Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = Barents–Kara seas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3278 KiB  
Article
Marine Highways and Barriers: A Case Study of Limacina helicina Phylogeography Across the Siberian Arctic Shelf Seas
by Galina A. Abyzova, Tatiana V. Neretina, Mikhail A. Nikitin, Anna O. Shapkina and Alexander L. Vereshchaka
Diversity 2025, 17(8), 522; https://doi.org/10.3390/d17080522 - 27 Jul 2025
Viewed by 377
Abstract
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. [...] Read more.
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. We analyzed mitochondrial COI sequences from populations sampled in the Barents, Kara, Laptev, East Siberian, and White Seas, as well as adjacent Pacific regions. Three major haplogroups (H1, H2, H3) were identified with distinct spatial patterns. H1 is widespread, occurring across the Pacific and most Arctic seas except the White Sea. H2 is confined to the western Arctic shelves (Barents–Kara–Laptev), and H3 is unique to the White Sea. We found a pronounced genetic discontinuity corresponding to hydrographic barriers, particularly the strong freshwater inflow from the Lena River, which restricts eastward dispersal of H2 from the Laptev to the East Siberian Sea. These patterns suggest postglacial expansions from geographically separated populations that survived the Last Glacial Maximum in isolated marine regions. The White Sea population is highly isolated and genetically distinct. Our results highlight how both glacial history and modern oceanography shape Arctic plankton diversity and define biogeographic boundaries in a rapidly changing climate. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
by Ziyi Song, Xuejie Zhao, Yuepeng Hu, Fang Zhou and Jiahao Lu
Atmosphere 2025, 16(7), 838; https://doi.org/10.3390/atmos16070838 - 10 Jul 2025
Viewed by 225
Abstract
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD [...] Read more.
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD and the preceding spring Barents–Kara Seas ice concentration (BKSIC) during 1979–2023. Specifically, the loss of spring BKSIC promotes an earlier MOD. Further analysis indicates that decreased spring BKSIC reduces the reflection of shortwave radiation, thereby enhancing oceanic solar radiation absorption and warming sea surface temperature (SST) in spring. The warming SST persists into summer and induces significant deep warming in the BKS through enhanced upward longwave radiation. The BKS deep warming triggers a wave train propagating southeastward to the East Asia–Northwest Pacific region, leading to a strengthened East Asian Subtropical Jet and an intensified Western North Pacific Subtropical High in summer. Under these conditions, the transport of warm and humid airflows into the YHRB is enhanced, promoting convective instability through increased low-level warming and humidity, combined with enhanced wind shear, which jointly contribute to an earlier MOD. These results may advance the understanding of MOD variability and provide valuable information for disaster prevention and mitigation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 3999 KiB  
Article
An Investigation of Reverberation Received by a Vertical Antenna at Short Ranges in Shallow Seas
by Dmitry A. Kosteev, Alexey V. Ermoshkin, Vera I. Kalinina and Mikhail B. Salin
J. Mar. Sci. Eng. 2025, 13(6), 1122; https://doi.org/10.3390/jmse13061122 - 4 Jun 2025
Viewed by 383
Abstract
In this paper, we discuss the results of hydroacoustic sounding in the frequency range of units of kHz, conducted during voyage No. 90 of the research vessel “Akademik Mstislav Keldysh”. The employment of a vertical antenna array and electronic phasing to the recorded [...] Read more.
In this paper, we discuss the results of hydroacoustic sounding in the frequency range of units of kHz, conducted during voyage No. 90 of the research vessel “Akademik Mstislav Keldysh”. The employment of a vertical antenna array and electronic phasing to the recorded data made it possible to determine both the reflection coefficient from the bottom at incidence close to normal, and the diffuse scattering coefficients at oblique angles for the surface and the bottom. Based on the processing of experimental data, and with the help of computer modeling, an analysis of the structure of hydroacoustic signals scattered by the bottom and free surface of water was carried out. An approach combining the Green’s function and the scattering function was used to model the reverberation signal. The models of formation of the Doppler spectrum of the scattered acoustic signal were refined, taking into account the influence of sound propagation conditions in the marine environment. The comparison of the results of experimental studies of bottom reverberation in the waters of the Barents and Kara Seas with numerical calculations of the ray structure of the acoustic field demonstrates good agreement. Full article
(This article belongs to the Special Issue Ocean Observations)
Show Figures

Figure 1

21 pages, 20411 KiB  
Article
Time-Lag Effects of Winter Arctic Sea Ice on Subsequent Spring Precipitation Variability over China and Its Possible Mechanisms
by Hao Wang, Wen Wang and Fuxiong Guo
Water 2025, 17(10), 1443; https://doi.org/10.3390/w17101443 - 10 May 2025
Viewed by 608
Abstract
Arctic sea ice variations exhibit relatively strong statistical associations with precipitation variability over northeastern and southern China. Using Arctic Ocean reanalysis data from the EU Copernicus Project, this study examines the time-lagged statistical relationships between winter Arctic sea ice conditions and subsequent spring [...] Read more.
Arctic sea ice variations exhibit relatively strong statistical associations with precipitation variability over northeastern and southern China. Using Arctic Ocean reanalysis data from the EU Copernicus Project, this study examines the time-lagged statistical relationships between winter Arctic sea ice conditions and subsequent spring precipitation variability over China through wavelet analysis and Granger causality tests. Singular value decomposition (SVD) identifies the Barents, Kara, East Siberian, and Chukchi Seas as key regions exhibiting strong associations with spring precipitation anomalies. Increased winter sea ice in the East Siberian and Chukchi Seas generates positive geopotential height anomalies over the Arctic and negative anomalies over Northeast Asia, adjusting upper-level jet streams and influencing precipitation patterns in Northeast China. Conversely, increased sea ice in the Barents–Kara Seas leads to persistent negative geopotential height anomalies simultaneously occurring over both the Arctic and South China regions, enhancing southern jet stream activity and intensifying warm-moist airflow at the 850 hPa level, thus favoring precipitation in southern China. Compared to considering only climate factors such as the Pacific Decadal Oscillation (PDO), El Niño–Southern Oscillation (ENSO), and Arctic Oscillation (AO), the inclusion of Arctic sea ice significantly enhances the influence of multiple climate factors on precipitation variability in China. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

11 pages, 2065 KiB  
Article
Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands
by Igor V. Miskevich, Alexey S. Lokhov, Dmitry S. Moseev and Ekaterina I. Kotova
J. Mar. Sci. Eng. 2024, 12(9), 1570; https://doi.org/10.3390/jmse12091570 - 6 Sep 2024
Cited by 1 | Viewed by 949
Abstract
The results of studies on the content of aluminum and heavy metals in benthic sediments and algae in the estuaries of the Arctic island Vaygach are presented. This island is located on the Barents and Kara Sea border, and it is part of [...] Read more.
The results of studies on the content of aluminum and heavy metals in benthic sediments and algae in the estuaries of the Arctic island Vaygach are presented. This island is located on the Barents and Kara Sea border, and it is part of the Pay-Khoi ridge which can be called a “continuation” of the Ural Mountains to the north. The observations were conducted in Krasnaya and Varkulyakha Rivers located in the island’s southern part and flow into the Yugorsky Shar Strait. Krasnaya River is located near a polymetallic ore deposit, which was developed in 1931–1934. Reconnaissance fieldwork was carried out in the river estuaries through measurements of salinity and water level. Measurements of the mass concentration of elements in the studied samples of sediments and algae were carried out by atomic emission spectrometry. The preparation of plant samples was by microwave decomposition, and that for samples of bottom sediments was carried out by acid decomposition in an open manner. The obtained concentration samples were compared using “Tukey exploratory data analysis (EDA)”. The presence of anomalies in the high content of copper, manganese, and zinc in filamentous algae at the control site in the Krasnaya River estuary was revealed. For some elements, the enrichment index was calculated relative to the upper part of the earth’s crust content. It is assumed that the occurrence of this situation is due to the long-term consequences of mining polymetallic ores. The accumulation of metals in river estuaries may be related to the observed warming of the climate in the western sector of the Arctic region. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

14 pages, 7749 KiB  
Article
Analysis of Arctic Sea Ice Concentration Anomalies Using Spatiotemporal Clustering
by Yongheng Li, Yawen He, Yanhua Liu and Feng Jin
J. Mar. Sci. Eng. 2024, 12(8), 1361; https://doi.org/10.3390/jmse12081361 - 10 Aug 2024
Viewed by 1083
Abstract
The dynamic changes of sea ice exhibit spatial clustering, and this clustering has characteristics extending from its origin, through its development, and to its dissipation. Current research on sea ice change primarily focuses on spatiotemporal variation trends and remote correlation analysis, and lacks [...] Read more.
The dynamic changes of sea ice exhibit spatial clustering, and this clustering has characteristics extending from its origin, through its development, and to its dissipation. Current research on sea ice change primarily focuses on spatiotemporal variation trends and remote correlation analysis, and lacks an analysis of spatiotemporal evolution characteristics. This study utilized monthly sea ice concentration (SIC) data from the National Snow and Ice Data Center (NSIDC) for the period from 1979 to 2022, utilizing classical spatiotemporal clustering algorithms to analyze the clustering patterns and evolutionary characteristics of SIC anomalies in key Arctic regions. The results revealed that the central-western region of the Barents Sea was a critical area where SIC anomaly evolutionary behaviors were concentrated and persisted for longer durations. The relationship between the intensity and duration of SIC anomaly events was nonlinear. A positive correlation was observed for shorter durations, while a negative correlation was noted for longer durations. Anomalies predominantly occurred in December, with complex evolution happening in April and May of the following year, and concluded in July. Evolutionary state transitions mainly occurred in the Barents Sea. These transitions included shifts from the origin state in the northwestern margin to the dissipation state in the central-north Barents Sea, from the origin state in the central-north to the dissipation state in the central-south, and from the origin state in the northeastern to the dissipation state in the central-south Barents Sea and southeastern Kara Sea. Various evolutionary states were observed in the same area on the southwest edge of the Barents Sea. These findings provide insights into the evolutionary mechanism of sea ice anomalies. Full article
(This article belongs to the Special Issue Recent Research on the Measurement and Modeling of Sea Ice)
Show Figures

Figure 1

19 pages, 2043 KiB  
Article
Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data
by Marko Mäkynen and Markku Similä
Remote Sens. 2024, 16(9), 1600; https://doi.org/10.3390/rs16091600 - 30 Apr 2024
Cited by 1 | Viewed by 1427
Abstract
Thin ice with a thickness of less than half a meter produces strong salt and heat fluxes which affect deep water circulation and weather in the polar oceans. The identification of thin ice areas is essential for ship navigation. We have developed thin [...] Read more.
Thin ice with a thickness of less than half a meter produces strong salt and heat fluxes which affect deep water circulation and weather in the polar oceans. The identification of thin ice areas is essential for ship navigation. We have developed thin ice detection algorithms for the AMSR2 and FY-3C MWRI radiometer data over the Arctic Ocean. Thin ice (<20 cm) is detected based on the classification of the H-polarization 89–36-GHz gradient ratio (GR8936H) and the 36-GHz polarization ratio (PR36) signatures with a linear discriminant analysis (LDA) and thick ice restoration with GR3610H. The brightness temperature (TB) data are corrected for the atmospheric effects following an EUMETSAT OSI SAF correction method in sea ice concentration retrieval algorithms. The thin ice detection algorithms were trained and validated using MODIS ice thickness charts covering the Barents and Kara Seas. Thin ice detection is applied to swath TB datasets and the swath charts are compiled into a daily thin ice chart using 10 km pixel size for AMSR2 and 20 km for MWRI. On average, the likelihood of misclassifying thick ice as thin in the ATIDA2 daily charts is 7.0% and 42% for reverse misclassification. For the MWRI chart, these accuracy figures are 4% and 53%. A comparison of the MWRI chart to the AMSR2 chart showed a very high match (98%) for the thick ice class with SIC > 90% but only a 53% match for the thin ice class. These accuracy disagreements are due to the much coarser resolution of MWRI, which gives larger spatial averaging of TB signatures, and thus, less detection of thin ice. The comparison of the AMSR2 and MWRI charts with the SMOS sea ice thickness chart showed a rough match in the thin ice versus thick ice classification. The AMSR2 and MWRI daily thin ice charts aim to complement SAR data for various sea ice classification tasks. Full article
(This article belongs to the Special Issue Recent Advances in Sea Ice Research Using Satellite Data)
Show Figures

Figure 1

15 pages, 1456 KiB  
Article
Culturable Microorganisms of Aerosols Sampled during Aircraft Sounding of the Atmosphere over the Russian Arctic Seas
by Irina S. Andreeva, Aleksandr S. Safatov, Larisa I. Puchkova, Nadezhda A. Solovyanova, Olesya V. Okhlopkova, Maksim E. Rebus, Galina A. Buryak, Boris D. Belan and Denis V. Simonenkov
Atmosphere 2024, 15(3), 365; https://doi.org/10.3390/atmos15030365 - 17 Mar 2024
Cited by 2 | Viewed by 1988
Abstract
Atmospheric sounding using the Tu-134 Optik aircraft-laboratory was conducted in September 2020 over the seas of the Russian sector of the Arctic Ocean, namely the Barents, Kara, Laptev, East Siberian, Chukchi and Bering seas. Unique samples of atmospheric aerosols at altitudes from 200 [...] Read more.
Atmospheric sounding using the Tu-134 Optik aircraft-laboratory was conducted in September 2020 over the seas of the Russian sector of the Arctic Ocean, namely the Barents, Kara, Laptev, East Siberian, Chukchi and Bering seas. Unique samples of atmospheric aerosols at altitudes from 200 and up to 10,000 m were taken, including samples for the identification of cultivated microorganisms and their genetic analysis. Data on the concentration and diversity of bacteria and fungi isolated from 24 samples of atmospheric aerosols are presented; the main phenotypic and genomic characteristics were obtained for 152 bacterial cultures; and taxonomic belonging was determined. The concentration of cultured microorganisms detected in aerosols of different locations was similar, averaging 5.5 × 103 CFU/m3. No dependence of the number of isolated microorganisms on the height and location of aerosol sampling was observed. The presence of pathogenic and condto shitionally pathogenic bacteria, including those referred to in the genera Staphylococcus, Kocuria, Rothia, Comamonas, Brevundimonas, Acinetobacter, and others, as well as fungi represented by the widely spread genera Aureobasidium, Aspergillus, Alternaria, Penicillium, capable of causing infectious and allergic diseases were present in most analyzed samples. Obtained data reveal the necessity of systematic studies of atmospheric microbiota composition to combat emerging population diseases. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

22 pages, 11317 KiB  
Article
Numerical Study of the Riverine Microplastic Distribution in the Arctic Ocean
by Elena Golubeva and Marina Gradova
Water 2024, 16(3), 441; https://doi.org/10.3390/w16030441 - 29 Jan 2024
Cited by 10 | Viewed by 2623
Abstract
Marine plastic pollution is currently one of the most serious environmental threats. In this study, based on scenario calculations for a five-year period, we analyzed the possible spread of microplastics carried by Siberian rivers to the Kara Sea shelf. The Lagrangian particle model [...] Read more.
Marine plastic pollution is currently one of the most serious environmental threats. In this study, based on scenario calculations for a five-year period, we analyzed the possible spread of microplastics carried by Siberian rivers to the Kara Sea shelf. The Lagrangian particle model used daily data from 3D numerical modeling to simulate microplastic transport by ocean currents and sea ice drift. The results of a series of scenario calculations show how the distribution of particles and their subsequent deposition depend on their type (density), size, processes of freezing into the ice, and biofouling (accumulation of microorganisms). The crucial influence of the effects of microplastic embedding in sea ice and particle biofouling on the trajectories of floating particles and their deposition on the seafloor is highlighted. The transport of light particles of microplastics from Siberian rivers by ice can contribute to the pollution of the Barents Sea, in addition to their more active outflow through the Fram Strait. Biofouling is a driver of microplastic deposition on the shelf bottom or transport along the continental slope in a cyclonic direction following the trajectory of the Atlantic waters. Full article
(This article belongs to the Special Issue Environment and Ecosystems Research for Natural Waters)
Show Figures

Figure 1

22 pages, 22245 KiB  
Article
Multi-Sensor Observations Reveal Large-Amplitude Nonlinear Internal Waves in the Kara Gates, Arctic Ocean
by Igor E. Kozlov, Ilya O. Kopyshov, Dmitry I. Frey, Eugene G. Morozov, Igor P. Medvedev, Arina I. Shiryborova, Ksenya P. Silvestrova, Aleksandr V. Gavrikov, Elizaveta A. Ezhova, Dmitry M. Soloviev, Evgeny V. Plotnikov, Vladislav R. Zhuk, Pavel V. Gaisky, Alexander A. Osadchiev and Natalia B. Stepanova
Remote Sens. 2023, 15(24), 5769; https://doi.org/10.3390/rs15245769 - 17 Dec 2023
Cited by 8 | Viewed by 2837
Abstract
We present multi-sensor measurements from satellites, unmanned aerial vehicle, marine radar, thermal profilers, and repeated conductivity–temperature–depth casts made in the Kara Gates strait connecting the Barents and the Kara Seas during spring tide in August 2021. Analysis of the field data during an [...] Read more.
We present multi-sensor measurements from satellites, unmanned aerial vehicle, marine radar, thermal profilers, and repeated conductivity–temperature–depth casts made in the Kara Gates strait connecting the Barents and the Kara Seas during spring tide in August 2021. Analysis of the field data during an 18-h period from four stations provides evidence that a complex sill in the Kara Gates is the site of regular production of intense large-amplitude nonlinear internal waves. Satellite data show a presence of a relatively warm northeastward surface current from the Barents Sea toward the Kara Sea attaining 0.8–0.9 m/s. Triangle-shaped measurements using three thermal profilers revealed pronounced vertical thermocline oscillations up to 40 m associated with propagation of short-period nonlinear internal waves of depression generated by stratified flow passing a system of shallow sills in the strait. The most intense waves were recorded during the ebb tide slackening and reversal when the background flow was predominantly supercritical. Observed internal waves had wavelengths of ~100 m and traveled northeastward with phase speeds of 0.8–0.9 m/s. The total internal wave energy per unit crest length for the largest waves was estimated to be equal to 1.0–1.8 MJ/m. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Ocean, Sea Ice and Atmosphere Dynamics)
Show Figures

Figure 1

7 pages, 1375 KiB  
Proceeding Paper
Extreme Wind Speed Long-Term Trends Evaluation in the Russian Arctic Based on the COSMO-CLM 36-Year Hindcast
by Vladimir Platonov, Fedor Kozlov and Aksinia Boiko
Environ. Sci. Proc. 2023, 27(1), 6; https://doi.org/10.3390/ecas2023-15126 - 14 Oct 2023
Viewed by 710
Abstract
The high-resolution long-term hydrometeorological “COSMO-CLM Russian Arctic hindcast” based on nonhydrostatic regional atmospheric model COSMO-CLM v.5.06 for the 1980–2016 period covering the North Atlantic, Barents, and Kara and Laptev Seas with ~12 km grid size was utilized to estimate climatological trends of extreme [...] Read more.
The high-resolution long-term hydrometeorological “COSMO-CLM Russian Arctic hindcast” based on nonhydrostatic regional atmospheric model COSMO-CLM v.5.06 for the 1980–2016 period covering the North Atlantic, Barents, and Kara and Laptev Seas with ~12 km grid size was utilized to estimate climatological trends of extreme wind speed. In this study, we used the 10 m wind speed data from 95 Russian weather stations inside the hindcast domain. Trends in mean, maximal, 0.90, 0.95, 0.99 quantiles wind speed values, and occurrences of wind speed above 20, 25, 30, and 33 m/s were calculated for all stations and corresponding nearest model grids for yearly data and data from four months of the calendar year (January, April, July, and October). Yearly mean wind speed and quantiles values were observed to increase over the northern Kara Sea, while decreases were observed over the western Barents Sea and northern Atlantic. Extreme wind speeds were observed to increase in January in the eastern Evenkia and northern Yakutia, while declining was observed over north-eastern European Russia. The 0.99 quantile values increased in July near the Gyda peninsula coastline, but decreased over polar regions, the Pechora Sea, and the White Sea coastline. Maximal wind speed declined in October over north-western European Russia, eastern Taymyr, and the Norway Sea, but grew over the Eastern Siberian Sea. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

14 pages, 4634 KiB  
Article
Cerianthus lloydii (Ceriantharia: Anthozoa: Cnidaria): New Status and New Perspectives
by Tina N. Molodtsova, Viktoria N. Moskalenko, Elizabeth V. Lipukhin, Tatiana I. Antokhina, Marina S. Ananeva and Ulyana V. Simakova
Biology 2023, 12(9), 1167; https://doi.org/10.3390/biology12091167 - 24 Aug 2023
Cited by 2 | Viewed by 2245
Abstract
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, [...] Read more.
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, also known from the Northern Atlantic and Northern Pacific. The integrity of this species was questioned in the literature, so we performed a molecular study of C. lloydii from several geographically distant locations using 18S and COI genes. The phylogenetic reconstructions show that specimens of C. lloydii form a single group with high support (>0.98), subdivided into distinctive clades: (1) specimens from Northern Europe, the Black and Barents seas, and (2) specimens from the White, Kara, Laptev, and Bering seas and also the Canadian Arctic and the Labrador Sea available via the BOLD database. There are several BOLD COI sequences of Pachycerianthus borealis (Verrill, 1873), which form a third clade of the C. lloydii group, sister to the European and Arctic clades. Based on low similarity (COI 86–87%) between C. lloydii and the type species of the genus Cerianthus Delle Chiaje, 1841—C. membranaceus (Gmelin, 1791), we propose a new status for the genus Synarachnactis Carlgren, 1924, and a new family Synarachnactidae to accommodate C. lloydii. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

19 pages, 12691 KiB  
Article
Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models
by Haohan Chen, Jian Rao, Huidi Yang, Jingjia Luo and Gangsen Wu
Atmosphere 2023, 14(6), 1044; https://doi.org/10.3390/atmos14061044 - 17 Jun 2023
Viewed by 1887
Abstract
Our previous study revealed the link between Barents–Kara sea ice and rainfall in eastern China. This study continues evaluating the performance of multiple models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating this linkage. Most CMIP6 models can simulate [...] Read more.
Our previous study revealed the link between Barents–Kara sea ice and rainfall in eastern China. This study continues evaluating the performance of multiple models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating this linkage. Most CMIP6 models can simulate Arctic sea ice coverage in the present climate system, although the sea ice extent in the edge areas show some biases. Only a few models can roughly reproduce the observed rainfall dipole pattern associated with Arctic sea ice variability. The linkage between Arctic sea ice variability in winter and eastern China rainfall in early summer is performed through a long memory of the sea ice, the stratospheric variability as the mediator, and downward propagation of stratospheric signals. Very few CMIP6 models can exhibit a realistic interannual relationship between the Arctic sea ice and China rainfall. The selected high-skill models with a more realistic linkage between sea ice and China rainfall present a clear downward impact of the stratospheric circulation anomalies associated with sea ice variability. The reversal of the Northern Hemisphere Annular Mode (NAM) from the negative phase in early winter to the positive phase in spring in the high-skill models and observations denotes the important role of the stratosphere as a mediator to bridge the Arctic sea ice and China rainfall. The long memory of the Arctic sea ice with the stratosphere as the mediator has a deep implication on the seasonal forecasts of East Asian countries. Full article
(This article belongs to the Topic Cryosphere: Changes, Impacts and Adaptation)
Show Figures

Figure 1

18 pages, 4612 KiB  
Article
Wind Waves Web Atlas of the Russian Seas
by Stanislav Myslenkov, Timofey Samsonov, Anastasia Shurygina, Sofia Kiseleva and Victor Arkhipkin
Water 2023, 15(11), 2036; https://doi.org/10.3390/w15112036 - 27 May 2023
Cited by 7 | Viewed by 2581
Abstract
The main parameters of wind waves in the World Ocean are connected with global climate change. Renewable energy technologies, intensive shipping, fishery, marine infrastructure, and many different human marine activities in the coastal zone and open sea need knowledge about the wind-wave climate. [...] Read more.
The main parameters of wind waves in the World Ocean are connected with global climate change. Renewable energy technologies, intensive shipping, fishery, marine infrastructure, and many different human marine activities in the coastal zone and open sea need knowledge about the wind-wave climate. The main motivation of this research is to share various wind wave parameters with high spatial resolution in the coastal zone via a modern cartographic web atlas. The developed atlas contains information on 13 Russian Seas, including the Azov, Black, Baltic, Caspian, White, Barents, Kara, Laptev, East Siberian, Chukchi, Bering Seas, the Sea of Okhotsk, and the Sea of Japan/East Sea. The analysis of wave climate was based on the results of wave modeling by WAVEWATCH III with input NCEP/CFSR wind and ice data. The web atlas was organized using the classic three-tier architecture, which includes a data storage subsystem (database server), a data analysis and publishing subsystem (GIS server), and a web application subsystem that provides a user interface for interacting with data and map services (webserver). The web atlas provides access to the following parameters: mean and maximum significant wave height, wave length and period, wave energy flux, wind speed, and wind power. The developed atlas allows changing the map scale (zoom) for detailed analysis of wave parameters in the coastal zones where the wave model spatial resolution is 300–1000 m. Full article
(This article belongs to the Special Issue Numerical Modelling of Ocean Waves and Analysis of Wave Energy)
Show Figures

Figure 1

19 pages, 4515 KiB  
Article
Large-Scale Variation in Diversity of Biomass-Dominating Key Bryozoan Species in the Seas of the Eurasian Sector of the Arctic
by Nina V. Denisenko and Stanislav G. Denisenko
Diversity 2023, 15(5), 604; https://doi.org/10.3390/d15050604 - 28 Apr 2023
Cited by 2 | Viewed by 1584
Abstract
An analysis of archival and literary materials, as well as recently collected data in coastal areas at 14 locations in the Eurasian seas showed that the diversity of biomass-dominating key bryozoan species is low, totaling 26 species, less than 1/15 of the total [...] Read more.
An analysis of archival and literary materials, as well as recently collected data in coastal areas at 14 locations in the Eurasian seas showed that the diversity of biomass-dominating key bryozoan species is low, totaling 26 species, less than 1/15 of the total bryozoan fauna richness. Their number decreases eastward from 17 species with an average total biomass of >16 g/m2 in the Barents Sea to three species with an average biomass of about 3 g/m2 in the East Siberian Sea. In the Chukchi Sea, their number and average biomass increase to 10 species and ~12 g/m2, respectively. Average biomass strongly correlates with the number of species in each sea. Furthermore, variation in biomass is significantly correlated with the composition of bottom sediments and, in some locations, with depth. The marked decrease in the number of key species along the vector from Barents→Kara→Laptev→East Siberian Sea is due to a decline in the number of boreal and boreal–Arctic bryozoans of Atlantic origin. In contrast, the appearance of boreal and boreal–Arctic Pacific species is responsible for the increase in key species in the Chukchi Sea. Full article
(This article belongs to the Special Issue Marine Nearshore Biodiversity)
Show Figures

Figure 1

Back to TopTop