Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (655)

Search Parameters:
Keywords = Brd9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 579 KiB  
Article
In Vivo Safety and Efficacy of Thiosemicarbazones in Experimental Mice Infected with Toxoplasma gondii Oocysts
by Manuela Semeraro, Ghalia Boubaker, Mirco Scaccaglia, Dennis Imhof, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anitha Löwe, Marco Genchi, Laura Helen Kramer, Alice Vismarra, Giorgio Pelosi, Franco Bisceglie, Luis Miguel Ortega-Mora, Joachim Müller and Andrew Hemphill
Biomedicines 2025, 13(8), 1879; https://doi.org/10.3390/biomedicines13081879 - 1 Aug 2025
Viewed by 130
Abstract
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their [...] Read more.
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their metal complexes have shown promising activities against T. gondii. This study evaluated a gold (III) complex C3 and its TSC ligand C4 for safety in host immune cells and zebrafish embryos, followed by efficacy assessment in a murine model for chronic toxoplasmosis. Methods: The effects on viability and proliferation of murine splenocytes were determined using Alamar Blue assay and BrdU ELISA, and potential effects of the drugs on zebrafish (Danio rerio) embryos were detected through daily light microscopical inspection within the first 96 h of embryo development. The parasite burden in treated versus non-treated mice was measured by quantitative real-time PCR in the brain, eyes and the heart. Results: Neither compound showed immunosuppressive effects on the host immune cells but displayed dose-dependent toxicity on early zebrafish embryo development, suggesting that these compounds should not be applied in pregnant animals. In the murine model of chronic toxoplasmosis, C4 treatment significantly reduced the parasite load in the heart but not in the brain or eyes, while C3 did not have any impact on the parasite load. Conclusions: These results highlight the potential of C4 for further exploration but also the limitations of current approaches in effectively reducing parasite burden in vivo. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 403
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 7108 KiB  
Article
SMYD5-BRD4 Interaction Drives Hepatocellular Carcinoma Progression: A Combined in Silico and Experimental Analysis
by Mingye Hu, Shiji Chen, Yumiao Zhen, Xin Wang, Yiwen Zhong, Xiaoxu Liang, Cheong-Meng Chong and Hai-Jing Zhong
Pharmaceuticals 2025, 18(8), 1105; https://doi.org/10.3390/ph18081105 - 25 Jul 2025
Viewed by 258
Abstract
Background/Objectives: Hepatocellular carcinoma (LIHC) poses significant challenges due to limited targeted therapeutic options. This study investigates SMYD5, an oncogene implicated in the pathogenesis of LIHC, and its interaction with the BRD4 protein. Methods: We employed bioinformatics analyses alongside experimental validations to assess [...] Read more.
Background/Objectives: Hepatocellular carcinoma (LIHC) poses significant challenges due to limited targeted therapeutic options. This study investigates SMYD5, an oncogene implicated in the pathogenesis of LIHC, and its interaction with the BRD4 protein. Methods: We employed bioinformatics analyses alongside experimental validations to assess SMYD5 expression across various cancers, particularly LIHC. This included survival analysis, protein expression studies, and functional assays to understand the role of SMYD5 in LIHC progression. Results: Our findings demonstrate that SMYD5 expression is markedly elevated in LIHC tumor tissues compared to normal liver tissues. Moreover, high levels of SMYD5 correlate with poor overall survival and disease-free survival rates in LIHC patients. Functional assays indicate that the knockdown of SMYD5 significantly inhibits cell proliferation and increases apoptosis in LIHC cell lines. Additionally, a notable interaction between SMYD5 and BRD4 was identified, suggesting a potential therapeutic target in the SMYD5-BRD4 axis. Conclusions: These findings collectively establish SMYD5 as a molecular driver in LIHC pathology and identify the SMYD5-BRD4 interaction axis as a promising therapeutic target for future drug development. Full article
Show Figures

Figure 1

23 pages, 19687 KiB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 554
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

12 pages, 1130 KiB  
Article
Production of 2,2,3,3,4,4,4-Heptafluorobutyl Acetate from Acetic Acid and 2,2,3,3,4,4,4-Heptafluorobutan-1-ol by Batch Reactive Distillation
by Andrei V. Polkovnichenko, Egor V. Lupachev, Evgenia I. Kovaleva, Sergey Ya. Kvashnin, Tatiana V. Chelyuskina and Andrey A. Voshkin
ChemEngineering 2025, 9(4), 72; https://doi.org/10.3390/chemengineering9040072 - 11 Jul 2025
Viewed by 268
Abstract
In the present study, a process for the production of 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc) is proposed for the first time. The production process of HFBAc from acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) was carried out at laboratory scale using batch reactive distillation (BRD). The [...] Read more.
In the present study, a process for the production of 2,2,3,3,4,4,4-heptafluorobutyl acetate (HFBAc) is proposed for the first time. The production process of HFBAc from acetic acid (AAc) and 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFBol) was carried out at laboratory scale using batch reactive distillation (BRD). The process was conducted at atmospheric pressure in the presence of an acid catalyst, with an excess of AAc relative to HFBol (initial molar ratio of reagents HFBol/AAc is 45/55). During the BRD, the aqueous phase of the distillate was withdrawn from the system, while the organic phase of the distillate was returned as reflux. Since part of AAc is lost along with the aqueous phase of the distillate, a minor excess of AAc is reasonable for maximizing the conversion of the most expensive reagent—HFBol. The losses of AAc and HFBol with the aqueous phase of the distillate were less than 2 mole % and less than 0.5 mole % of the feed, respectively. The purity of HFBAc after BRD was 97.9 wt. %, and the conversion of HFBol exceeded 99 mole % of the feed. The purity of certain product fractions of HFBAc was greater than 99.6 wt. %. The obtained data can be used for industrial technology development to obtain HFBAc. Full article
Show Figures

Figure 1

17 pages, 3094 KiB  
Article
Urolithin A Protects Ovarian Reserve Via Inhibiting PI3K/Akt Signaling and Preventing Chemotherapy-Induced Follicle Apoptosis
by Weiyong Wang, Ren Zhou, Yong Ruan and Shuhao Fan
Biology 2025, 14(7), 829; https://doi.org/10.3390/biology14070829 - 8 Jul 2025
Viewed by 481
Abstract
Urolithin A, which is a natural gut microbial metabolite, exerts multiple beneficial effects upon supplementation, including prolonging lifespan, mitigating diseases, restoring the quality of aged oocytes and alleviating drug toxicity. The study aims to investigate the ovarian protective role of Urolithin A using [...] Read more.
Urolithin A, which is a natural gut microbial metabolite, exerts multiple beneficial effects upon supplementation, including prolonging lifespan, mitigating diseases, restoring the quality of aged oocytes and alleviating drug toxicity. The study aims to investigate the ovarian protective role of Urolithin A using a neonatal mouse ovarian in vitro culture and chemotherapy model, with a particular focus on its mechanisms for inhibiting primordial follicle activation and mitigating cyclophosphamide (CY) or 4-hydroperoxy (4-HC)-induced follicle apoptosis. The results showed that Urolithin A significantly decreased the number of growing follicles and downregulated the expression of oocyte growth-related genes (Gdf9 and Zp3) and protein (DDX4), as well as Ki-67 and BrdU-positive signals. Further studies revealed that Urolithin A significantly downregulated the levels of phosphorylated Akt and FOXO3a and decreased the percentage of oocytes with FOXO3a nuclear export. Molecular docking showed a strong binding ability between Urolithin A and its downregulated gene Pik3cg. Moreover, Urolithin A significantly decreased CY- and 4-HC-induced increases in cleaved Caspase-3- and PARP1-positive signals. Meanwhile, RNA-seq analysis indicated that Urolithin A significantly downregulated CY-induced expression of DNA damage-related genes (Trp73 and Trim29). In short, Urolithin A inhibits primordial follicle activation by reducing PI3K/Akt signaling reactivity. Furthermore, Urolithin A prevents CY-induced follicle apoptosis. The study provides valuable insights into Urolithin A treatment for chemotherapy-induced infertility. Full article
Show Figures

Figure 1

19 pages, 2479 KiB  
Article
Yoda1 Inhibits TGFβ-Induced Cardiac Fibroblast Activation via a BRD4-Dependent Pathway
by Perwez Alam, Sara M. Stiens, Hunter J. Bowles, Hieu Bui and Douglas K. Bowles
Cells 2025, 14(13), 1028; https://doi.org/10.3390/cells14131028 - 4 Jul 2025
Viewed by 629
Abstract
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart [...] Read more.
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart failure. Central to this process are cardiac fibroblasts (CFs), which, upon activation, differentiate into contractile myofibroblasts, driving pathological ECM accumulation. Transforming growth factor-beta (TGFβ) is a well-established regulator of fibroblast activation; however, the precise molecular mechanisms, particularly the involvement of ion channels, remain poorly understood. Emerging evidence highlights the regulatory role of ion channels, including calcium-activated potassium (KCa) channels, in fibroblast activation. This study elucidates the role of ion channels and investigates the mechanism by which Yoda1, an agonist of the mechanosensitive ion channel Piezo1, modulates TGFβ-induced fibroblast activation. Using NIH/3T3 fibroblasts, we demonstrated that TGFβ-induced activation is regulated by tetraethylammonium (TEA)-sensitive potassium channels, but not by specific K⁺ channel subtypes such as BK, SK, or IK channels. Intriguingly, Yoda1 was found to inhibit TGFβ-induced fibroblast activation through a Piezo1-independent mechanism. Transcriptomic analysis revealed that Yoda1 modulates fibroblast activation by altering gene expression pathways associated with fibrotic processes. Bromodomain-containing protein 4 (BRD4) was identified as a critical mediator of Yoda1’s effects, as pharmacological inhibition of BRD4 with JQ1 or ZL0454 suppressed TGFβ-induced expression of the fibroblast activation marker Periostin (Postn). Conversely, BRD4 overexpression attenuated the inhibitory effects of Yoda1 in both mouse and rat CFs. These results provide novel insights into the pharmacological modulation of TGFβ-induced cardiac fibroblast activation and highlight promising therapeutic targets for the treatment of fibrosis-related cardiac pathologies. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

22 pages, 2732 KiB  
Article
Anticancer Activity of Roburic Acid: In Vitro and In Silico Investigation
by Adrianna Gielecińska, Mateusz Kciuk, Somdutt Mujwar, Johannes A. Schmid and Renata Kontek
Int. J. Mol. Sci. 2025, 26(13), 6420; https://doi.org/10.3390/ijms26136420 - 3 Jul 2025
Viewed by 418
Abstract
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction [...] Read more.
Natural compounds remain a valuable source of anticancer agents due to their structural diversity and multi-targeted mechanisms of action. Roburic acid (RA), a tetracyclic triterpenoid, has been identified as a substance capable of inhibiting key NF-κB and MAPK signaling pathways through direct interaction with TNF-α, as well as preventing the production of inflammatory mediators and cancer progression. In this study, we evaluated the biological activity of RA against a panel of human cancer cell lines—DLD-1, HT-29, and HCT-116 (colorectal), PC-3 (prostate), and BxPC-3 (pancreatic)—as well as two non-malignant lines: WI-38 (fibroblasts) and CCD-841 CoN (colon epithelium). RA exhibited a concentration-dependent inhibitory effect on cancer cell metabolic activity, with colorectal cancer cells showing relatively higher sensitivity, particularly at shorter incubation times. To distinguish between cytotoxic and cytostatic effects, we performed trypan blue exclusion combined with a cell density assessment, clonogenic assay, and BrdU incorporation assay. The results from these complementary assays confirmed that RA acts primarily through an antiproliferative mechanism rather than by inducing cytotoxicity. In addition, NF-κB reporter assays demonstrated that RA attenuates TNF-α-induced transcriptional activation at higher concentrations, supporting its proposed anti-inflammatory properties and potential to modulate pro-tumorigenic signaling. Finally, our in silico studies predicted that RA may interact with proteins such as CAII, CES1, EGFR, and PLA2G2A, implicating it in the modulation of pathways related to proliferation and cell survival. Collectively, these findings suggest that RA may serve as a promising scaffold for the development of future anticancer agents, particularly in the context of colorectal cancer. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 1729 KiB  
Article
Development of a Novel, Non-Invasive Saliva Sampling Method for the Detection of Bovine Respiratory Viruses
by Simona Baumann, Belinda Euring, Maxi Harzer, Mandy Eibisch, Andrea Lindner, Thomas W. Vahlenkamp and Kristin Heenemann
Vet. Sci. 2025, 12(7), 637; https://doi.org/10.3390/vetsci12070637 - 3 Jul 2025
Viewed by 493
Abstract
Bovine respiratory disease (BRD) is one of the most significant health issues in cattle populations worldwide, leading to great economic losses and animal suffering [...] Full article
Show Figures

Figure 1

18 pages, 1424 KiB  
Article
Effectiveness of PROTAC BET Degraders in Combating Cisplatin Resistance in Head and Neck Cancer Cells
by Natalie Luffman, Fereshteh Ahmadinejad, Ryan M. Finnegan, Marissa Raymond, David A. Gewirtz and Hisashi Harada
Int. J. Mol. Sci. 2025, 26(13), 6185; https://doi.org/10.3390/ijms26136185 - 26 Jun 2025
Viewed by 695
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains challenging to treat despite multimodal therapeutic approaches. Cisplatin treatment is effective and cost-efficient, although chemoresistance and disease recurrence limit its efficacy. Understanding the mechanisms of cisplatin resistance and the identification of compounds to target resistant [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) remains challenging to treat despite multimodal therapeutic approaches. Cisplatin treatment is effective and cost-efficient, although chemoresistance and disease recurrence limit its efficacy. Understanding the mechanisms of cisplatin resistance and the identification of compounds to target resistant tumor cells are critical for improving patient outcomes. We have demonstrated that cisplatin-induced senescent HN30 HNSCC cells can be eliminated by ABT-263 (navitoclax), a BCL-2/BCL-XL inhibitor that has senolytic properties. Here, we report the development of a cisplatin-resistant cell line (HN30R) for the testing of ABT-263 and the PROTAC BET degraders ARV-825 and ARV-771. ABT-263 was ineffective in sensitizing HN30R cells to cisplatin, largely due to a lack of senescence induction. However, the BET degraders in combination with cisplatin promoted apoptotic cell death in both HN30 and HN30R cells. The effectiveness of ARV-825 did not appear to depend on the cells entering into senescence, indicating that it was not acting as a conventional senolytic. ARV-825 treatment downregulated BRD4 and its downstream targets, c-Myc and Survivin, as well as decreased the expression of RAD51, a DNA repair marker. These results suggest that the BET degraders ARV-825 and ARV-771 may be effective in improving the response of chemoresistant head and neck cancer to cisplatin treatment. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

20 pages, 1336 KiB  
Article
Genomic Regions Associated with Respiratory Disease in Holstein Calves in the Southern United States
by Allison L. Herrick, Jennifer N. Kiser, Stephen N. White and Holly L. Neibergs
Genes 2025, 16(7), 741; https://doi.org/10.3390/genes16070741 - 26 Jun 2025
Viewed by 540
Abstract
Background/Objectives: Bovine respiratory disease (BRD) is a common disease impacting cattle throughout the US. BRD is a multifactorial disease as disease risk varies with the genetic profile of the host, environmental conditions, and pathogen exposure. Selection for enhanced BRD resistant cattle can aid [...] Read more.
Background/Objectives: Bovine respiratory disease (BRD) is a common disease impacting cattle throughout the US. BRD is a multifactorial disease as disease risk varies with the genetic profile of the host, environmental conditions, and pathogen exposure. Selection for enhanced BRD resistant cattle can aid in reducing BRD. The objectives of this study were to identify loci, gene sets, and genes associated and enriched for BRD in pre- and post-weaned Holstein cattle. Methods: Cases consisted of 2147 and 5607 calves treated for BRD as pre-weaned (0–60 days old) and post-weaned (61–420 days old) calves, respectively. Controls consisted of calves untreated for BRD that remained in the herd for 61 (n = 14,219) days for pre-weaned or 421 (n = 12,242) days for post-weaned calves. A genome-wide association analysis (GWAA) identified loci and positional candidate genes associated with BRD (uncorrected P < 1 × 10−5) for additive, dominant, and recessive inheritance models. A gene set enrichment analysis (GSEA-SNP) identified gene sets and leading-edge genes enriched (NES ≥ 3) for BRD. Results: In pre-weaned calves, 62 loci and 123 positional candidate genes were associated (P < 1 × 10−5) in addition to the 12 gene sets and 126 leading-edge genes enriched (NES ≥ 3) for BRD. In post-weaned calves, 181 loci and 185 positional candidate genes were associated (P < 1 × 10−5), and 63 gene sets and 849 leading-edge genes were enriched (NES ≥ 3) for BRD. Conclusions: These results provide further insight and validation of genomic regions that enhance selection for BRD resistance and for healthier cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1671 KiB  
Article
Role of Extracellular Vesicles of Stem Cells from Human Exfoliated Deciduous Teeth in Osteogenesis
by Rio Shibata, Ryo Kunimatsu, Shota Ito, Tomohiro Ogasawara, Shintaro Ogashira, Ayaka Nakatani, Kodai Rikitake, Ayaka Odo, Akira Hirabae, Io Koyanagi, Takaharu Abe, Tomoka Hiraki, Shuzo Sakata, Yuki Yoshimi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(12), 5841; https://doi.org/10.3390/ijms26125841 - 18 Jun 2025
Viewed by 742
Abstract
The tissue regenerative potential of the liquid component of mesenchymal stem cells has gained significant attention. Stem cells from human exfoliated deciduous teeth-conditioned medium (SHED-CM), which is often extracted during orthodontic treatment, promotes bone regeneration. However, further investigation is warranted to determine which [...] Read more.
The tissue regenerative potential of the liquid component of mesenchymal stem cells has gained significant attention. Stem cells from human exfoliated deciduous teeth-conditioned medium (SHED-CM), which is often extracted during orthodontic treatment, promotes bone regeneration. However, further investigation is warranted to determine which component of SHED-CM affects bone regeneration. Therefore, we focused on the extracellular vesicles contained in SHED-CM (SHED-EVs) and aimed to study their effects on osteoblasts. SHED-EVs were isolated using a pellet-down EV extraction kit and identified using transmission electron microscopy and NanoSight. SHED-EVs were added to human calvarial osteoblasts (HCOs), and cell proliferation and migration ability were examined with Incucyte® and BrdU. Alkaline phosphatase (ALP) expression was confirmed using real-time PCR and ALP quantification. The bone differentiation potential was examined using Alizarin Red S (ARS) staining. SHED-EVs promoted proliferation and migration of HCOs. Real-time PCR and ALP quantification results demonstrated that HCOs cultured with SHED-EVs exhibited increased ALP expression. ARS staining revealed that SHED-EVs promoted bone differentiation of HCOs. These results suggest that SHED-EVs promote cell proliferation and migration and bone regeneration of osteoblasts, highlighting their potential in the development of bone regeneration therapies. Full article
Show Figures

Figure 1

13 pages, 593 KiB  
Systematic Review
Antimicrobial Resistance in Bovine Respiratory Disease Pathogens: A Systematic Review and Analysis of the Published Literature
by Brian V. Lubbers, Andi Warren, Bradley J. White, Siddartha Torres and Pedro Rodriguez
Animals 2025, 15(12), 1789; https://doi.org/10.3390/ani15121789 - 18 Jun 2025
Viewed by 454
Abstract
Bovine respiratory disease (BRD) is the most significant disease challenge in the feeder cattle industry in North America. Antimicrobials are commonly administered in BRD cases due to the role of bacterial pathogens. However, reports of antimicrobial resistance (AMR) in these pathogens raise concerns [...] Read more.
Bovine respiratory disease (BRD) is the most significant disease challenge in the feeder cattle industry in North America. Antimicrobials are commonly administered in BRD cases due to the role of bacterial pathogens. However, reports of antimicrobial resistance (AMR) in these pathogens raise concerns regarding their long-term effectiveness to treat BRD cases. A systematic literature review was conducted to summarize AMR in North American BRD pathogens and determine if changes in AMR prevalence over time could be identified for antimicrobials routinely used for treatment and control of BRD. Generalized linear models were used to test associations between the proportion of resistant isolates for each of the three bacterial agents and antimicrobial agent, isolation year, and timing of sample collection. The antimicrobial agent and timing of sample collection were significantly associated with the proportion of antimicrobial resistant isolates, with increased probability of resistance to tulathromycin seen in Mannheimia haemolytica (24.08%) and Histophilus somni (8.19%) and increased resistance to tildipirosin in Pasteurella multocida (21.48%), while samples collected at arrival demonstrated a lower proportions of resistant bacteria. Trends over time could not be evaluated due to the limited number of published studies. These findings highlight the differences in AMR seen between antimicrobials, BRD pathogens, and sample types and emphasize the need for continued AMR surveillance. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

15 pages, 1421 KiB  
Article
Cyranose® 320 eNose Effectively Differentiates Pre- and Post-Challenge Respiratory Samples in an Induced Bovine Respiratory Disease Model
by Conrad S. Schelkopf, Leslie F. Weaver, Michael D. Apley, Roman M. Pogranichniy, Lance W. Noll, Jianfa Bai, Raghavendra G. Amachawadi and Brian V. Lubbers
Vet. Sci. 2025, 12(6), 578; https://doi.org/10.3390/vetsci12060578 - 12 Jun 2025
Viewed by 788
Abstract
Field-based diagnostic technologies which aid in the early detection of bovine respiratory disease (BRD) are of great need, given the rising attention related to animal welfare and antimicrobial stewardship. This induced BRD study followed 12 Holstein calves through pre-challenge (day 1–3) and post-challenge [...] Read more.
Field-based diagnostic technologies which aid in the early detection of bovine respiratory disease (BRD) are of great need, given the rising attention related to animal welfare and antimicrobial stewardship. This induced BRD study followed 12 Holstein calves through pre-challenge (day 1–3) and post-challenge (day 6–13) periods with daily sampling of nasal secretions with nasal swabs and expired air with air collection bags for determination of BRD status by use of an electronic nose (eNose). Animals were challenged with bovine herpes virus-1 (BHV-1) on day 3 following sample collection and Mannheimia haemolytica on day 5. Results demonstrated a high degree of accuracy for the eNose in correctly classifying pre-challenge samples for nasal swabs (93.5%) and expired air (96.8%). Post-challenge correct classification by the eNose was 97.8% for nasal swabs and 72.5% for expired air samples. Logistical regression was used to determine the probability of agreement between eNose classification and actual animal BRD status by study day. The largest discrepancy between nasal swab and expired air samples fell on days 6 and 7, immediately following the bacterial challenge. The eNose demonstrated potential as a field-based diagnostic tool for the detection of BRD with nasal swabs as the optimal sample type. Full article
Show Figures

Figure 1

17 pages, 4881 KiB  
Article
Functionalization-Dependent Cytotoxicity of Silver Nanoparticles: A Comparative Study of Chlorhexidine and Metronidazole Conjugates
by Karol P. Steckiewicz, Monika Dmochowska, Elżbieta Megiel, Ewelina Barcińska and Iwona Inkielewicz-Stępniak
Biomolecules 2025, 15(6), 850; https://doi.org/10.3390/biom15060850 - 10 Jun 2025
Viewed by 787
Abstract
This study examines the cytotoxicity of two silver nanoparticle formulations—AgNPs conjugated with chlorhexidine (AgNPs-CHL) and AgNPs conjugated with polyethylene glycol and metronidazole (AgNPs-PEG-MET)—as examples of the surface functionalization of silver nanoparticles with drugs via sulfur–silver bonds and nitrogen–silver interactions. We previously reported the [...] Read more.
This study examines the cytotoxicity of two silver nanoparticle formulations—AgNPs conjugated with chlorhexidine (AgNPs-CHL) and AgNPs conjugated with polyethylene glycol and metronidazole (AgNPs-PEG-MET)—as examples of the surface functionalization of silver nanoparticles with drugs via sulfur–silver bonds and nitrogen–silver interactions. We previously reported the synthesis of these NPs and their efficiency in periodontitis treatment. Here, we analyze the relationships between the cytotoxic mechanisms of AgNPs and their surface chemistry. UV–Vis spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) were used for physicochemical studies of the conjugates in two environments: aqueous solutions and commonly used cell culture media. Cytotoxicity was assessed in human fetal osteoblasts (hFOB 1.19) and human gingival fibroblasts (HGF-1) through BrdU and LDH assays, ROS detection, cell cycle analysis, apoptosis assays, and protein expression studies. AgNPs-CHL showed aggregation and increased hydrodynamic diameters in the culture medium, while AgNPs-PEG-MET remained stable. Both exhibited concentration-dependent cytotoxicity: AgNPs-CHL at 0.4–10 μg/mL and AgNPs-PEG-MET at 0.75–10 μg/mL. AgNPs-CHL, in which silver surface functionalization was realized via nitrogen–silver interactions, induced significant ROS generation, LDH release, and necroptosis, marked by increased RIP1, RIP3, and MLKL proteins. In the case of AgNPs-PEG-MET, where sulfur–silver bonds combined the drug via a PEG linker, they triggered apoptosis, as evidenced by elevated caspase-2 levels and flow cytometry. These findings highlight that the type of surface functionalization of silver nanoparticles significantly influences their physicochemical behavior and biological effects. Understanding these mechanisms is crucial in designing safer, more effective nanoparticle-based therapies for periodontal and other inflammatory conditions. Full article
(This article belongs to the Special Issue Metallic Nanoparticles: Biosynthesis and Therapeutic Potential)
Show Figures

Figure 1

Back to TopTop