Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars)
Abstract
:1. Introduction
2. Localization and Area of Interest
3. Data and Methods
3.1. Instruments and Products
3.2. Digital Outcrop Modelling
3.3. Targets on the Lower Sulfates Unit
4. Processing Chain
4.1. Imagery Dataset
4.2. Camera Alignment and Sparse Cloud Generation
4.3. Dense Cloud Generation
4.4. Mesh Generation and Texturing
5. Case Studies: Reconstruction of Distant Sulfates Unit DOMs
5.1. Mesh #1 (LD_Sulfates_2947b-2962a)
5.2. Mesh #2 (LD_Sulfates_2962b-2979)
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grotzinger, J.P.; Sumner, D.Y.; Kah, L.C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; et al. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1242777. [Google Scholar] [CrossRef]
- Grotzinger, J.; Gupta, S.; Malin, M.; Rubin, D.; Schieber, J.; Siebach, K.; Sumner, D.; Stack, K.; Vasavada, A.; Arvidson, R.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef]
- Maki, J.; Thiessen, D.; Pourangi, A.; Kobzeff, P.; Litwin, T.; Scherr, L.; Elliott, S.; Dingizian, A.; Mainome, M. The Mars Science Laboratory Engineering Cameras. Space Sci. Rev. 2012, 170, 77–93. [Google Scholar] [CrossRef]
- Malin, M.C.; Caplinger, M.A.; Edgett, K.S.; Ghaemi, F.T.; Ravine, M.A.; Schaffner, J.A.; Baker, J.M.; Bardis, J.D.; Dibiase, D.R.; Maki, J.N.; et al. The Mars Science Laboratory (MSL) Mast-mounted Cameras (Mastcams) Flight Instruments. In Proceedings of the 41st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; Abstract #1123. Available online: https://www.lpi.usra.edu/meetings/lpsc2010/pdf/1123.pdf (accessed on 8 August 2021).
- Bell III, J.F.; Godber, A.; Rice, M.S.; Fraeman, A.A.; Ehlmann, B.L.; Goetz, W.; Hardgrove, C.J.; Harker, D.E.; Johnson, J.R.; Kinch, K.M.; et al. Initial multispectral imaging results from the Mars Science Laboratory Mastcam investigation at the Gale crater field site. In Proceedings of the 44th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; Abstract #1719. Available online: https://www.lpi.usra.edu/meetings/lpsc2013/pdf/1417.pdf (accessed on 8 August 2021).
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Le Mouélic, S.; Gasnault, O.; Herkenhoff, K.E.; Bridges, N.T.; Langevin, Y.; Mangold, N.; Maurice, S.; Wiens, R.C.; Pinet, P.; Newsom, H.E.; et al. The ChemCam Remote Micro-Imager at Gale Crater: Review of the first year of operation on Mars. Icarus 2015, 249, 93–107. [Google Scholar] [CrossRef]
- Le Deit, L.; Anderson, R.B.; Le Mouélic, S.; Mangold, N.; Dromart, G.; Maurice, S.; Gasnault, O.; Wiens, R.C. Lower Mount Sharp, Gale crater, Mars: Key study areas as observed by Curiosity remote cameras. In Proceedings of the 49th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; Abstract #1437. Available online: https://www.hou.usra.edu/meetings/lpsc2018/pdf/1437.pdf (accessed on 8 August 2021).
- Milliken, R.E.; Grotzinger, J.P.; Thomson, B.J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Let. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Fraeman, A.A.; Ehlmann, B.L.; Arvidson, R.E.; Edwards, C.S.; Grotzinger, J.P.; Milliken, R.E.; Quinn, D.P.; Rice, M.S. The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets. J. Geophys. Res. Planets 2016, 121, 1713–1736. [Google Scholar] [CrossRef] [PubMed]
- Rapin, W.; Dromart, G.; Rubin, D.; Le Deit, L.; Mangold, N.; Edgar, L.A.A.; Gasnault, O.; Herkenhoff, K.; Le Mouélic, S.; Anderson, R.B.; et al. Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars. Geology 2021, 49, 842–846. [Google Scholar] [CrossRef]
- Caravaca, G.; Le Mouélic, S.; Mangold, N.; L’Haridon, J.; Le Deit, L.; Massé, M. 3D digital outcrop model reconstruction of the Kimberley outcrop (Gale crater, Mars) and its integration into Virtual Reality for simulated geological analysis. Planet. Space Sci. 2020, 182, 104808. [Google Scholar] [CrossRef]
- Mangold, N.; Forni, O.; Dromart, G.; Stack, K.; Wiens, R.C.; Gasnault, O.; Sumner, D.Y.; Nachon, M.; Meslin, P.Y.; Anderson, R.B.; et al. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. J. Geophys. Res. Planets 2015, 120, 452–482. [Google Scholar] [CrossRef]
- Le Deit, L.; Mangold, N.; Forni, O.; Cousin, A.; Lasue, J.; Schröder, S.; Wiens, R.C.; Sumner, D.; Fabre, C.; Stack, K.M.; et al. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity. J. Geophys. Res. Planets 2016, 121, 784–804. [Google Scholar] [CrossRef] [Green Version]
- Stack, K.M.; Edwards, C.S.; Grotzinger, J.P.; Gupta, S.; Summer, D.Y.; Calef III, F.J.; Edgar, L.A.; Edgett, K.S.; Framan, A.A.; Jacob, S.R.; et al. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale Crater, Mars. Icarus 2016, 280, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Stack, K.M.; Grotzinger, J.P.; Lamb, M.P.; Gupta, S.; Rubin, D.M.; Kah, L.C.; Edgar, L.A.; Fey, D.M.; Hurowitz, J.A.; McBride, M.; et al. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 2019, 66, 1768–1802. [Google Scholar] [CrossRef] [Green Version]
- Edgar, L.A.; Fedo, C.M.; Gupta, S.; Banham, S.G.; Fraeman, A.A.; Grotzinger, J.P.; Stack, K.M.; Stein, N.T.; Bennett, K.A.; Rivera-Hernandez, F.; et al. A lacustrine paleoenvironment recorded at Vera Rubin ridge, Gale crater: Overview of the Sedimentology and Stratigraphy observed by the Mars Science Laboratory Curiosity rover. J. Geophys. Res. Planets 2020, 125, e2019JE006307. [Google Scholar] [CrossRef] [Green Version]
- Banham, S.G.; Gupta, S.; Rubin, D.M.; Watkins, J.A.; Sumner, D.Y.; Edgett, K.S.; Grotzinger, J.P.; Lewis, K.W.; Edgar, L.A.; Stack Morgan, K.M.; et al. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 2018, 65, 993–1042. [Google Scholar] [CrossRef] [Green Version]
- Dromart, G.; Le Deit, L.; Rapin, W.; Gasnault, O.; Le Mouélic, S.; Quantin-Nataf, C.; Mangold, N.; Rubn, D.; Lasue, J.; Maurice, S.; et al. Deposition and erosion of a Light-Toned Yardang-forming unit of Mount Sharp, Gale crater, Mars. Earth Planet. Sci. Let. 2021, 554, 116681. [Google Scholar] [CrossRef]
- Ostwald, A.; Hurtado, J. 3D models from structure-from-motion photogrammetry using Mars science laboratory images: Methods and implications. In Proceedings of the 48th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; Abstract#1787. Available online: https://www.hou.usra.edu/meetings/lpsc2017/pdf/1787.pdf (accessed on 8 August 2021).
- Malin, M.C.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Maki, J.N.; Bell III, J.F.; Cameron, J.F.; Dietrich, W.E.; Edgett, K.S.; et al. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Inverstigation and instrument description. Earth Space Sci. 2017, 4, 506–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiens, R.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F., III; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Le Mouélic, S.; Gasnault, O.; Rapin, W.; Bryk, A.B.; Dietriech, W.E.; Dromart, G.; Wiens, R.C.; Caravaca, G.; Mangold, N.; Newson, H.; et al. Housedon Hill—A ChemCam RMI mega mosaic to investigate distant features in Gale crater. In Proceedings of the 52nd Lunar and Planetary Science Conference, Virtual Conference, 15–19 March 2021; Abstract #1408. Available online: https://www.hou.usra.edu/meetings/lpsc2021/pdf/1408.pdf (accessed on 8 August 2021).
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft–archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Arbuées, P.; García-Sellés, D.; Granado, P.; Lopez-Blanco, M.; Muñoz, J. A method for producing photorealistic digital outcrop models. In Proceedings of the 74th EAGE Conference and Exhibition Incorporating EUROPEC, Abstract #D029, Copenhagen, Denmark, 4–7 June 2012. [Google Scholar] [CrossRef]
- Tavani, S.; Granado, P.; Corradetti, A.; Girundo, M.; Iannace, A.; Arbués, P.; Muñoz, J.A.; Mazzoli, S. Building a virtual outcrop, extracting geological information from it, and sharing the results in Google Earth via OpenPlot and Photoscan: An example from the Khaviz Anticline (Iran). Comput. Geosci. 2014, 63, 44–53. [Google Scholar] [CrossRef]
- Triantafyllou, A.; Watlet, A.; Le Mouélic, S.; Camelbeeck, T.; Civet, F.; Kaufmann, O.; Quinif, Y.; Vandycke, S. 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium). J. Struct. Geol. 2019, 120, 55–66. [Google Scholar] [CrossRef]
- Nesbit, P.R.; Boulding, A.D.; Hugenholtz, C.H.; Durkin, P.R.; Hubbard, S.M. Visualization and Sharing of 3D Digital Outcrop Models to Promote Open Science. GSA Today 2020, 30, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.; Gupta, S.; Traxler, C.; Ortner, T.; Bauer, A.; Hesina, G.; Paar, G.; Huber, B.; Juhart, K.; Fritz, L.; et al. Geological analysis of Martian rover-derived Digital Outcrop Models using the 3-D visualization tool, Planetary Robotics 3-D Viewer-PRo3D. Earth Space Sci. 2018, 5, 285–307. [Google Scholar] [CrossRef]
- Le Mouélic, S.; Enguehard, P.; Schmitt, H.H.; Caravaca, G.; Seignovert, B.; Mangold, N.; Combe, J.-P.; Civet, F. Investigating lunar boulders at the Apollo 17 landing site using photogrammetry and Virtual Reality. Remote Sens. 2020, 12, 1900. [Google Scholar] [CrossRef]
- Caravaca, G.; Mangold, N.; Dehouck, E.; Schieber, J.; Bryk, A.B.; Fedo, C.M.; Le Mouélic, S.; Banham, S.G.; Gupta, S.; Cousin, A.; et al. Evidence of depositional settings variation at the Jura/Knockfarril Hill members transition in the Glen Torridon region (Gale crater, Mars). In Proceedings of the 52nd Lunar and Planetary Science Conference, Virtual Conference, 15–19 March 2021; Abstract #1455. Available online: https://www.hou.usra.edu/meetings/lpsc2021/pdf/1455.pdf (accessed on 8 August 2021).
- De Toffoli, B.; Mangold, N.; Massironi, M.; Zanella, A.; Pozzobon, R.; Le Mouélic, S.; L’Haridon, J.; Cremonese, G. Structural analysis of sulfate vein networks in Gale crater (Mars). J. Struct. Geol. 2020, 137, 104083. [Google Scholar] [CrossRef]
- Agisoft LLC. Metashape Professional v.1.7.x. 2021. Available online: https://www.agisoft.com (accessed on 15 June 2021).
- Wiens, R.C.; Maurice, S.; Robinson, S.H.; Nelson, A.E.; Cais, P.; Bernardi, P.; Newell, R.T.; Clegg, S.; Sharma, S.K.; Storms, S.; et al. The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and Combined system tests. Space Sci. Rev. 2020, 217, 4. [Google Scholar] [CrossRef]
- Gasnault, O.; Virmontois, C.; Maurice, S.; Wiens, R.C.; Le Mouélic, S.; Bernardi, P.; Forni, O.; Pilleri, P.; Daydou, Y.; Rapin, W.; et al. What SuperCam will see: The Remote Micro-Imager aboard Perseverance. In Proceedings of the 52nd Lunar and Planetary Science Conference, Virtual Conference, 15–19 March 2021; Abstract #2248. Available online: https://www.hou.usra.edu/meetings/lpsc2021/pdf/2248.pdf (accessed on 8 August 2021).
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument suite on the Mars 2020 rover: Science objectives and Mast-unit description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
Instrument | Common Designation | Colorization | Resolution | Focal Length | References |
---|---|---|---|---|---|
Navigation Cameras | Navcam | Greyscale | 1024 × 1024 px | 14.67 mm | [3] |
Mast Camera (left) | Mastcam left (M-34) | RGB | 1600 × 1200 px | 34 mm | [4,5] |
Mast Camera (right) | Mastcam right (M-100) | RGB | 1600 × 1200 px | 99.9 mm | [4,5] |
Remote Micro Imager | RMI | Grayscale | 1024 × 1024 px | 700 mm | [6,7] |
Mesh | Target | SeqID | Type | Sol Taken | Dist. from Rover | Virtual Baseline |
---|---|---|---|---|---|---|
#1 | LD_Sulfates_2947b | ccam04947 | 12 × 1 | 2947 | ~650 m | ~200 m |
LD_Sulfates_2962a | ccam04962 | 16 × 2 | 2964 | ~510 m | ||
#2 | LD_Sulfates_2962b | ccam05962 | 14 × 3 | 2964 | ~875 m | ~175 m |
LD_Sulfates_2979a | ccam04979 | 11 × 3 | 2979 | ~760 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caravaca, G.; Le Mouélic, S.; Rapin, W.; Dromart, G.; Gasnault, O.; Fau, A.; Newsom, H.E.; Mangold, N.; Le Deit, L.; Maurice, S.; et al. Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars). Remote Sens. 2021, 13, 4068. https://doi.org/10.3390/rs13204068
Caravaca G, Le Mouélic S, Rapin W, Dromart G, Gasnault O, Fau A, Newsom HE, Mangold N, Le Deit L, Maurice S, et al. Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars). Remote Sensing. 2021; 13(20):4068. https://doi.org/10.3390/rs13204068
Chicago/Turabian StyleCaravaca, Gwénaël, Stéphane Le Mouélic, William Rapin, Gilles Dromart, Olivier Gasnault, Amaury Fau, Horton E. Newsom, Nicolas Mangold, Laetitia Le Deit, Sylvestre Maurice, and et al. 2021. "Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars)" Remote Sensing 13, no. 20: 4068. https://doi.org/10.3390/rs13204068
APA StyleCaravaca, G., Le Mouélic, S., Rapin, W., Dromart, G., Gasnault, O., Fau, A., Newsom, H. E., Mangold, N., Le Deit, L., Maurice, S., Wiens, R. C., & Lanza, N. L. (2021). Long-Distance 3D Reconstructions Using Photogrammetry with Curiosity’s ChemCam Remote Micro-Imager in Gale Crater (Mars). Remote Sensing, 13(20), 4068. https://doi.org/10.3390/rs13204068