Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = Brazilian ethanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2552 KiB  
Article
Technical, Economic, and Environmental Optimization of the Renewable Hydrogen Production Chain for Use in Ammonia Production: A Case Study
by Halima Khalid, Victor Fernandes Garcia, Jorge Eduardo Infante Cuan, Elias Horácio Zavala, Tainara Mendes Ribeiro, Dimas José Rua Orozco and Adriano Viana Ensinas
Processes 2025, 13(7), 2211; https://doi.org/10.3390/pr13072211 - 10 Jul 2025
Viewed by 311
Abstract
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in [...] Read more.
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in Minas Gerais. To this end, an optimization model based on mixed integer linear programming (MILP) was developed and implemented in LINGO 20® software. The model incorporated investment costs; raw materials; transportation; emissions; and indicators such as NPV, payback, and minimum sale price. Hydrogen production routes integrated into the Haber–Bosch process were analyzed: biomass gasification (GS_WGS), anaerobic digestion of vinasse (Vinasse_BD_SMR), ethanol reforming (Ethanol_ESR), and electrolysis (PEM_electrolysis). Vinasse_BD_SMR showed the lowest costs and the greatest economic viability, with a payback of just 2 years, due to the use of vinasse waste as a raw material. In contrast, the electrolysis-based route had the longest payback time (8 years), mainly due to the high cost of the electrolyzers. The substitution of conventional hydrogen made it possible to avoid 580,000 t CO2 eq/year for a plant capacity of 200,000 t NH3/year, which represents 13% of the Brazilian emissions from the nitrogenated fertilizer sector. It can be concluded that the viability of renewable ammonia depends on the choice of hydrogen source and logistical optimization and is essential for reducing emissions at large scale. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 12214 KiB  
Article
Brazilian Green Propolis Carried in Lipid-Based Nanostructures: A Potent Adjuvant Therapy to Non-Surgical Periodontal Treatment in the Management of Experimental Periodontitis
by Glauco Rodrigues Carmo Silveira, Vinícius Franzão Ganzaroli, Luan Felipe Toro, Leandro Lemes da Costa, Rodrigo Isaias Lopes Pereira, André Bueno da Silva, Iasmin Rosane Silva Ferreira, João Martins de Mello-Neto, Valdir Gouveia Garcia, Letícia Helena Theodoro, Priscyla Daniely Marcato and Edilson Ervolino
Biomedicines 2025, 13(7), 1643; https://doi.org/10.3390/biomedicines13071643 - 4 Jul 2025
Viewed by 589
Abstract
Objective: This study aimed to evaluate the effects of local use of Brazilian Green Propolis (BGP), either as an ethanolic extract (the most common formulation) or incorporated into lipid-based nanostructures, as an adjuvant therapy for non-surgical periodontal treatment in managing experimental periodontitis [...] Read more.
Objective: This study aimed to evaluate the effects of local use of Brazilian Green Propolis (BGP), either as an ethanolic extract (the most common formulation) or incorporated into lipid-based nanostructures, as an adjuvant therapy for non-surgical periodontal treatment in managing experimental periodontitis (EP) in ovariectomized rats. Methods: Fifty-six female Wistar rats underwent bilateral ovariectomies. After 10 weeks, a cotton ligature was placed around the lower first molar and remained in place for two weeks to induce EP. The ligature was removed, and the rats were randomly assigned in the groups NLT (n = 14), SRP (n = 14), SRP-BGPee (n = 14), and SRP-BGPlns (n = 14). In the NLT group, no local treatment was performed. The SRP group received scaling and root planing (SRP), along with irrigation using a physiological saline solution. The SRP-BGPee group underwent SRP and irrigation with ethanolic extract of BGP. The SRP-BGPlns group underwent SRP and irrigation with BGP-loaded lipid nanostructure (BGPlns). Each group received one SRP session followed by four irrigation sessions with the specified solutions, which were conducted immediately after SRP and subsequently after 2, 4, and 6 days. Euthanasia was performed at 7 and 28 days following the removal of the ligatures. The hemimandibles were processed for the following analyses: microtomographic analysis; histological analysis; histometric analysis of the percentage of bone tissue in the furcation region (PBT); and immunohistochemical analysis for tartrate-resistant acid phosphatase activity (TRAP), transforming growth factor beta 1 (TGFβ1), and osteocalcin (OCN). Results: The SRP-BGPlns group demonstrated superior periodontal tissue repair, reduced alveolar bone loss, fewer TRAP-positive cells (at 7 days), and higher levels of immunolabeling for TGFβ1 (at both 7 and 28 days) and OCN (at 28 days) compared to the other experimental groups. Conclusions: The irrigation with BGP is an effective adjuvant therapy for non-surgical periodontal treatment in managing EP in ovariectomized rats. Its application in lipid-based nanostructures proved to be more effective than the ethanolic extract form. Full article
(This article belongs to the Special Issue Periodontal Disease and Periodontal Tissue Regeneration)
Show Figures

Figure 1

16 pages, 926 KiB  
Article
Valorizing Brazilian Propolis Residue: Comprehensive Characterization for Sustainable Reutilization Strategies
by Agnese Santanatoglia, Laura Acquaticci, Maria Cristina Marcucci, Filippo Maggi, Carlos Rocha Oliveira and Giovanni Caprioli
Plants 2025, 14(13), 1989; https://doi.org/10.3390/plants14131989 - 29 Jun 2025
Viewed by 419
Abstract
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw [...] Read more.
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw propolis, which is typically discarded, despite retaining significant nutritional value. HPLC-ESI-MS/MS analysis identified significant concentrations of p-coumaric acid (637.80 mg/kg), chlorogenic acid (497.93 mg/kg), kaempferol (295.82 mg/kg), and caffeic acid (115.11 mg/kg); while HPLC-DAD revealed also artepillin-C (56.56 mg/kg), illustrating strong antioxidant properties. Nutritional analyses showed high moisture content (37.08%), protein (12.56%) and dietary fiber (24.2%). Additionally, the mineral profile highlighted potassium (9800 mg/kg), phosphorus (2520 mg/kg), and calcium (2100 mg/kg). Volatile compounds analysis via HS-SPME-GC-MS identified a diverse class of components, predominantly terpenoids such as α-pinene (20.09%) and caryophyllene (9.76%), suggesting potential applications in fragrance and flavor industries. The multifunctional nature of propolis residue aligns with circular economy principles and highlights its value as a resource for diverse applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 1431 KiB  
Article
Cenostigma bracteosum Hydroethanolic Extract: Chemical Profile, Antibacterial Activity, Cytotoxicity, and Gel Formulation Development
by Addison R. Almeida, Francisco A. S. D. Pinheiro, Marília G. M. Fideles, Roberto B. L. Cunha, Vitor P. P. Confessor, Kátia N. Matsui, Weslley S. Paiva, Hugo A. O. Rocha, Gislene Ganade, Laila S. Espindola, Waldenice A. Morais and Leandro S. Ferreira
Pharmaceutics 2025, 17(6), 780; https://doi.org/10.3390/pharmaceutics17060780 - 14 Jun 2025
Viewed by 561
Abstract
Background:Cenostigma bracteosum (Tul.) Gagnon & G.P. Lewis (Fabaceae), popularly known as “catingueira”, is a plant widely distributed in the Caatinga biome, which comprises 11% of the Brazilian territory. While this species is of interest given local knowledge, formal reports are lacking in [...] Read more.
Background:Cenostigma bracteosum (Tul.) Gagnon & G.P. Lewis (Fabaceae), popularly known as “catingueira”, is a plant widely distributed in the Caatinga biome, which comprises 11% of the Brazilian territory. While this species is of interest given local knowledge, formal reports are lacking in the literature, warranting targeted investigation. This study aimed to prepare and characterize a hydroethanolic extract of C. bracteosum leaves, prepare carbopol gels containing the extract, and evaluate their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Methods: The initial extract was prepared in an ultrasonic bath using ethanol/water (70:30, v/v). The extract (1 mg/mL) was analyzed by liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Carbopol-based gels containing 1% and 3% of C. bracteosum extract were prepared and characterized in terms of pH, conductivity, spreadability, and rheology. The cytotoxicity was determined by the MTT method using MC3T3-E1 pre-osteoblast cells and L929-CCL1 fibroblast cells. The antibacterial activity of the extract and gels was evaluated using the agar diffusion method against S. aureus and E. coli. Results: The C. bracteosum leaves extract demonstrated antibacterial activity against S. aureus and E. coli, were not cytotoxic for the assessed cells at concentrations up to 100 μg/mL, and its analysis by UHPLC-MS/MS allowed the annotation of 18 metabolites, mainly of the phenolic acid and flavonoids glycoside classes, together with a biflavonoid. The prepared gels remained stable over the 30-day post-production analysis period. Conclusions: These findings provide a better understanding of the chemical diversity of the secondary metabolites of a common Caatinga biome species—C. bracteosum—specifically present in leaves hydroethanolic extract and gel formulation adapted for skin application with activity against S. aureus. Full article
Show Figures

Graphical abstract

17 pages, 735 KiB  
Article
Economic Assessment of Initial Cell Mass Increase in Maize Hydrolysate Fermentation for Ethanol Production
by Lorena Marcele de Faria Leite, Silvio Roberto Andrietta and Telma Teixeira Franco
Processes 2025, 13(6), 1623; https://doi.org/10.3390/pr13061623 - 22 May 2025
Viewed by 368
Abstract
Increasing the cell mass used as an inoculum is an effective strategy for enhancing productivity in alcoholic fermentation processes. In batch processes without cell recycling, such as those used in maize ethanol production, this objective can be achieved through two main approaches: (i) [...] Read more.
Increasing the cell mass used as an inoculum is an effective strategy for enhancing productivity in alcoholic fermentation processes. In batch processes without cell recycling, such as those used in maize ethanol production, this objective can be achieved through two main approaches: (i) increasing the amount of commercially acquired dry cell mass or (ii) extending the propagation time. In this study, an economic assessment of both approaches was carried out, considering the Brazilian industrial context of maize ethanol production. Fermentation assays demonstrated that specific substrate consumption decreases with increasing initial cell concentration, following a hyperbolic model. This experimental behavior was used to simulate different operational scenarios and estimate productivity gains and economic impacts. The results showed that both strategies increase ethanol production and revenue, although the associated costs vary significantly. Based on this model, productivity and revenue gains were estimated for both approaches. The findings suggest that extending the propagation time is the most economically viable strategy to increase the initial cell concentration, even in scenarios where the plant lacks existing infrastructure and additional equipment investments are required. The analysis also accounted for operational costs associated with increased energy consumption during extended aeration time. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

20 pages, 4387 KiB  
Article
Kefir Probiotic-Enriched Non-Alcoholic Beers: Microbial, Genetic, and Sensory-Chemical Assessment
by Alessandra Souza Marques do Nascimento, Raquel Nunes Almeida da Silva, Pedro Paulo Lordelo Guimarães Tavares, Adriana Silva Borges, Marina Passos Soares Cardoso, Ana Katerine de Carvalho Lima Lobato, Rogéria Comastri de Castro Almeida and Karina Teixeira Magalhães-Guedes
Beverages 2025, 11(3), 75; https://doi.org/10.3390/beverages11030075 - 21 May 2025
Viewed by 798
Abstract
Probiotic microorganisms from sugary kefir were incorporated into Brazilian non-alcoholic beers to enhance their functional and nutritional properties through aerobic static fermentation over 24 h. Non-alcoholic beers inoculated with sugary kefir showed appropriate acidity (pH reduction from ~3.74 to ~3.52), color, and microbial [...] Read more.
Probiotic microorganisms from sugary kefir were incorporated into Brazilian non-alcoholic beers to enhance their functional and nutritional properties through aerobic static fermentation over 24 h. Non-alcoholic beers inoculated with sugary kefir showed appropriate acidity (pH reduction from ~3.74 to ~3.52), color, and microbial balance, along with excellent sensory acceptance (scores of 6.9–8.4 on a 9-point hedonic scale). The kefir microbiota included Lacticaseibacillus paracasei, Lacticaseibacillus casei, Lacticaseibacillus paracasei subsp. paracasei, Lacticaseibacillus paracasei subsp. tolerans, Lactobacillus delbrueckii subsp. lactis, Lentilactobacillus parabuchneri, Lentilactobacillus kefiri, Lactococcus lactis, Leuconostoc citreum, Acetobacter lovaniensis, and yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis, Lachancea meyersii, and Kazachstania aerobia. Genetic analysis confirmed the absence of undesirable or pathogenic microorganisms. Fermentation led to reductions in sucrose (~0.35 to ~0.22 g/L) and °Brix (~5.55 to ~3.80), with increases in lactic acid (~0.55 to ~1.25 g/L) and acetic acid (~0.08 to ~0.14 g/L), confirming active microbial metabolism. Ethanol levels remained within legal limits for non-alcoholic beverages. The process preserved sensory attributes while enriching the beverage with well-documented kefir microorganisms. These findings highlight sugary kefir as a promising biotechnological tool to enhance the functional profile of non-alcoholic beers without compromising their sensory quality. Full article
Show Figures

Graphical abstract

14 pages, 657 KiB  
Article
Microemulsions Loaded with Plinia cauliflora Extract and Fractions for Topical Application Against Cutaneous Mycosis
by Rodrigo Sorrechia, Camila Cristina Baccetti Medeiros, João Vitor Carvalho Constantini, Rafaela Regina Fantatto, Bárbara Regina Kapp, Nathália Ferreira Fregonezi, Ana Melero, Ana Marisa Fusco-Almeida, Marlus Chorilli and Rosemeire Cristina Linhari Rodrigues Pietro
Cosmetics 2025, 12(3), 103; https://doi.org/10.3390/cosmetics12030103 - 15 May 2025
Viewed by 775
Abstract
Fungal infections, including skin ones, due to resistant strains combined with the gap in discovering new antifungal compounds have presented great medical importance; thus, we evaluated the antifungal properties of Plinia cauliflora, a Brazilian plant known as jabuticabeira, as its fruits have [...] Read more.
Fungal infections, including skin ones, due to resistant strains combined with the gap in discovering new antifungal compounds have presented great medical importance; thus, we evaluated the antifungal properties of Plinia cauliflora, a Brazilian plant known as jabuticabeira, as its fruits have been used in traditional medicine, which has been scientifically proved. The differential in this study was the use of leaves to obtain the ethanolic extract and its fractions and with incorporation in microemulsions that can increase the activity, promoting greater availability of active components in therapeutic targets. Candida glabrata has been very prominent in nosocomial infections and our results were very promising, showing a minimum inhibitory concentration of 4.88 μg/mL for the extract and about a 4-fold decrease with its microemulsion reaching 1.22 μg/mL; for the dermatophytic fungus Trichophyton rubrum, this decreased 2-fold, from 156.25 μg/mL to 78.12 μg/mL. The antioxidant activity was also studied, showing the best results for the extract at 25.6 μg/mL and lastly, the samples were not toxic when the Galleria mellonella model was used. Thus, the results demonstrate the activity of the extract, and that the incorporation was able to increase the antifungal activity in a safe, non-toxic manner, making it possible to provide a therapeutic option for these fluconazole-resistant microorganisms. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

11 pages, 2059 KiB  
Article
Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged
by Alexandre A. da Silva, Bruna R. Vieira, Elaine Y. Yamauchi, Rosamaria W. C. Li and Jonas Gruber
Chemosensors 2025, 13(5), 172; https://doi.org/10.3390/chemosensors13050172 - 8 May 2025
Viewed by 595
Abstract
Many popular alcoholic beverages, such as Brazilian sugar cane spirit (cachaça), are aged in wood casks to achieve a smoother and more pleasant taste. The type of wood plays an important role in improving the quality of the spirit, with oak being the [...] Read more.
Many popular alcoholic beverages, such as Brazilian sugar cane spirit (cachaça), are aged in wood casks to achieve a smoother and more pleasant taste. The type of wood plays an important role in improving the quality of the spirit, with oak being the most widely used. Due to its elevated price and poor local availability, oak has been gradually replaced in Brazil by other woods, such as Amburana cearensis (Amburana), Cariniana legalis (Jequitibá), Hymenaea courbaril (Jatobá), and Ocotea odorifera (Cinnamon sassafras). For general purposes in beverage quality control and wood identification, and using ethanol/water extracts (cachaça 47% v/v) as a model, this article describes the construction of a low-cost electronic nose that quickly identifies the wood species that was used for aging a cachaça sample. The nose is made of an array of four chemoresistive conductive polymer gas sensors. Principal component and leave-one-out analyses showed perfect classification of all tested samples. Full article
Show Figures

Figure 1

15 pages, 1167 KiB  
Article
Biostimulant Potential of Aquatic Plants: Investigating Egeria densa and Other Macrophytes’ Potential in Crop Growth
by Diego Munhoz Gomes, Raphael Mereb Negrisoli, Alysson Dias Dalmas, Renato Nunes Costa, Mariana Bueno Domingues, Ramon Hernany Gomes, Maria Lúcia Bueno Trindade, Eduardo Heraldo, Caio Antonio Carbonari and Edivaldo Domingues Velini
Plants 2025, 14(7), 1018; https://doi.org/10.3390/plants14071018 - 25 Mar 2025
Viewed by 583
Abstract
This study investigates the potential of macrophytes as biostimulants in agricultural applications through a two-stage experimental approach. In the first stage, a screening experiment evaluated 12 macrophyte species using ethanolic and potassium chloride extracts at two doses (1 and 5 kg fresh biomass/ha) [...] Read more.
This study investigates the potential of macrophytes as biostimulants in agricultural applications through a two-stage experimental approach. In the first stage, a screening experiment evaluated 12 macrophyte species using ethanolic and potassium chloride extracts at two doses (1 and 5 kg fresh biomass/ha) applied to bioindicator species Cucumis sativus (C3) and Urochloa decumbens (C4). Controlled greenhouse conditions and randomized block designs ensured reliability. Dry biomass was measured 21 days after treatment (DAT), revealing varied macrophyte effects. Ethanolic extracts of Typha domingensis and Egeria densa demonstrated significant biomass increases, particularly for U. decumbens, while potassium chloride extracts often reduced biomass. E. densa was selected for further analysis due to its promising results and ease of selective harvesting. In the second stage, a dose–response experiment assessed the impact of E. densa ethanolic extracts on Phaseolus vulgaris at six doses (0.25 to 4 kg fresh biomass/ha). Optimal results were observed at 1–2 kg/ha, yielding 15% increases in plant height and dry biomass. Higher doses showed diminishing returns. These findings highlight the potential of E. densa as a sustainable biostimulant and a solution for macrophyte overabundance in Brazilian reservoirs, supporting agricultural and environmental objectives. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

21 pages, 9529 KiB  
Article
The Effect of Ethanolic Extract of Brazilian Green Propolis and Artepillin C on Cytokine Secretion by Stage IV Glioma Cells Under Hypoxic and Normoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Pharmaceuticals 2025, 18(3), 389; https://doi.org/10.3390/ph18030389 - 9 Mar 2025
Cited by 1 | Viewed by 2517
Abstract
Background: The majority of gliomas are astrocytic in nature. Gliomas have the lowest survival rate among all tumors of the central nervous system (CNS), characterized by high aggressiveness and poor response to treatment. The tumor microenvironment is a source of cytokines such as [...] Read more.
Background: The majority of gliomas are astrocytic in nature. Gliomas have the lowest survival rate among all tumors of the central nervous system (CNS), characterized by high aggressiveness and poor response to treatment. The tumor microenvironment is a source of cytokines such as IL-6, IFN-γ, VEGF, and PDGF-BB, secreted mainly by tumor and immune cells. These cytokines play a significant role in angiogenesis, invasion, and metastasis formation. In vitro and in vivo studies have shown that Brazilian green propolis, derived from Baccharis dracunculifolia DC and rich in artepillin C, exhibits anti-inflammatory, antimicrobial, chemopreventive, and anticancer activities. Additionally, it can penetrate the blood–brain barrier, demonstrating neuroprotective effects. The aim of the present study was to determine the concentration of selected cytokines produced by astrocytes of the CCF-STTG1 cell line, isolated from the brain of a patient with stage IV glioma (astrocytoma). Methods: The cytotoxicity of the EEP-B was evaluated using the MTT assay. Astrocytes were stimulated with LPS at a final concentration of 200 ng/mL and/or IFN-α at 100 U/mL, followed by incubation with EEP-B (25–50 µg/mL) and artepillin C (25–50 µg/mL) under 2-h hypoxia and normoxia conditions. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine kit. Results: The absence of cytotoxic effects of EEP-B and artepillin C on human astrocytes of the CCF-STTG1 lineage was demonstrated. Stimulation with LPS, IFN-α, and their combination (LPS + IFN-α) significantly increased the secretion of the tested cytokines compared to the control cell line. The most pronounced and statistically significant reduction in cytokine levels, particularly IL-6 and VEGF, was observed following EEP-B treatment at both tested concentrations under both hypoxic and normoxic conditions. Conclusions: Brazilian green propolis may serve as a potential immunomodulator in combination therapies for gliomas of varying malignancy grades. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Production and Characterization of First-Generation Bioethanol from Extracted Mesquite Pod (Prosopis juliflora (Sw.) DC.) Broth
by Manoel T. Leite Filho, Mário E. R. M. Cavalcanti-Mata, Maria E. M. Duarte, Alexandre S. Lúcio, Francisca M. Sousa, Mylena O. P. Melo, Jorge J. A. Martins, João M. P. Q. Delgado and Antonio G. B. Lima
Sustainability 2025, 17(1), 173; https://doi.org/10.3390/su17010173 - 29 Dec 2024
Viewed by 1202
Abstract
The mesquite tree (Prosopis juliflora) is cultivated across 500,000 hectares in the semi-arid region of Brazil, primarily aimed at recovering degraded areas in the northeastern part of the country, which represents 15.7% of the national territory. However, its economic potential remains [...] Read more.
The mesquite tree (Prosopis juliflora) is cultivated across 500,000 hectares in the semi-arid region of Brazil, primarily aimed at recovering degraded areas in the northeastern part of the country, which represents 15.7% of the national territory. However, its economic potential remains underutilized. Mesquite pods are particularly rich in carbohydrates, making them a promising raw material for bioethanol production. This study investigates the production of first-generation bioethanol from mesquite pods as feedstock. Mature pods were sourced from local producers in Sumé Town, located in the Cariri Paraibano microregion of Brazil. Sugar extraction from the mesquite pods involved hydration followed by pressing, with the extracted juice adjusted to a pH of 4.3 and soluble solids (°Brix) concentrations corrected to 20, 18, and 16. The juice was then subjected to fermentation using different yeast strains (fresh yeast, granular yeast, and FLNF CA-11) at a concentration of 25 g L−1. Alcoholic fermentation was carried out in a batch system, with measurements of cell concentration (biomass), soluble solids (°Brix), ethanol concentration (°GL), and pH taken at 2 h intervals over a 20 h period. The best physicochemical characterization of bioethanol was obtained using the LNF CA-11 yeast at 20 °Brix, producing a biofuel that met Brazilian legal standards set by the National Petroleum Agency (ANP). The bioethanol had a colorless appearance and was free of impurities, with a titratable acidity of 28.2 mg of acetic acid, electrical conductivity of 282.33 µS m−1, a specific mass of 809 kg m−3, an alcohol content of 95.5 °GL, a pH of 6.28, and no evaporation residue in 100 mL. Additionally, the highest bioethanol yield was achieved with broth fermented at 18 °Brix and LNF CA-11 yeast. These results highlight the potential of mesquite pods as a renewable energy alternative, especially relevant in the context of the global climate crisis; the growing need to reduce dependence on fossil fuels; and the need to reduce environmental problems; and they promote the added-value and use of this product. Full article
Show Figures

Figure 1

20 pages, 459 KiB  
Article
Brazil’s New Green Hydrogen Industry: An Assessment of Its Macroeconomic Viability Through an Input–Output Approach
by Patricia Helena dos Santos Martins, André Luiz Marques Serrano, Gabriel Arquelau Pimenta Rodrigues, Guilherme Fay Vergara, Gabriela Mayumi Saiki, Raquel Valadares Borges, Guilherme Dantas Bispo, Maria Gabriela Mendonça Peixoto and Vinícius Pereira Gonçalves
Economies 2024, 12(12), 333; https://doi.org/10.3390/economies12120333 - 5 Dec 2024
Cited by 5 | Viewed by 2601
Abstract
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence, Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its [...] Read more.
This manuscript explores the role of green hydrogen produced through ethanol reforming in accelerating Brazil’s transition to a low-carbon economic framework. Despite ongoing efforts to lessen carbon dependence, Brazil’s reliance on biofuels and other renewable energy sources remains inadequate for fully achieving its decarbonization objectives. Green hydrogen presents a vital opportunity to boost energy sustainability, especially in sectors that are challenging to decarbonize, such as industry and transportation. By analyzing Brazil’s input–output (I-O) table, using data from the Brazilian Institute of Geography and Statistics (IBGE), this study evaluates the macroeconomic potential of green hydrogen, focusing on GDP growth and employment generation. Furthermore, the research explores green hydrogen systems’ economic feasibility and potential impact on future energy policies, offering valuable insights for stakeholders and decision-makers. In addition, this investigation highlights Brazil’s abundant renewable resources and identifies the infrastructural investments necessary to support a green hydrogen economy. The findings aim to strengthen Brazil’s national decarbonization strategy and serve as a model for other developing nations transitioning to clean energy. Full article
Show Figures

Figure 1

14 pages, 1597 KiB  
Article
Schinus terebinthifolia Raddi—Untargeted Metabolomics Approach to Investigate the Chemical Variation in Volatile and Non-Volatile Compounds
by Mara Junqueira Carneiro, Guilherme Perez Pinheiro, Elisa Ribeiro Miranda Antunes, Leandro Wang Hantao, Thomas Moritz and Alexandra Christine Helena Frankland Sawaya
Metabolites 2024, 14(11), 612; https://doi.org/10.3390/metabo14110612 - 11 Nov 2024
Viewed by 1329
Abstract
Context: Schinus terebinthifolia Raddi is used in Brazilian folk medicine due to the wound healing and antiseptic properties of its bark, and its fruit are used as a condiment. However, the aerial parts of this plant have been studied and present some bioactive [...] Read more.
Context: Schinus terebinthifolia Raddi is used in Brazilian folk medicine due to the wound healing and antiseptic properties of its bark, and its fruit are used as a condiment. However, the aerial parts of this plant have been studied and present some bioactive compounds as well. Objectives: The aim of this study was to investigate the variation in volatile and non-volatile composition of S. terebinthifolia leaves using untargeted metabolomics. Material and Methods: The leaves of four trees were collected over one year; ethanolic extracts were analyzed by UHPLC-MS and fresh leaves were analyzed by GC-MS using HS-SPME. The data were processed using online software. Results: The results suggest seasonality interfered little with the chemical composition of leaves. On the other hand, the sex of the plant clearly determined the chemical composition of both volatile and non-volatile compounds. Discussion and conclusions: Chemical variability between plants with male and female flowers is fundamental information for the standardized use of its leaves. Compounds with important biological activities were putatively identified, confirming the potential use of S. terebinthifolia leaves as a source of bioactive compounds, reducing waste and increasing economic gains for local farmers throughout the year. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Figure 1

25 pages, 1319 KiB  
Article
Biofuel Dynamics in Brazil: Ethanol–Gasoline Price Threshold Analysis for Consumer Preference
by Letícia Rezende Mosquéra, Matheus Noschang de Oliveira, Patricia Helena dos Santos Martins, Guilherme Dantas Bispo, Raquel Valadares Borges, André Luiz Marques Serrano, Fabiano Mezadre Pompermayer, Clovis Neumann, Vinícius Pereira Gonçalves and Carlos Alberto Schuch Bork
Energies 2024, 17(21), 5265; https://doi.org/10.3390/en17215265 - 23 Oct 2024
Cited by 2 | Viewed by 2226
Abstract
The global transition towards environmentally friendly energy sources plays a major role in addressing both energy security and climate change. Brazil is at the forefront of this transition due to its rich natural resources and increasing investments in biofuels. Therefore, this investigation examines [...] Read more.
The global transition towards environmentally friendly energy sources plays a major role in addressing both energy security and climate change. Brazil is at the forefront of this transition due to its rich natural resources and increasing investments in biofuels. Therefore, this investigation examines the consumption patterns and interactions between ethanol, primarily sourced from sugarcane, and gasoline within Brazil’s energy framework. Ethanol’s renewability, reduced environmental impact, and superior combustion characteristics position it as a feasible substitute for traditional fossil fuels. Nonetheless, obstacles like competition for land use and inadequate distribution infrastructure impede its widespread acceptance. This study explores the economic interaction between ethanol and gasoline, focusing on pricing dynamics and regional influences. Using consumer preferences and the accessibility of ethanol, this research identifies a range of price ratios within which consumer preferences shift from gasoline to ethanol in various Brazilian regions. The study also classifies Brazilian states into three distinct ranges based on the ethanol-to-gasoline price ratio in 2023 for a granular analysis of the economic dynamics influencing fuel choice. The research identifies states with competitive and dominant ethanol markets by examining the interplay between ethanol market share, fuel prices, and the adoption of flex-fuel vehicles (FFVs) in the country. Lastly, the findings support the importance of regional economic conditions and the influence of price ratios on consumer behavior, highlighting that ethanol’s market share does not always correlate with favorable pricing. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

13 pages, 1878 KiB  
Article
The Anti-Arthritic Potential of the Ethanolic Extract of Salvia Lachnostachys Benth. Leaves and Icetexane Dinor-Diterpenoid Fruticuline B
by Natália de M. Balsalobre, Elisangela dos Santos-Procopio, Cristhian S. Oliveira, Silvia C. Neves, Maria H. Verdan, Saulo E. Silva-Filho, Rodrigo J. Oliveira, Maria É. A. Stefanello and Cândida A. L. Kassuya
Pharmaceuticals 2024, 17(9), 1226; https://doi.org/10.3390/ph17091226 - 18 Sep 2024
Cited by 2 | Viewed by 1404
Abstract
The decoction of Salvia lachnostachys Benth. leaves is used in Brazilian folk medicine for anti-spasmodic, antipyretic, and anxiolytic purposes. Some of the biological effects of an S. lachnostachys extract have been shown to be anti-inflammatory, anti-cancer, and antidepressant effects. In addition, this medicinal [...] Read more.
The decoction of Salvia lachnostachys Benth. leaves is used in Brazilian folk medicine for anti-spasmodic, antipyretic, and anxiolytic purposes. Some of the biological effects of an S. lachnostachys extract have been shown to be anti-inflammatory, anti-cancer, and antidepressant effects. In addition, this medicinal plant produces several compounds including icetexane diterpenoids, such as fruticuline A and fruticuline B. The aim of the present work was to evaluate the anti-hyperalgesic and anti-inflammatory properties of fruticuline B (FRUT B) and the ethanolic extract obtained from the leaves of S. lachnostachys (EESL) in experimental mouse models. EESL (30, 100, and 300 mg/kg) and FRUT B (1 mg/kg) were evaluated in articular inflammation-induced models in Swiss mice. In articular inflammation induced by Zymosan, EESL (300 mg/kg) and FRUT B (1 mg/kg) significantly reduced mechanical hyperalgesia (83.17% inhibition for EESL and 81.19% for FRUT B); edema (68.75% reduction for EESL and 33.66% for FRUT B); leukocyte migration (81.3% for EESSL and 92.2% for FRUT B), and nitric oxide production (88.3% for EESL and 74.4% for FRUT B). The exposure to fruticuline B significantly inhibited the edema (51.5%), mechanical (88.12%) and cold hyperalgesia (80.8%), and myeloperoxidase (MPO) (63.4%) activity 24 h after CFA injection. In the pleurisy model, FRUT B reduced 89.1% of leukocyte migration and 50.3% in nitric oxide production. Four hours after carrageenan injection, FRUT B (1 mg/kg) diminished 89.11% of mechanical hyperalgesia, 65.8% of paw edema, and 82.12% of the response to cold hyperalgesia. In the MTT test, EESL and fruticuline B caused no cytotoxicity. The present study revealed, for the first time, the anti-arthritic and anti-nociceptive effects of FRUT B, pointing out the therapeutic potential of the species to control inflammation and nociception. Future studies are needed to evaluate other biological properties of fruticuline B and to better understand its mechanism of action. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Figure 1

Back to TopTop