Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = Bs temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2789 KiB  
Article
GhSPX1s Interact with GhPHR1A and GhPHL1A in Regulating Phosphate Starvation Response in Cotton
by Nuerkaimaier Mulati, Miaomiao Hao, Yuxin Yang, Yanping Shi, Guanghui Xiao and Liping Zhu
Biology 2025, 14(8), 916; https://doi.org/10.3390/biology14080916 - 23 Jul 2025
Viewed by 262
Abstract
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and [...] Read more.
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and identified 44 SPX family genes in Gossypium hirsutum, classifying them into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on conserved domains. An expression analysis revealed that the majority of SPX family genes were highly expressed in the root and stem. We identified hormone response, stress response, low-temperature response, and PHR1 binding sequence (P1BS) cis-elements in the promoters of the SPX genes. Additionally, the expression of GhPHO1-4, GhSPX1-1/1-2/1-3, and GhSPX-MFS2-1/2-2 was significantly altered under phosphorus-deficient conditions and may be involved in the regulation of Pi response. A Y2H assay suggested that GhSPX1-1 interacts with GhPHR1A and GhSPX1-2 interacts with GhPHL1A. Our findings provide a basis for further cloning and functional verification of genes related to the regulatory network of low phosphorus tolerance in cotton. Full article
Show Figures

Figure 1

14 pages, 4114 KiB  
Article
Effect of Silica Sol on the Preparation and Oxidation Resistance of MoSi2@SiO2
by Linlin Guo, Jinjun Zhang, Chengpeng Miao, Shuang Feng, Xiaozhen Fan, Haiyan Du, Jiachen Liu and Mingchao Wang
Materials 2025, 18(13), 3203; https://doi.org/10.3390/ma18133203 - 7 Jul 2025
Viewed by 246
Abstract
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic [...] Read more.
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic silica sols were systematically applied to coat MoSi2 powders through sol-adsorption encapsulation. Two pathways were used, one was ethanol-mediated dispersion, and the other was direct dispersion of MoSi2 particles in silica sol. Analysis demonstrated that ethanol-mediated dispersion significantly influenced the coating efficiency and oxidation resistance, exhibited significantly decreased coating weight gains (maximum 27%) and increased oxidation weight gains (10–20%) between 340 °C and 600 °C compared with direct dispersion of MoSi2 particles with silica sol, ascribe to the kinetic inhibition of hydroxyl group condensation and steric hindrance of MoSi2-silica sol interface interactions of ethanol. Systematic investigation of silica sol encapsulation of MoSi2 revealed critical correlations between colloid properties and oxidation resistance of MoSi2@SiO2. Basic silica sol coated MoSi2 (BS-MoSi2) exhibits the lowest coating efficiency (coating weight gain of 7.74 ± 0.06%) as well as lowest oxidation weight gain (18.45%) between 340 °C and 600 °C compared with those of acid and neutral silica sol coated MoSi2 (AS-MoSi2 and NS-MoSi2), arises from optimal gelation kinetics, enhanced surface coverage via reduced agglomeration, and suppressed premature nucleation through controlled charge interactions under alkaline conditions. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

12 pages, 3806 KiB  
Article
Effects of Annealing Processes on Microstructure and Properties of FeNi-Based Amorphous Alloy
by Chenglong Sun, Mengen Shi, Xinyu Wang, Daying Deng and Weihuo Li
Materials 2025, 18(13), 3172; https://doi.org/10.3390/ma18133172 - 4 Jul 2025
Viewed by 375
Abstract
The present experiment is aimed at investigating the changes in the properties of an FeNiCBCo amorphous alloy after different stress relief annealing. It was established that, under equivalent temperature and time conditions, the strip that underwent no magnetic field annealing exhibited the maximum [...] Read more.
The present experiment is aimed at investigating the changes in the properties of an FeNiCBCo amorphous alloy after different stress relief annealing. It was established that, under equivalent temperature and time conditions, the strip that underwent no magnetic field annealing exhibited the maximum Bs of 1.09 T. The soft magnetic properties were found to be marginally enhanced by the transverse magnetic treatment, and the coercivity was notably reduced from 10.15 to 0.27 A/m after the longitudinal magnetic treatment. Furthermore, it was determined that, subsequent to the longitudinal magnetic treatment and the annealing treatment with no magnetic field, the strip exhibited enhanced mechanical properties due to the precipitation of the second phase A1 FeNi nanoparticles within the strip. In contrast, the transverse magnetic treatment significantly improved the strength of the alloy. Additionally, the strip demonstrated superior mechanical properties, while the strength of the alloys with the transverse magnetic treatment was significantly increased. This study demonstrates that transverse magnetic treatment can evidently enhance the strength, and magnetic field-free and longitudinal magnetic annealing treatments improve the soft magnetic properties, of amorphous alloys while maintaining good mechanical properties. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

19 pages, 2789 KiB  
Article
A Proposal for a Deflection-Based Evaluation Method for Barrel Support Brackets in the Extended Application of Fire Shutters in Logistics Facilities
by Jong Won Shon, Heewon Seo, Daehoi Kim, Seungjea Lee, Sungho Hong and Subin Jung
Fire 2025, 8(7), 253; https://doi.org/10.3390/fire8070253 - 27 Jun 2025
Viewed by 246
Abstract
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows [...] Read more.
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows for the evaluation of the structural adequacy of the barrel—primarily based on stress analysis—this research aims to establish a more reliable design guideline by additionally considering the deflection of barrel support brackets, which may become structurally vulnerable under high-temperature conditions. To achieve this, the bracket was modeled as a cantilever beam, and deflection equations were applied. The deflection and stress were analyzed for various rectangular hollow sections. Furthermore, the support capacities at ambient temperature and at 700 °C were compared, and regression analysis was conducted to assess the Accuracy and error rates associated with different deflection limits (L/180 to L/480). The results indicate that setting the deflection limit to L/180 yields the most favorable outcome in terms of structural safety and error minimization across most conditions. It is expected that the adoption of deflection criteria for barrel support brackets in the design of large fire shutters will contribute significantly to preventing the spread of fire and ensuring structural safety. Full article
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 221
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 290
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 645
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 4491 KiB  
Article
Probabilistic Analysis of Mechanical Properties and Dimensional Stability of Bamboo Scrimber
by Wencheng Lei, Changping Zhou, Yulan Zhu, Sidong Wang, Yao Xia, Yuxin Yang, Yahui Zhang, Shaodi Zhang and Wenji Yu
Forests 2025, 16(6), 916; https://doi.org/10.3390/f16060916 - 30 May 2025
Viewed by 427
Abstract
Bamboo scrimber (BS) has been emerging as a promising construction material prepared from natural bamboo due to its high mechanical strength. However, the variability of the properties of bamboo scrimber is large, which limits the reliability assessment of bamboo scrimber in engineering applications. [...] Read more.
Bamboo scrimber (BS) has been emerging as a promising construction material prepared from natural bamboo due to its high mechanical strength. However, the variability of the properties of bamboo scrimber is large, which limits the reliability assessment of bamboo scrimber in engineering applications. In this study, the variability of mechanical properties and dimensional stability of bamboo scrimber prepared by units pretreated at different temperatures (denoted as BS-150 and BS-200 for 150 °C and 200 °C, respectively) were compared and probabilistically analyzed using normal, lognormal, and Weibull distribution models. The results showed that BS-200 had a significantly lower thickness swelling rate (TSR), modulus of rupture (MOR) and shear strength (SS), with the modulus of elasticity (MOE) remaining essentially unchanged compared to BS-150. Probabilistic analysis revealed that the MOR, MOE, and TSR of BS-150 followed a lognormally distribution, and the shear strength was normally distributed. In contrast, the MOR, MOE, SS, and TSR of BS-200 all exhibited lognormal distributions. Meanwhile, the variability in TSR and SS for BS-200 was significantly reduced. The results provide a data base for the engineering application of bamboo scrimber and a new research idea for the evaluation of properties of forest biomass-based materials based on probabilistic analysis. Full article
Show Figures

Figure 1

17 pages, 8775 KiB  
Article
Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance
by Zhirou Liu, Nan Lin, Qirui Wang, Enkai Xu and Kaiming Zhang
Curr. Issues Mol. Biol. 2025, 47(6), 398; https://doi.org/10.3390/cimb47060398 - 27 May 2025
Viewed by 509
Abstract
Begonia semperflorens (B. semperflorens) is a popular ornamental plant widely used in landscapes such as plazas and flower beds, and it is also commonly grown as a potted plant indoors. It is known for its adaptability to high temperatures, drought, and [...] Read more.
Begonia semperflorens (B. semperflorens) is a popular ornamental plant widely used in landscapes such as plazas and flower beds, and it is also commonly grown as a potted plant indoors. It is known for its adaptability to high temperatures, drought, and shade. Under heat-tolerant conditions, heat shock transcription factors (HSFs) are key transcriptional regulatory proteins that play crucial roles in cellular processes. Despite extensive studies on the HSF family in various species, there has been no specific analysis targeting B. semperflorens. In this study, we identified 37 members of the BsHSF gene family in B. semperflorens based on its genome scaffold, which are unevenly distributed across the genome. Phylogenetic analysis reveals that these 37 members can be divided into three subfamilies. Analysis of their physicochemical properties shows significant diversity among these proteins. Except for the BsHSFB7 protein located in the cytoplasm, all other BsHSF proteins were found to be nuclear-localized. A comparison of the amino acid sequences indicates that all BsHSF proteins contain a conserved DNA-binding domain structure. Analysis of the promoter cis-acting elements also suggests that BsHSFs may be associated with heat stress and plant secondary metabolism. We further investigated the duplication events of BsHSF genes and their collinearity with genes from other Begonia species. Finally, through real-time quantitative PCR, we examined the expression patterns of the 37 BsHSFs in different plant tissues (roots, stems, leaves, and flowers) and their expression levels under heat stress treatment. The results show that, except for BsHSF29, all BsHSFs were expressed in various tissues, with varying expression levels across tissues. Except for BsHSF33 and BsHSF34, the expression levels of almost all BsHSF genes increased in response to heat treatment. In summary, these findings provide a better understanding of the role and regulatory mechanisms of HSFs in the heat stress response of B. semperflorens and lay the foundation for further exploration of the biological functions of BsHSFs in the stress responses of B. semperflorens. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

23 pages, 4284 KiB  
Article
Embedded Processor-in-the-Loop Implementation of ANFIS-Based Nonlinear MPPT Strategies for Photovoltaic Systems
by Khalil Chnini, Mahamadou Abdou Tankari, Houda Jouini, Hatem Allagui, Mostafa Ahmed Ibrahim and Ezzeddine Touti
Energies 2025, 18(10), 2470; https://doi.org/10.3390/en18102470 - 12 May 2025
Cited by 1 | Viewed by 569
Abstract
The integration of photovoltaic (PV) systems into global energy production is rapidly expanding. However, achieving maximum power extraction remains a significant challenge due to the nonlinear electrical characteristics of PV modules, which are highly sensitive to environmental variations such as temperature fluctuations and [...] Read more.
The integration of photovoltaic (PV) systems into global energy production is rapidly expanding. However, achieving maximum power extraction remains a significant challenge due to the nonlinear electrical characteristics of PV modules, which are highly sensitive to environmental variations such as temperature fluctuations and irradiance changes. This study presents a structured design, testing, and quasi-experimental validation methodology for robust Maximum Power Point Tracking (MPPT) control in PV systems. We propose two advanced AI-based nonlinear control strategies: an Adaptive Neuro-Fuzzy Inference System combined with Fast Terminal Synergetic Control (ANFIS-FTSC) for a boost converter and ANFIS with Backstepping (ANFIS-BS) for a Single-Ended Primary Inductor Converter (SEPIC), both of which have demonstrated tracking efficiencies exceeding 99.6%. To evaluate real-time performance, a Processor-in-the-Loop (PIL) validation is conducted using an ARM-based STM32F407VG microcontroller. The methodology adheres to a Model-Based Design (MBD) framework, ensuring systematic development, implementation, and verification of the MPPT algorithms in an embedded environment. Experimental results demonstrate that the proposed controllers achieve high efficiency, rapid convergence, and robust maximum power point tracking under varying operating conditions. The successful PIL-based validation confirms the feasibility of these intelligent control techniques for real-world deployment in PV energy systems, paving the way for more efficient and adaptive renewable energy solutions. Full article
(This article belongs to the Special Issue Micro-grid Energy Management)
Show Figures

Figure 1

16 pages, 605 KiB  
Article
Maxillary Incisor Fragment Reattachment Protocols: Influence on Tooth Fracture Resistance and Strength of Bonding to Orthodontic Brackets
by Moataz Elgezawi, Rasha Haridy, Khalid S. Almulhim, Moamen A. Abdalla, Ahmed A. Alsulaiman, Laila Al Dehailan, Rasha Alsheikh, Shahad Alotaibi, Deena Alghamdi, Ohud Almutairi, Sahar F. Alwehaibi, Ala’a Kamal and Dalia Kaisarly
J. Clin. Med. 2025, 14(9), 3220; https://doi.org/10.3390/jcm14093220 - 6 May 2025
Viewed by 657
Abstract
Objectives: Trauma to maxillary incisors is frequent, and requires timely, conservative management for optimal prognosis. This in vitro study evaluated the fracture resistance (FR) and orthodontic bracket bond strength (BS) of incisors following incisal fragment reattachment using various restorative techniques. Materials and [...] Read more.
Objectives: Trauma to maxillary incisors is frequent, and requires timely, conservative management for optimal prognosis. This in vitro study evaluated the fracture resistance (FR) and orthodontic bracket bond strength (BS) of incisors following incisal fragment reattachment using various restorative techniques. Materials and Methods: Two independent tests—FR testing (Newtons) and BS testing (megapascals)—were conducted. Eighty intact human maxillary central incisors (n = 40/test), standardized in size and shape using a digital caliper (Mitutoyo, ±0.01 mm), were embedded in acrylic resin and numbered. An uncomplicated crown fracture was induced in 64 teeth (n = 32/test), and the teeth were randomly assigned (simple randomization using Excel’s RAND function) to five groups (n = 8/group/test): (1) intact teeth (negative control, NC); (2) nanohybrid composite buildup using Filtek Z250 and Single Bond 2 (positive control, CB); (3) fragment reattachment using flowable composite (Filtek Supreme, FL); (4) reattachment with a palatal veneer using a nanohybrid composite (PV); and (5) reattachment reinforced with a polyethylene fiber band (Ribbond Inc., RB). In BS testing groups, stainless steel orthodontic brackets (PINNACLE) were bonded using Transbond XT, centered over the fracture line. Light curing was performed using an LED unit (Mini LED Standard, Acteon, 1250 mW/cm2, 20 s/bond, 40 s/composite, 2 mm curing tip distance). Specimens were stored in distilled water at room temperature for 24 h before reattachment. FR and BS were evaluated using a universal testing machine (Instron) until failure. Failure modes were analyzed, and data were statistically evaluated using one-way ANOVA, Tukey’s post hoc test, and Pearson’s correlation analysis. Results: Significant differences were observed among groups for both FR and BS (p < 0.05). The NC group exhibited the highest FR (514.4 N) and BS (17.6 MPa). The RB group recorded the second-highest FR (324.6), followed by the PV (234.6), CB (224.9), and FL (203.7) groups. The CB group demonstrated the second-best BS (16.6), followed by the RB (15.2), FL (13.4), and PV (6.5) groups. FR and BS were negatively correlated. Mixed failures predominated in the reattachment groups, except for the PV group, which showed mainly adhesive failures. In BS testing, mixed failures dominated in the NC and CB groups, while adhesive failures predominated in the PV and FL groups. Conclusions: Ribbond reinforcement improves the mechanical performance of reattached incisal fragments, and composite buildup may provide more reliable bracket bonding than fragment reattachment. Clinical Relevance: In cases where biomimetic, minimally invasive reattachment is indicated, Ribbond fiber reinforcement appears to offer a reliable restorative solution. Full article
(This article belongs to the Special Issue Current Advances in Endodontics and Dental Traumatology)
Show Figures

Figure 1

46 pages, 15851 KiB  
Article
Emerging Human Fascioliasis in India: Review of Case Reports, Climate Change Impact, and Geo-Historical Correlation Defining Areas and Seasons of High Infection Risk
by Santiago Mas-Coma, Pablo F. Cuervo, Purna Bahadur Chetri, Timir Tripathi, Albis Francesco Gabrielli and M. Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(5), 123; https://doi.org/10.3390/tropicalmed10050123 - 2 May 2025
Cited by 1 | Viewed by 2059
Abstract
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes [...] Read more.
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes the epidemiological scenario of human infection. The study reviews the total of 55 fascioliasis patients, their characteristics, and geographical distribution. Causes underlying this emergence are assessed by analyzing (i) the climate change suffered by India based on 40-year-data from meteorological stations, and (ii) the geographical fascioliasis hotspots according to archeological–historical records about thousands of years of pack animal movements. The review suggests frequent misdiagnosis of the wide lowland-distributed F. gigantica with F. hepatica and emphasizes the need to obtain anamnesic information about the locality of residence and the infection source. Prevalence appears to be higher in females and in the 30–40-year age group. The time elapsed between symptom onset and diagnosis varied from 10 days to 5 years (mean 9.2 months). Infection was diagnosed by egg finding (in 12 cases), adult finding (28), serology (3), and clinics and image techniques (12). Climate diagrams and the Wb-bs forecast index show higher temperatures favoring the warm condition-preferring main snail vector Radix luteola and a precipitation increase due to fewer rainy days but more days of extreme rainfall, leading to increasing surface water availability and favoring fascioliasis transmission. Climate trends indicate a risk of future increasing fascioliasis emergence, including a seasonal infection risk from June–July to October–November. Geographical zones of high human infection risk defined by archeological–historical analyses concern: (i) the Indo-Gangetic Plains and corridors used by the old Grand Trunk Road and Daksinapatha Road, (ii) northern mountainous areas by connections with the Silk Road and Tea-Horse Road, and (iii) the hinterlands of western and eastern seaport cities involved in the past Maritime Silk Road. Routes and nodes are illustrated, all transhumant–nomadic–pastoralist groups are detailed, and livestock prevalences per state are given. A baseline defining areas and seasons of high infection risk is established for the first time in India. This is henceforth expected to be helpful for physicians, prevention measures, control initiatives, and recommendations for health administration officers. Full article
Show Figures

Figure 1

28 pages, 6051 KiB  
Article
Uncertain Parameters Adjustable Two-Stage Robust Optimization of Bulk Carrier Energy System Considering Wave Energy Utilization
by Weining Zhang, Chunteng Bao and Jianting Chen
J. Mar. Sci. Eng. 2025, 13(5), 844; https://doi.org/10.3390/jmse13050844 - 24 Apr 2025
Viewed by 385
Abstract
Within the 21st century, in the Maritime Silk Road, wave energy, a clean renewable source, is drawing more interest, especially in areas with power shortages. This paper investigates wave energy in ships, particularly in a hybrid electric bulk carrier, by designing a system [...] Read more.
Within the 21st century, in the Maritime Silk Road, wave energy, a clean renewable source, is drawing more interest, especially in areas with power shortages. This paper investigates wave energy in ships, particularly in a hybrid electric bulk carrier, by designing a system that supplements the existing power setup with oscillating buoy wave energy converters. The system includes diesel generators (DGs), a wave energy generation system, heterogeneous energy storage (consisting of battery storage (BS) and thermal storage (TS)), a combined cooling heat and power (CCHP) unit, and a power-to-thermal conversion (PtC) unit. To ensure safe and reliable navigation despite uncertainties in wave energy output, onboard power loads, and outdoor temperature, a robust coordination method is adopted. This method employs a two-stage robust optimization (RO) strategy to coordinate the various onboard units across different time scales, minimizing operational costs while satisfying all operational constraints, even in the worst-case scenarios. By applying constraint linearization, the robust coordination model is formulated as a mixed-integer linear programming (MILP) problem and solved using an efficient solver. Finally, the effectiveness of the proposed method is validated through case studies and comparisons with existing ship operation benchmarks, demonstrating significant reductions in operational costs and robust performance under various uncertain conditions. Notably, the simulation results for the Singapore–Trincomalee route show an 18.4% reduction in carbon emissions compared to conventional systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 4710 KiB  
Article
Optimization and Characterization of Acetic Acid-Hydrolyzed Cassava Starch Nanoparticles for Enhanced Oil Recovery Applications
by Mohammed E. Ali Mohsin, A. F. A. Rahman, Zakiah Harun, Agus Arsad, Suleiman Mousa, Muhammad Abbas Ahmad Zaini, Mohammad Yousef Younes and Mohammad Faseeulla Khan
Polymers 2025, 17(8), 1071; https://doi.org/10.3390/polym17081071 - 16 Apr 2025
Viewed by 597
Abstract
This study presents an optimized and sustainable route for synthesizing cassava starch nanoparticles (CSNPs) tailored for enhanced oil recovery (EOR) applications. Conventional inorganic acid hydrolysis methods often produce low nanoparticle yields and large particle sizes due to extensive degradation of both amorphous and [...] Read more.
This study presents an optimized and sustainable route for synthesizing cassava starch nanoparticles (CSNPs) tailored for enhanced oil recovery (EOR) applications. Conventional inorganic acid hydrolysis methods often produce low nanoparticle yields and large particle sizes due to extensive degradation of both amorphous and crystalline starch regions. To overcome these challenges, ultrasonic-assisted acetic acid hydrolysis coupled with response surface methodology (RSM) was applied. Under optimal conditions, two distinct CSNPs were produced: CSNP A (206.77 nm, 96.23% yield in 3 days) and CSNP B (99.4 nm, 96.07% yield in 7 days). Characterization via Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed enhanced crystallinity, while rheological analyses revealed shear-thickening behavior and improved viscosity, key factors for effective polymer flooding in EOR. DSC and TGA measurements highlighted robust thermal stability, essential for high-temperature reservoir conditions. A preliminary assessment suggests CSNP B’s small size (99.4 nm), high viscosity, and thermal stability make it particularly promising for EOR in low-permeability reservoirs, with future core flooding studies needed for validation. These attributes position CSNPs as sustainable alternatives for polymer flooding in challenging reservoir environments. Full article
Show Figures

Figure 1

31 pages, 5432 KiB  
Article
Exploration of Dual-Carbon Target Pathways Based on Machine Learning Stacking Model and Policy Simulation—A Case Study in Northeast China
by Xuezhi Ren, Jianya Zhao, Shu Wang, Chunpeng Zhang, Hongzhen Zhang and Nan Wei
Land 2025, 14(4), 844; https://doi.org/10.3390/land14040844 - 12 Apr 2025
Viewed by 569
Abstract
Northeast China, a traditional heavy industrial base, faces significant carbon emissions challenges. This study analyzes the drivers of carbon emissions in 35 cities from 2000–2022, utilizing a machine-learning approach based on a stacking model. A stacking model, integrating random forest and eXtreme Gradient [...] Read more.
Northeast China, a traditional heavy industrial base, faces significant carbon emissions challenges. This study analyzes the drivers of carbon emissions in 35 cities from 2000–2022, utilizing a machine-learning approach based on a stacking model. A stacking model, integrating random forest and eXtreme Gradient Boosting (XGBoost) as base learners and a support vector machine (SVM) as the meta-model, outperformed individual algorithms, achieving a coefficient of determination (R2) of 0.82. Compared to traditional methods, the stacking model significantly improves prediction accuracy and stability by combining the strengths of multiple algorithms. The Shapley additive explanations (SHAP) analysis identified key drivers: total energy consumption, urbanization rate, electricity consumption, and population positively influenced emissions, while sulfur dioxide (SO2) emissions, smoke dust emissions, average temperature, and average humidity showed negative correlations. Notably, green coverage exhibited a complex, slightly positive relationship with emissions. Monte Carlo simulations of three scenarios (Baseline Scenario (BS), Aggressive De-coal Scenario (ADS), and Climate Resilience Scenario (CRS)) the projected carbon peak by 2030 under the ADS, with the lowest emissions fluctuation (standard deviation of 5) and the largest carbon emissions reduction (17.5–24.6%). The Baseline and Climate Resilience scenarios indicated a peak around 2039–2040. These findings suggest the important role of de-coalization. Targeted policy recommendations emphasize accelerating energy transition, promoting low-carbon industrial transformation, fostering green urbanization, and enhancing carbon sequestration to support Northeast China’s sustainable development and the achievement of dual-carbon goals. Full article
Show Figures

Figure 1

Back to TopTop