Figures

Figure 1

11 pages, 4116 KiB  
Article
A Martian Analogues Library (MAL) Applicable for Tianwen-1 MarSCoDe-LIBS Data Interpretation
by Changqing Liu, Zhongchen Wu, Xiaohui Fu, Ping Liu, Yanqing Xin, Ayang Xiao, Hongchun Bai, Shangke Tian, Sheng Wan, Yiheng Liu, Enming Ju, Guobin Jin, Xuejin Lu, Xiaobin Qi and Zongcheng Ling
Remote Sens. 2022, 14(12), 2937; https://doi.org/10.3390/rs14122937 - 20 Jun 2022
Cited by 7 | Viewed by 3208
Abstract
China’s first Mars exploration mission, named Tianwen-1, landed on Mars on 15 May 2021. The Mars Surface Composition Detector (MarSCoDe) payload onboard the Zhurong rover applied the laser-induced breakdown spectroscopy (LIBS) technique to acquire chemical compositions of Martian rocks and soils. The quantitative [...] Read more.
China’s first Mars exploration mission, named Tianwen-1, landed on Mars on 15 May 2021. The Mars Surface Composition Detector (MarSCoDe) payload onboard the Zhurong rover applied the laser-induced breakdown spectroscopy (LIBS) technique to acquire chemical compositions of Martian rocks and soils. The quantitative interpretation of MarSCoDe-LIBS spectra needs to establish a LIBS spectral database that requires plenty of terrestrial geological standards. In this work, we selected 316 terrestrial standards including igneous rocks, sedimentary rocks, metamorphic rocks, and ores, whose chemical compositions, rock types, and chemical weathering characteristics were comparable to those of Martian materials from previous orbital and in situ detections. These rocks were crushed, ground, and sieved into powders less than <38 μm and pressed into pellets to minimize heterogeneity at the scale of laser spot. The chemical compositions of these standards were independently measured by X-ray fluorescence (XRF). Subsequently, the LIBS spectra of MAL standards were acquired using an established LIBS system at Shandong University (SDU-LIBS). In order to evaluate the performance of these standards in LIBS spectral interpretation, we established multivariate models using partial least squares (PLS) and least absolute shrinkage and selection (LASSO) algorithms to predict the abundance of major elements based on SDU-LIBS spectra. The root mean squared error (RMSE) values of these models are comparable to those of the published models for MarSCoDe, ChemCam, and SuperCam, suggesting these PLS and LASSO models work well. From our research, we can conclude that these 316 MAL targets are good candidates to acquire geochemistry information based on the LIBS technique. These targets could be regarded as geological standards to build a LIBS database using a prototype of MarSCoDe in the near future, which is critical to obtain accurate chemical compositions of Martian rocks and soils based on MarSCoDe-LIBS spectral data. Full article
Show Figures

Graphical abstract

24 pages, 71416 KiB  
Article
CO Fluxes in Western Europe during 2017–2020 Winter Seasons Inverted by WRF-Chem/Data Assimilation Research Testbed with MOPITT Observations
by Yongjian Huang, Jianming Wei, Jiupin Jin, Zhiwei Zhou and Qianrong Gu
Remote Sens. 2022, 14(5), 1133; https://doi.org/10.3390/rs14051133 - 25 Feb 2022
Cited by 5 | Viewed by 3163
Abstract
The study of anthropogenic carbon monoxide (CO) emissions is crucial to investigate anthropogenic activities. Assuming the anthropogenic CO emissions accounted for the super majority of the winter CO fluxes in western Europe, they could be roughly estimated by the inversion approach. The CO [...] Read more.
The study of anthropogenic carbon monoxide (CO) emissions is crucial to investigate anthropogenic activities. Assuming the anthropogenic CO emissions accounted for the super majority of the winter CO fluxes in western Europe, they could be roughly estimated by the inversion approach. The CO fluxes and concentrations of four consecutive winter seasons (i.e., December–February) in western Europe since 2017 were estimated by a regional CO flux inversion system based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and the Data Assimilation Research Testbed (DART). The CO retrievals from the Measurements Of Pollution In The Troposphere instrument (MOPITT) version 8 level 2 multi-spectral Thermal InfraRed (TIR)/Near-InfraRed (NIR) CO retrieval data products were assimilated by the inversion system. The analyses of the MOPITT data used by the inversion system indicated that the mean averaging kernel row sums of the surface level was about 0.25, and the difference percentage of the surface-level retrievals relative to a priori CO-mixing ratios was 14.79%, which was similar to that of the other levels. These results suggested the MOPITT’s surface-level observations contained roughly the same amount of information as the other levels. The inverted CO fluxes of the four winter seasons were 6198.15 kilotons, 4939.72 kilotons, 4697.80 kilotons, and 5456.19 kilotons, respectively. Based on the assumption, the United Nations Framework Convention on Climate Change (UNFCCC) inventories were used to evaluate the accuracy of the inverted CO fluxes. The evaluation results indicated that the differences between the inverted CO fluxes and UNFCCC inventories of the three winter seasons of 2017–2019 were 13.36%, −4.59%, and −4.76%, respectively. Detailed surface-CO concentrations and XCO comparative analyses between the experimental results and the external Community Atmosphere Model with Chemistry (CAM-Chem) results and the MOPITT data were conducted. The comparative analysis results indicated that the experimental results of the winter season of 2017 were obviously affected by high boundary conditions. The CO concentrations results of the experiments were also evaluated by the CO observation data from Integrated Carbon Observation System (ICOS), the average Mean Bias Error (MBE), and the Root Mean Square Error (RMSE) between the CO concentrations results of the inversion system, and the ICOS observations were −22.43 ppb and 57.59 ppb, respectively. The MBE and RMSE of the inversion system were 17.53-ppb and 4.17-ppb better than those of the simulation-only parallel experiments, respectively. Full article
Show Figures

Figure 1

15 pages, 4134 KiB  
Technical Note
Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars)
by Gwénaël Caravaca, Stéphane Le Mouélic, William Rapin, Gilles Dromart, Olivier Gasnault, Amaury Fau, Horton E. Newsom, Nicolas Mangold, Laetitia Le Deit, Sylvestre Maurice, Roger C. Wiens and Nina L. Lanza
Remote Sens. 2021, 13(20), 4068; https://doi.org/10.3390/rs13204068 - 12 Oct 2021
Cited by 9 | Viewed by 3582
Abstract
The Mars Science Laboratory rover Curiosity landed in Gale crater (Mars) in August 2012. It has since been studying the lower part of the 5 km-high sedimentary pile that composes Gale’s central mound, Aeolis Mons. To assess the sedimentary record, the MSL team [...] Read more.
The Mars Science Laboratory rover Curiosity landed in Gale crater (Mars) in August 2012. It has since been studying the lower part of the 5 km-high sedimentary pile that composes Gale’s central mound, Aeolis Mons. To assess the sedimentary record, the MSL team mainly uses a suite of imagers onboard the rover, providing various pixel sizes and fields of view from close to long-range observations. For this latter, we notably use the Remote Micro Imager (RMI), a subsystem of the ChemCam instrument that acts as 700 mm-focal length telescope, providing the smallest angular pixel size of the set of cameras on the Remote Sensing Mast. The RMI allows observations of remote outcrops up to a few kilometers away from the rover. As retrieving 3D information is critical to characterize the structures of the sedimentary deposits, we describe in this work an experiment aiming at computing for the first time with RMI Digital Outcrop Models of these distant outcrops. We show that Structure-from-Motion photogrammetry can successfully be applied to suitable sets of individual RMI frames to reconstruct the 3D shape and relief of these distant outcrops. These results show that a dedicated set of observations can be envisaged to characterize the most interesting geological features surrounding the rover. Full article
(This article belongs to the Special Issue Planetary 3D Mapping, Remote Sensing and Machine Learning)
Show Figures

Figure 1

Back to TopTop