Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Method and Models
2.1.1. WRF Model
2.1.2. WRF-Chem Model
2.1.3. Parameterizations
2.1.4. Verification of the Results of Numerical Calculations of the WRF-Chem/Dust v.4.5.1 Model
2.1.5. Field Data
2.1.6. MODIS Observation Data
2.1.7. HYSPLIT and CAMS Models
3. Results
3.1. Modeling of ADD Transport in Georgia from 27 to 31 May 2024
3.1.1. Aerosol Optical Depth (AOD) Calculations Using MODIS
3.1.2. Wind Rose of the READY System for 28–29 May 2024
3.1.3. In Situ PM10 Observations from 28 to 31 May 2024
3.1.4. HYSPLIT Model Calculations
3.1.5. CAMS Calculations
3.1.6. Results of Calculations Performed Using the WRF-Chem Model
3.2. Modeling the Transfer of ADD to the Territory of Georgia from 24 to 30 April 2024
3.2.1. Aerosol Optical Depth Calculations Using MODIS
3.2.2. Wind Rose of the READY System for 24–28 April 2024
3.2.3. On-Site Observations from 24 to 30 April 2024
3.2.4. HYSPLIT Model Calculations
3.2.5. CAMS PM10 Forecast Results for 24–29 April 2024
3.2.6. WRF v.4.5.1 Model Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Sixth Assessment Report, Climate Change 2022: Impacts, Adaptation and Vulnerability. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 28 February 2022).
- Al-Hemoud, A.; Al-Dousari, A.; Al-Shatti, A.; Al-Khayat, A.; Behbehani, W.; Malak, M. Health Impact Assessment Associated with Exposure to PM10 and Dust Storms in Kuwait. Atmosphere 2018, 9, 6. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system. Atmosph. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A Systematic Review of Global Desert Dust and Associated Human Health Effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 1–36. [Google Scholar] [CrossRef]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geoph. Res. 2011, 116, 1–19. [Google Scholar] [CrossRef]
- Rizza, U.; Anabor, V.; Mangia, C.; Miglietta, M.M.; Degrazia, G.A.; Passerini, G. WRF-Chem Simulation of a saharan dust outbreak over the mediterranean regions. Ciência e Nat. 2016, 38, 330–336. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Kim, K.W.; Kim, Y.J.; Oh, S.J. Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmosp. Environ. 2001, 35, 5157–5167. [Google Scholar] [CrossRef]
- Labban, A.; Farahat, A. Effect of Major Dust Events on Ambient Temperature and Solar Irradiance Components over Saudi Arabia. Atmosphere 2023, 14, 408. [Google Scholar] [CrossRef]
- Luo, R.; Liu, Y.; Luo, M.; Li, D.; Tan, Z.; Shao, T.; Alam, K. Dust effects on mixed-phase clouds and precipitation during a super dust storm over northern China. Atmos. Environ. 2023, 313, 120081. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.; Rudich, Y.; Lahav, R. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 2001, 98, 5975–5980. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.J.; Cook, B.I.; Ravi, S.; Fuentes, J.D.; D’Odorico, P. Dust-rainfall feedbacks in the West African Sahel. Water Res. Res. 2008, 44, 1–6. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and the planetary albedo. Atm. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Urushadze, T.F.; Blum, W.E.H. Soils of Georgia; Nova: New York, NY, USA, 2014; 242p. [Google Scholar]
- Javakhishvili, S. Georgian Climate Description by the Months; Publishing House “Ganatleba”: Tbilisi, Kura, 1988; p. 198. (In Georgian) [Google Scholar]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef]
- Kordzakhia, G.; Shavliashvili, L.; Kuchava, G.; Buachidze, N. Research of Soil Resources Degradation Processes in Georgia. Am. J. Environ. Prot. 2015, 4, 251–259. [Google Scholar] [CrossRef]
- Al-Mutairi, M.; Labban, A.; Abdeldym, A.; Alkhouly, A.; Abdel Basset, H.; Morsy, M. Diagnostic Study of a Severe Dust Storm over North Africa and the Arabian Peninsula. Atmosphere 2023, 14, 196. [Google Scholar] [CrossRef]
- Engelstaedter, S.; Tegen, I.; Washington, R. North African dust emissions and transport. Earth-Sci. Rev. 2006, 79, 73–100. [Google Scholar] [CrossRef]
- Han, Y.; Dai, X.; Fang, X. Dust aerosols: A possible accelerant for an increasingly arid climate in North China. J. Arid. Environ. 2008, 72, 1476–1489. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Ji, M.; Higuchi, K. Variability of East Asia dust events and their long-term trend. Atmos. Environ. 2008, 4, 3156–3165. [Google Scholar] [CrossRef]
- Davitashvili, T.; Kutaladze, N.; Kvatadze, R.; Mikuchadze, G. Effect of dust aerosols in forming the regional climate of Georgia. Scalable Comp. Pract. Exp. 2018, 19, 199–208. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, J.; Dai, K. Topographic Elevation’s Impact on Local Climate and Extreme Rainfall: A Case Study of Zhengzhou, Henan. Atmosphere 2024, 15, 234. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Kutuzov, S.; White, K.H. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and “provenancing” of desert dust events recorded in snow pack. Atm. Chem. Phys. 2013, 13, 1797–1808. [Google Scholar] [CrossRef]
- Kutuzov, S.S.; Mikhalenko, V.N.; Shahgedanova, M.V. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Lëd i Sneg. 2014, 54, 5–15. (In Russian) [Google Scholar] [CrossRef]
- Davitashvili, T. Modelling transportation of desert dust to the South Caucasus using WRF Chem model. E3S Web Conf. 2019, 99, 03011. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, X.; Fang, Z.; Qiu, D.; Hu, Y.; Tian, C.; Ming, F. Study on the Vertical Distribution and Transport of Aerosols in the Joint Observation of Satellite and Ground-Based LiDAR. Atmosphere 2024, 15, 240. [Google Scholar] [CrossRef]
- Davitashvili, T.; Samkharadze, I. Study of Aeolian transfer of mineral dust from deserts to the territory of Georgia. Arab. J. Geosci. 2021, 14, 67. [Google Scholar] [CrossRef]
- Eghbali, A.; Mirrokni, S.M.; Memarian, M.H. Dust storm simulation using WRF−Chem. Int. J. Rec. Res. Appl. Stud. 2016, 28, 1–12. [Google Scholar]
- Davitashvili, T. On Some Aspects of Climate Change in Georgia. Int. J. Energy Environ. 2018, 12, 80–86. [Google Scholar]
- Grousset, F.E.; Ginoux, P.; Bory, A. Case study of a Chinese dust plume reaching the French Alps. Geoph. Res. Lett. 2003, 30, 1277. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere 2021, 12, 1350. [Google Scholar] [CrossRef]
- Jiao, X.; Dong, Z.; Brahney, J.; Parteli, E.J.; Li, F.; Augusto, M.; Wei, T. Uranium isotopes of aeolian dust deposited in northern Tibetan Plateau glaciers: Implications for tracing aeolian dust provenance. Fundam. Res. 2022, 2, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Khidher, S.A. Dust Storms in Iraq: Past and Present. Theor. Appl. Clim. 2024, 155, 4721–4735. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Soleimani, M.; Neysani Samany, N.; Bakhtiari, M.; Qareqani, M.; Papi, R.; Mirzaei, S. Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere 2023, 14, 281. [Google Scholar] [CrossRef]
- Rizza, U.; Barnaba, F.; Miglietta, M.M. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations. Atm. Chem. Phys. 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Z.; Hu, Z.; Dong, Q.; Li, S. Long-range transportand evolution of Saharan dust over EastAsia from 2007 to 2020. J. Geophys. Res. Atmos. 2022, 127, 1–21. [Google Scholar] [CrossRef]
- Lai, H.-C.; Dai, Y.-T.; Mkasimongwa, S.W.; Hsiao, M.-C.; Lai, L.-W. The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere 2023, 14, 406. [Google Scholar] [CrossRef]
- Solomos, S.; Kalivitis, N.; Mihalopoulos, N. From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete. Atmosphere 2018, 9, 240. [Google Scholar] [CrossRef]
- Li, L.; Sokolik, I.N. Analysis of Dust Aerosol Retrievals Using Satellite Data in Central Asia. Atmosphere 2018, 9, 288. [Google Scholar] [CrossRef]
- Schwikowski, M.; Brütsch, S.; Gäggeler, H.W. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. J. Geophys. Res. 1999, 104, 13709–13719. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, Y.; Zhang, Y. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glacio-chemistry. Atm. Environ. 2010, 44, 2980–2989. [Google Scholar] [CrossRef]
- Mikhalenko, V.; Sokratov, S.; Kutuzov, S. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. Cryosphere 2015, 9, 2253–2270. [Google Scholar] [CrossRef]
- Kutuzov, S.S.; Mikhalenko, V.N.; Grachev, A.M. First geophysical and shallow ice core investigation of the Kazbek plateau glacier, Caucasus Mountains. Environ. Earth Sci. 2016, 75, 1488. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, M.G.; Duda, X.; Huang, Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech. Note, NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R. Fully coupled “online” chemistry within the WRF model. Atm. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Fountoukis, C.; Ackermann, L.; Ayoub, M.A.; Gladich, I.; Hoehn, R.D.; Skillern, A. Impact of atmospheric dust emission schemes on dust production and concentration over the Arabian Peninsula. Model. Earth Syst. Environ. 2016, 2, 115. [Google Scholar] [CrossRef]
- Chin, M.; Rood, R.B.; Lin, S.-J.; Muller, J.F.; Thomspon, A.M. Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J. Geophys. Res.-Atmos. 2000, 105, 24671–24687. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geoph. Res. Lett. 2002, 29, 1693–1712. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Janić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Janić, Z.I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Nation. Cent. Environ. Pred. 2001, 437, 38–40. Available online: https://repository.library.noaa.gov/view/noaa/11409 (accessed on 29 February 2016).
- Winker, D.; Hunt, W.; McGill, M. Initial Performance Assessment of CALIOP. Geoph. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C. The calipso automated aerosol classification and lidar ratio selection algorithm. J. Atmosph. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanr’e, D. The MODIS algorithm, products and validation. J. Atm. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Draxler, R.R.; Ginoux, P.; Stein, A.F. An empirically derived emission algorithm for wind-blown dust. J. Geoph. Res. 2010, 115, D16212. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust. Met. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
Physical Options | Option Number | Name List Variable | Model |
---|---|---|---|
Microphysics | 8 | mp_physics | Thompson |
PBL model | 5 | bl_pbl_physics | MYNN level 2.5 |
Cumulus convection | 5 | cu_physics | Grell and Deveneyi |
Land surface | 2 | sf_surface_physics | Noah |
Surface similarity | 2 | sf_sfclay_physics | Eta Similarity |
Shortwave radiation | 4 | ra_sw_physics | RRTMG |
Long-wave radiation | 4 | ra_lw_physics | RRTMG |
Dust-only dust tracers | 1 | dust_opt/ | GOCART |
Aerosol mixing rules | 2 | aer_op_opt | Maxwell–Garnett |
Chem | 401 | chem_opt |
PM10 (mkg/m3) | Tbilisi | Tbilisi | Tbilisi | Tbilisi | Rustavi | Kutaisi | Batumi |
---|---|---|---|---|---|---|---|
Tsereteli Avenue | Kazbegi Avenue | Varketili District | Gelovani Avenue | ||||
28 May 2024 | 104.05 | 99.7 | 110.37 | 134.28 | 140.95 | 15.24 | 17.7 |
29 May 2024 | 113.3 | 119.5 | 112.7 | 115.42 | 120.31 | 37.95 | 21.44 |
30 May 2024 | 76.7 | 67.8 | 78.8 | 82.11 | 100.22 | 27.04 | 21.11 |
31 May 2024 | 52.06 | 46.53 | 48.91 | 50.98 | 54.46 | 21.17 | 18.06 |
PM10 (mkg/m3) | Tbilisi | Tbilisi | Tbilisi | Tbilisi | Rustavi | Kutaisi | Batumi |
---|---|---|---|---|---|---|---|
Tsereteli Avenue | Kazbegi Avenue | Varketili District | Gelovani Avenue | ||||
24 April 2024 | 54.37 | 56.81 | 42.14 | 36.31 | 42.3 | 61.24 | 61.03 |
25 April 2024 | 66.47 | 61.2 | 43.5 | 37.06 | 46.15 | 99.11 | 191.29 |
26 April 2024 | 54.75 | 44.4 | 49.08 | 40.59 | 49.95 | 148.58 | 196.27 |
27 April 2024 | 48.54 | 45.55 | 43.36 | 36.96 | 54.46 | 128.02 | 149.85 |
28April 2024 | 53.07 | 55.15 | 46.94 | 42.06 | 52.5 | 97.48 | 117.05 |
29 April 2024 | 58.26 | 57.11 | 54.08 | 52.81 | 55.69 | 38.49 | 45.72 |
30 April 2024 | 59.04 | 55.63 | 53.51 | 52.44 | 55.03 | 30.19 | 35.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davitashvili, T.; Samkharadze, I. Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images. Processes 2025, 13, 2277. https://doi.org/10.3390/pr13072277
Davitashvili T, Samkharadze I. Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images. Processes. 2025; 13(7):2277. https://doi.org/10.3390/pr13072277
Chicago/Turabian StyleDavitashvili, Teimurazi, and Inga Samkharadze. 2025. "Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images" Processes 13, no. 7: 2277. https://doi.org/10.3390/pr13072277
APA StyleDavitashvili, T., & Samkharadze, I. (2025). Monitoring of Aeolian Mineral Dust Transport from Deserts to the South Caucasus (Georgia) Under Complex Orography Conditions Using Modern Models and Satellite Images. Processes, 13(7), 2277. https://doi.org/10.3390/pr13072277