Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,582)

Search Parameters:
Keywords = Building Information Modelling (BIM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4277 KiB  
Article
BIM and HBIM: Comparative Analysis of Distinct Modelling Approaches for New and Heritage Buildings
by Alcínia Zita Sampaio, Augusto M. Gomes, João Tomé and António M. Pinto
Heritage 2025, 8(8), 299; https://doi.org/10.3390/heritage8080299 - 28 Jul 2025
Abstract
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) [...] Read more.
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) digital representation, the BIM model, concerning the different disciplines that make up a complete project. The BIM model includes a database referring to all the information regarding the geometric and physical aspects of the project. The procedure related to the generation of BIM models presents a significant difference depending on whether the project refers to new or old buildings. Current BIM systems contain libraries with various types of parametric objects that are effortlessly adaptable to new constructions. However, the generation of models of old buildings, supported by the definition of detailed new parametric objects, is required. The present study explores the distinct modelling procedures applied in the generation of specific parametric objects for new and old constructions, with the objective of evaluating the comparative complexity that the designer faces in modelling specific components. For a correct representation of new buildings in the design phase or for the reproduction of the accurate architectural configuration of heritage buildings, the modelling process presents significant differences identified in the study. Full article
Show Figures

Figure 1

20 pages, 2631 KiB  
Article
Automatic 3D Reconstruction: Mesh Extraction Based on Gaussian Splatting from Romanesque–Mudéjar Churches
by Nelson Montas-Laracuente, Emilio Delgado Martos, Carlos Pesqueira-Calvo, Giovanni Intra Sidola, Ana Maitín, Alberto Nogales and Álvaro José García-Tejedor
Appl. Sci. 2025, 15(15), 8379; https://doi.org/10.3390/app15158379 - 28 Jul 2025
Abstract
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) [...] Read more.
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) and its successor, Gaussian splatting (GS)—as state-of-the-art techniques in the domain. The study advocates for replacing point cloud data in heritage building information modeling workflows with image-based inputs, proposing a novel “photo-to-BIM” pipeline. A proof-of-concept system is presented, capable of processing photographs or video footage of ancient ruins—specifically, Romanesque–Mudéjar churches—to automatically generate 3D mesh reconstructions. The system’s performance is assessed using both objective metrics and subjective evaluations of mesh quality. The results confirm the feasibility and promise of image-based reconstruction as a viable alternative to conventional methods. The study successfully developed a system for automated 3D mesh reconstruction of AH from images. It applied GS and Mip-splatting for NeRFs, proving superior in noise reduction for subsequent mesh extraction via surface-aligned Gaussian splatting for efficient 3D mesh reconstruction. This photo-to-mesh pipeline signifies a viable step towards HBIM. Full article
16 pages, 1482 KiB  
Article
Assessment of Sustainable Building Design with Green Star Rating Using BIM
by Mazharuddin Syed Ahmed and Rehan Masood
Energies 2025, 18(15), 3994; https://doi.org/10.3390/en18153994 - 27 Jul 2025
Abstract
Globally, construction is among the leading sectors causing carbon emissions. Sustainable practices have become the focus, which aligns with the nation’s commitments to the Paris Agreement by targeting a 30% reduction in emissions from the 2005 levels by 2030. However, evaluation for sustainability [...] Read more.
Globally, construction is among the leading sectors causing carbon emissions. Sustainable practices have become the focus, which aligns with the nation’s commitments to the Paris Agreement by targeting a 30% reduction in emissions from the 2005 levels by 2030. However, evaluation for sustainability is critical, and the Green Star certification provides assurance. Building information modelling has emerged as a transformative technology, integrating environmental sustainability into building design and construction. This study explores the use of BIM to enhance green building outcomes, focusing on optimising stakeholder engagement, energy efficiency, waste control, and environmentally sustainable design. This study employed a case study of an educational building, illustrating how BIM frameworks support Green Star certifications by streamlining design analysis, enhancing project value, and improving compliance with sustainability metrics. Findings highlight BIM’s role in advancing low-carbon, energy-efficient building designs while fostering collaboration across disciplines. This research investigates the foundational approach required to establish a framework for implementing the Green Star certification in non-residential, environmentally sustainable designs. Further, this study underscores the importance of integrating BIM in achieving Green Star benchmarks and provides a roadmap for leveraging digital modelling to meet global sustainability goals. Recommendations include expanding BIM capabilities to support broader environmental assessments and operational efficiencies. Full article
Show Figures

Figure 1

20 pages, 3528 KiB  
Article
High-Precision Optimization of BIM-3D GIS Models for Digital Twins: A Case Study of Santun River Basin
by Zhengbing Yang, Mahemujiang Aihemaiti, Beilikezi Abudureheman and Hongfei Tao
Sensors 2025, 25(15), 4630; https://doi.org/10.3390/s25154630 - 26 Jul 2025
Viewed by 94
Abstract
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework [...] Read more.
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework that uses Industry Foundation Classes (IFCs) as the base model and Open Scene Graph Binary (OSGB) as the target model: (1) geometric optimization through an angular weighting (AW)-controlled Quadric Error Metrics (QEM) algorithm; (2) Level of Detail (LOD) hierarchical mapping to establish associations between the IFC and OSGB models, and redesign scene paging logic; (3) coordinate registration by converting the IFC model’s local coordinate system to the global coordinate system and achieving spatial alignment via the seven-parameter method. Applied to the Santun River Basin digital twin project, experiments with 10 water gate models show that the AW-QEM algorithm reduces average loading time by 15% compared to traditional QEM, while maintaining 97% geometric accuracy, demonstrating the method’s efficiency in balancing precision and rendering performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 4919 KiB  
Article
Integrating BIM Forward Design with CFD Numerical Simulation for Wind Turbine Blade Analysis
by Shaonan Sun, Mengna Li, Yifan Shi, Chunlu Liu and Ailing Wang
Energies 2025, 18(15), 3989; https://doi.org/10.3390/en18153989 - 25 Jul 2025
Viewed by 214
Abstract
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. [...] Read more.
Wind turbine blades face significant challenges from stochastic wind loads, impacting structural integrity. Traditional analysis often isolates Computational Fluid Dynamics (CFD) from Building Information Modeling (BIM) in the design process. This study bridges this gap by integrating BIM forward design with CFD simulation. A universal BIM modeling framework is developed for rapid blade modeling, which is compatible with ANSYS Workbench 2022 R1 through intermediate format conversion. The influence of wind load on the blades under various wind speed conditions is analyzed, and the results indicate a significant correlation between wind load intensity and blade structural response. The maximum windward pressure reaches 4.96 kPa, while the leeward suction peaks at −6.28 kPa. The displacement at the tip and middle part of the blades significantly increases with the increase in wind speed. The growth rate of displacement between adjacent speeds rises from 1.20 to 1.94, and the overall increase rate within the entire range rises from 1.02 to 4.16. These results demonstrate the feasibility of using BIM forward design in accurate performance analysis, and also extends the value of BIM in wind energy. Furthermore, a bidirectional information flow is established, where BIM provides geometry for CFD, and simulation results will inform BIM design refinement. Full article
(This article belongs to the Special Issue Wind Generators Modelling and Control: 2nd Edition)
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 239
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

21 pages, 4399 KiB  
Article
Integrating Digital Twin and BIM for Special-Length-Based Rebar Layout Optimization in Reinforced Concrete Construction
by Daniel Darma Widjaja, Jeeyoung Lim and Sunkuk Kim
Buildings 2025, 15(15), 2617; https://doi.org/10.3390/buildings15152617 - 23 Jul 2025
Viewed by 226
Abstract
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and [...] Read more.
The integration of Building Information Modeling (BIM) and Digital Twin (DT) technologies offers new opportunities for enhancing reinforcement design and on-site constructability. This study addresses a current gap in DT applications by introducing an intelligent framework that simultaneously automates rebar layout generation and reduces rebar cutting waste (RCW), two challenges often overlooked during the construction execution phase. The system employs heuristic algorithms to generate constructability-aware rebar configurations and leverages Industry Foundation Classes (IFC) schema-based data models for interoperability. The framework is implemented using Autodesk Revit and Dynamo for rebar modeling and layout generation, Microsoft Project for schedule integration, and Autodesk Navisworks for clash detection. Real-time scheduling synchronization is achieved through IFC schema-based BIM models linked to construction timelines, while embedded clash detection and constructability feedback loops allow for iterative refinement and improved installation feasibility. A case study on a high-rise commercial building demonstrates substantial material savings, improved constructability, and reduced layout time, validating the practical advantages of BIM–DT integration for RC construction. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Graphical abstract

30 pages, 13869 KiB  
Article
Toward a Sustainable and Efficient Design Process: A BIM-Based Organisational Framework for Public Agencies—An Italian Case Study
by Kavita Raj, Silvia Mastrolembo Ventura, Sara Comai and Angelo Luigi Camillo Ciribini
Sustainability 2025, 17(15), 6716; https://doi.org/10.3390/su17156716 - 23 Jul 2025
Viewed by 302
Abstract
The implementation of Building Information Modelling (BIM) in public design processes enhances efficiency, transparency, and sustainability. However, public agencies often encounter significant barriers, particularly regarding organisational and managerial readiness. This study develops a BIM implementation framework tailored to the specific needs of an [...] Read more.
The implementation of Building Information Modelling (BIM) in public design processes enhances efficiency, transparency, and sustainability. However, public agencies often encounter significant barriers, particularly regarding organisational and managerial readiness. This study develops a BIM implementation framework tailored to the specific needs of an Italian public agency. The research adopts a qualitative approach, combining 15 semi-structured interviews with process mapping Using (Business Process Modeling Notation) BPMN. The current as-is workflows were analysed and validated by internal stakeholders. Based on this analysis, strategic objectives were defined, relevant (Building Information Modelling) BIM uses were selected, and revised to-be processes were proposed, integrating new roles and responsibilities according to the standards. The framework addresses both technical and organisational dimensions of BIM adoption, highlighting the need for training, coordination, and stakeholder engagement. The main outcomes include a structured process model, a priority-based selection of BIM uses, and a role matrix supporting organisational transformation. The added value for researchers lies in the replicable methodology that combines empirical process mapping with implementation planning. For practitioners, especially consultants in sustainable design, the study offers a practical roadmap for aligning BIM adoption with project goals, regulatory compliance, and environmental performance targets in complex public sector contexts. Full article
Show Figures

Figure 1

29 pages, 1852 KiB  
Review
Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review
by Tharindu Karunaratne, Ikenna Reginald Ajiero, Rotimi Joseph, Eric Farr and Poorang Piroozfar
Buildings 2025, 15(14), 2583; https://doi.org/10.3390/buildings15142583 - 21 Jul 2025
Viewed by 420
Abstract
This study conducts a comprehensive systematic review of the economic impact of Digital Twin (DT) technology within the Architecture, Engineering, and Construction (AEC) industry, following the PRISMA methodology. While DT adoption has been accelerated by advancements in Building Information Modelling (BIM), the Internet [...] Read more.
This study conducts a comprehensive systematic review of the economic impact of Digital Twin (DT) technology within the Architecture, Engineering, and Construction (AEC) industry, following the PRISMA methodology. While DT adoption has been accelerated by advancements in Building Information Modelling (BIM), the Internet of Things (IoT), and data analytics, significant challenges persist—most notably, high initial investment costs and integration complexities. Synthesising the literature from 2016 onwards, this review identifies sector-specific barriers, regulatory burdens, and a lack of standardisation as key factors constituting DT implementation costs. Despite these hurdles, DTs demonstrate strong potential for enhancing construction productivity, optimising lifecycle asset management, and enabling predictive maintenance, ultimately reducing operational expenditures and improving long-term financial performance. Case studies reveal cost efficiencies achieved through DTs in modular construction, energy optimisation, and infrastructure management. However, limited financial resources and digital skills continue to constrain the uptake across the sector, with various extents of impact. This paper calls for the development of unified standards, innovative public–private funding mechanisms, and strategic collaborations to unlock and utilise DTs’ full economic value. It also recommends that future research explore theoretical frameworks addressing governance, data infrastructure, and digital equity—particularly through conceptualising DT-related data as public assets or collective goods in the context of smart cities and networked infrastructure systems. Full article
Show Figures

Figure 1

22 pages, 916 KiB  
Article
A Model Based on Variable Weight Theory and Interval Grey Clustering to Evaluate the Competency of BIM Construction Engineers
by Shaonan Sun, Yiming Zuo, Chunlu Liu, Xiaoxiao Yao, Ailing Wang and Zhihui Wang
Buildings 2025, 15(14), 2574; https://doi.org/10.3390/buildings15142574 - 21 Jul 2025
Viewed by 129
Abstract
Building information modeling (BIM) has emerged as a fundamental component of Industry 4.0 recently. BIM construction engineers (BCEs) play a pivotal role in implementing BIM, and their personal competency is crucial to the successful application and promotion of BIM technology. Existing research on [...] Read more.
Building information modeling (BIM) has emerged as a fundamental component of Industry 4.0 recently. BIM construction engineers (BCEs) play a pivotal role in implementing BIM, and their personal competency is crucial to the successful application and promotion of BIM technology. Existing research on evaluating BIM capabilities has mainly focused on the enterprise or project level, neglecting individual-level analysis. Therefore, this study aims to establish an individual-level competency evaluation model for BCEs. Firstly, the competency of BCEs was divided into five levels by referring to relevant standards and domestic and foreign research. Secondly, through the analysis of literature data and website data, the competency evaluation indicator system for BCEs was constructed, which includes four primary indicators and 27 secondary indicators. Thirdly, variable weight theory was used to optimize the weights determined by general methods and calculate the comprehensive weights of each indicator. Then the competency levels of BCEs were determined by the interval grey clustering method. To demonstrate the application of the proposed method, a case study from a Chinese enterprise was conducted. The main results derived from this case study are as follows: domain competencies have the greatest weight among the primary indicators; the C9-BIM model is the secondary indicator with the highest weight (ωj = 0.0804); and the competency level of the BCE is “Level 3”. These results are consistent with the actual situation of the enterprise. The proposed model in this study provides a comprehensive tool for evaluating BCEs’ competencies from an individual perspective, and offers guideline for BCEs to enhance their competencies in pursuing sustainable professional development. Full article
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 170
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

28 pages, 19285 KiB  
Article
PV System Design in Different Climates: A BIM-Based Methodology
by Annamaria Ciccozzi, Tullio de Rubeis, Yun Ii Go and Dario Ambrosini
Energies 2025, 18(14), 3866; https://doi.org/10.3390/en18143866 - 21 Jul 2025
Viewed by 316
Abstract
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, [...] Read more.
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, solar photovoltaic alone accounted for three-quarters of renewable capacity additions worldwide. Designing a performing photovoltaic system requires careful planning that takes into account various factors, both internal and external, in order to maximize energy production and optimize costs. In addition to the technical characteristics of the system (internal factors), the positions and the shapes of external buildings and surrounding obstacles (external factors) have a significant impact on the output of photovoltaic systems. However, given the complexity of these environmental factors, they cannot be treated accurately in manual design practice. For this reason, this paper proposes a Building Information Modeling-based workflow for the design of a photovoltaic system that can guide the professional step-by-step throughout the design process, starting from the embryonic phase to the definitive, and therefore more detailed, one. The developed methodology allows for an in-depth analysis of the shading, the photovoltaic potential of the building, the performance of the photovoltaic system, and the costs for its construction in order to evaluate the appropriateness of the investment. The main aim of the paper is to create a standardized procedure applicable on a large scale for photovoltaic integration within Building Information Modeling workflows. The methodology is tested on two case studies, characterized by different architectural features and geographical positions. Full article
Show Figures

Figure 1

28 pages, 6171 KiB  
Article
Error Distribution Pattern Analysis of Mobile Laser Scanners for Precise As-Built BIM Generation
by Sung-Jae Bae, Junbeom Park, Joonhee Ham, Minji Song and Jung-Yeol Kim
Appl. Sci. 2025, 15(14), 8076; https://doi.org/10.3390/app15148076 - 20 Jul 2025
Viewed by 302
Abstract
Point clouds acquired by mobile laser scanners (MLS) are widely used for generating as-built building information models (BIM), particularly in indoor construction environments and existing buildings. While MLS offers fast and efficient scanning through SLAM technology, its accuracy and precision remains lower than [...] Read more.
Point clouds acquired by mobile laser scanners (MLS) are widely used for generating as-built building information models (BIM), particularly in indoor construction environments and existing buildings. While MLS offers fast and efficient scanning through SLAM technology, its accuracy and precision remains lower than that of terrestrial laser scanners (TLS). This study investigates the potential to improve MLS-based as-built BIM accuracy by analyzing and utilizing error distribution patterns inherent in MLS point clouds. Based on the assumption that each MLS device exhibits consistent and unique error distribution patterns, an experiment was conducted using three MLS devices and TLS-derived reference data. The analysis employed iterative closest point (ICP) registration and cloud-to-mesh (C2M) distance measurements on mock-ups with closed shapes. The results revealed that error patterns were stable across scans and could be leveraged as correction factors. In other words, the results indicate that when using MLS for as-built BIM generation, robust fitting methods have limitations in obtaining realistic object dimensions, as they do not account for the unique error patterns present in MLS point clouds. The proposed method provides a simple and repeatable approach for enhancing MLS accuracy, contributing to improved dimensional reliability in MLS-driven BIM applications. Full article
(This article belongs to the Special Issue Construction Automation and Robotics)
Show Figures

Figure 1

40 pages, 16352 KiB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 568
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

22 pages, 827 KiB  
Article
Disaster Risk Reduction Audits and BIM for Resilient Highway Infrastructure: A Proactive Assessment Framework
by Seung-Jun Lee, Hong-Sik Yun, Ji-Sung Kim, Hwan-Dong Byun and Sang-Hoon Lee
Buildings 2025, 15(14), 2545; https://doi.org/10.3390/buildings15142545 - 19 Jul 2025
Viewed by 235
Abstract
Highway infrastructure faces growing exposure to natural hazards, necessitating more proactive and data-driven risk mitigation strategies. This study explores the integration of Disaster Risk Reduction Audits (DRRAs) into the lifecycle of highway infrastructure projects as a structured method for enhancing disaster resilience and [...] Read more.
Highway infrastructure faces growing exposure to natural hazards, necessitating more proactive and data-driven risk mitigation strategies. This study explores the integration of Disaster Risk Reduction Audits (DRRAs) into the lifecycle of highway infrastructure projects as a structured method for enhancing disaster resilience and operational safety. Using case analyses and scenario-based labor estimation models across design and construction phases, this research quantifies the resource requirements and effectiveness of DRRA application. The results show a statistically significant reduction in disaster occurrence rates in projects where a DRRA was implemented, despite slightly higher labor inputs. These findings highlight the value of adopting phased DRRA implementation as a national standard, with flexibility across different project types and scales. This study concludes that institutionalizing DRRAs, particularly when supported by digital platforms and decision-support tools, can serve as a critical component in transforming traditional infrastructure management into a more resilient and adaptive system. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Back to TopTop