Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. CMIP6 Models and Outputs
3. Results
3.1. Climatology and Variability of Barents–Kara Sea Ice in CMIP6 Models
3.2. Impact of the Barents–Kara Sea Ice on June Rainfall in Eastern China in CMIP6
3.2.1. Divergent Rainfall Patterns Associated with Arctic Sea Ice Change
3.2.2. Multi-Model Comparison
3.3. Physical Processes Associated with Barents–Kara Sea Ice Forcing
3.3.1. Long Memory of Arctic Sea Ice
3.3.2. Atmospheric Circulation Changes Associated with Sea Ice Forcing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Mysak, L.A.; Venegas, S.A. Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere-ice-ocean interactions. Geophys. Res. Lett. 1998, 25, 3607–3610. [Google Scholar] [CrossRef]
- He, J.; Li, Q.; Wu, F. Arctic sea ice declining and its impact on the cold Eurasian winters: A review. Adv. Earth Sci. 2014, 29, 913–921. [Google Scholar] [CrossRef]
- He, J.H.; Wu, F.M.; Qi, L. Decadal/Interannual linking between autumn Arctic sea ice and following winter Eurasian air temperature. Chin. J. Geophys. 2015, 58, 1089–1102. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wu, B.Y. Linkage between Autumn sea ice loss and ensuing spring Eurasian temperature. Clim. Dyn. 2021, 57, 2793–2810. [Google Scholar] [CrossRef]
- Bushuk, M.; Msadek, R.; Winton, M.; Vecchi, G.A.; Gudgel, R.; Rosati, A.; Yang, X.S. Summer enhancement of Arctic sea ice volume anomalies in the September-ice zone. J. Clim. 2017, 30, 2341–2362. [Google Scholar] [CrossRef] [Green Version]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate Models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Wu, F.; Li, W.; Li, W. Causes of Arctic amplification: A review. Adv. Earth Sci. 2019, 34, 232–242. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 36, 136–157. [Google Scholar] [CrossRef]
- Warner, J.L.; Screen, J.A.; Scaife, A.A. Links between Barents-Kara sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys. Res. Lett. 2020, 47, e2019GL085679. [Google Scholar] [CrossRef]
- Wang, S.; Nath, D.; Chen, W.; Ma, T. CMIP5 model simulations of warm Arctic-cold Eurasia pattern in winter surface air temperature anomalies. Clim. Dyn. 2020, 54, 4499–4513. [Google Scholar] [CrossRef]
- Honda, M.; Inoue, J.; Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 2009, 36, L08707. [Google Scholar] [CrossRef]
- Petoukhov, V.; Semenov, V.A. A Link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atmos. 2010, 115, D21111. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wu, B.Y.; Chen, W. Dominant characteristics of early autumn Arctic sea ice variability and its impact on winter Eurasian climate. J. Clim. 2021, 34, 1825–1846. [Google Scholar] [CrossRef]
- Guo, D.; Gao, Y.Q.; Bethke, I.; Gong, D.Y.; Johannessen, O.M.; Wang, H.J. Mechanism on how the spring Arctic sea ice impacts the east Asian summer monsoon. Theor. Appl. Climatol. 2014, 115, 107–119. [Google Scholar] [CrossRef]
- Xie, Y.K.; Liu, Y.Z.; Huang, J.P. The influence of the autumn Arctic sea ice on winter air temperature in China. Acta Meteorol. Sin. 2014, 72, 703–710. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, F.; Xie, X. Predictability of Chinese summer extreme rainfall based on Arctic sea ice and tropical sea surface temperature. J. Ocean Univ. China 2019, 18, 626–632. [Google Scholar] [CrossRef]
- Yang, H.; Rao, J.; Chen, H. Possible lagged impact of the Arctic sea ice in Barents–Kara seas on June precipitation in Eastern China. Front. Earth Sci. 2022, 10, 886192. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Zhou, X.; Ikeda, M.; Yin, Y. The sea ice extent anomaly in the north Pacific and its impact on the east Asian summer monsoon rainfall. J. Clim. 2004, 17, 3434–3447. [Google Scholar] [CrossRef]
- Wu, B.Y.; Zhang, R.H.; Wang, B. On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Adv. Atmos. Sci. 2009, 26, 666–678. [Google Scholar] [CrossRef]
- Shen, H.B.; He, S.P.; Wang, H.J. Effect of summer Arctic sea ice on the reverse August precipitation anomaly in eastern China between 1998 and 2016. J. Clim. 2019, 32, 3389–3407. [Google Scholar] [CrossRef]
- Zhang, R.N.; Zhang, R.H.; Zuo, Z.Y. Impact of Eurasian spring snow decrement on east Asian summer precipitation. J. Clim. 2017, 30, 3421–3437. [Google Scholar] [CrossRef]
- Deser, C.; Tomas, R.A.; Sun, L.T. The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Clim. 2015, 28, 2168–2186. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; Son, S.W.; Min, S.K.; Jeong, J.H.; Kim, S.J.; Zhang, X.D.; Shim, T.; Yoon, J.H. Weakening of the stratospheric polar vortex by Arctic sea-ice Loss. Nat. Commun. 2014, 5, 4646. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.T.; Deser, C.; Polvani, L.; Tomas, R. Influence of projected Arctic sea ice loss on polar stratospheric ozone and Circulation in Spring. Environ. Res. Lett. 2014, 9, 084016. [Google Scholar] [CrossRef]
- Cai, D.; Dameris, M.; Garny, H.; Runde, T. Implications of all season Arctic sea-ice anomalies on the stratosphere. Atmos. Chem. Phys. 2012, 12, 11819–11831. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.T.; Deser, C.; Tomas, R.A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 2015, 28, 7824–7845. [Google Scholar] [CrossRef]
- Tang, Q.H.; Zhang, X.J.; Yang, X.H.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Sui, C.J.; Zhang, Z.H.; Yu, L.J.; Li, Y.; Song, M.R. Sensitivity and nonlinearity of Eurasian winter temperature response to recent Arctic sea ice loss. Acta Oceanol. Sin. 2017, 36, 52–58. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M.Y. Increased variability in the early winter subarctic north American Atmospheric Circulation. J. Clim. 2015, 28, 7297–7305. [Google Scholar] [CrossRef]
- Hoshi, K.; Ukita, J.; Honda, M.; Nakamura, T.; Yamazaki, K.; Miyoshi, Y.; Jaiser, R. Weak stratospheric polar vortex events modulated by the Arctic sea-ice loss. J. Geophys. Res. Atmos. 2019, 124, 858–869. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, M.; Zappa, G.; Shepherd, T.G. The role of Barents–Kara sea ice loss in projected polar vortex changes. Weather Clim. Dyn. 2020, 1, 715–730. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Masson, D.; Gettelman, A. Climate Model Genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Chu, M.; Shi, X.; Fang, Y.; Zhang, L.; Wu, T.; Zhou, B. Impacts of SIS and CICE as sea ice components in BCC_CSM on the simulation of the Arctic climate. J. Ocean Univ. China 2019, 18, 553–562. [Google Scholar] [CrossRef]
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 2007, 34, L09501. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2013, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; Mcavaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T.; Black, R.X.; Butler, A.H.; Calvo, N.; Davis, N.A.; Gerber, E.P.; Gillett, N.; Hardiman, S. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Garfinkel, C.I.; Wu, T.; Lu, Y.; Chu, M. Mean state of the northern hemisphere stratospheric polar vortex in three generations of CMIP models. J. Clim. 2022, 35, 4603–4625. [Google Scholar] [CrossRef]
- Onarheim, I.H.; Eldevik, T.; Smedsrud, L.H.; Stroeve, J.C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 2018, 31, 4917–4932. [Google Scholar] [CrossRef]
- Ringgaard, I.M.; Yang, S.T.; Kaas, E.; Christensen, J.H. Barents-Kara sea ice and European winters in EC-Earth. Clim. Dyn. 2020, 54, 3323–3338. [Google Scholar] [CrossRef] [Green Version]
- Liptak, J.; Strong, C. The winter atmospheric response to sea ice anomalies in the Barents sea. J. Clim. 2014, 27, 914–924. [Google Scholar] [CrossRef]
- Woollings, T.; Harvey, B.; Masato, G. Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ. Res. Lett. 2014, 9, 014002. [Google Scholar] [CrossRef]
- Lu, C.; Li, K.; Xie, S.; Wang, Z.; Qin, Y. Month-to-month variability of autumn sea ice in the Barents and Kara seas and its relationship to winter air temperature in China. Adv. Meteorol. 2019, 2019, 4381438. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Perrie, W. Changes in ocean temperature in the Barents sea in the twenty-first century. J. Clim. 2017, 30, 5901–5921. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Gao, Y. Change in sea ice cover is responsible for non-uniform variation in winter temperature over east Asia. Atmos. Ocean. Sci. Lett. 2015, 8, 382. [Google Scholar] [CrossRef]
- Jaiser, R.; Dethloff, K.; Handorf, D. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus A 2013, 65, 19375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.N.; Sun, C.H.; Zhang, R.H.; Jia, L.W.; Li, W.J. The impact of arctic sea ice on the inter-annual variations of summer Ural blocking. Int. J. Climatol. 2018, 38, 4632–4650. [Google Scholar] [CrossRef]
- Coumou, D.; Lehmann, J.; Beckmann, J. The weakening summer circulation in the northern hemisphere mid-latitudes. Science 2015, 348, 324–327. [Google Scholar] [CrossRef]
- Lin, Z.D.; Li, F. Impact of interannual variations of spring sea ice in the Barents sea on east Asian rainfall in June. Atmos. Ocean. Sci. Lett. 2018, 11, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, M.E.; Ayarzagüena, B.; Screen, J.A. Interseasonal connections between the timing of the stratospheric final warming and Arctic sea ice. J. Clim. 2020, 33, 3079–3092. [Google Scholar] [CrossRef]
- Wang, S.; Nath, D.; Chen, W.; Wang, L. Recent strengthening of Greenland blocking drives summertime surface warming over northern Canada and eastern Siberia. J. Clim. 2019, 32, 3263–3278. [Google Scholar] [CrossRef]
- Fan, K. North pacific sea ice cover, a predictor for the western north Pacific typhoon frequency? Sci. China Earth Sci. 2007, 50, 1251–1257. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, R.; D’arrigo, R.; Su, J. On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Clim. 2013, 26, 5523–5536. [Google Scholar] [CrossRef]
- Kodera, K.; Chiba, M.; Yamazaki, K.; Shibata, K.A. Possible influence of the polar night stratospheric jet on the subtropical tropospheric jet. J. Meteorol. Soc. Jpn. 2007, 69, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Statnaia, I.; Karpechko, A.; Kämäräinen, M.; Järvinen, H. Stratosphere–troposphere coupling enhances subseasonal predictability of northern Eurasian cold spells. Q. J. R. Meteorol. Soc. 2022, 148, 2769–2783. [Google Scholar] [CrossRef]
- Perlwitz, J.; Graf, H.-F. Troposphere-stratosphere dynamic coupling under strong and weak polar vortex conditions. Geophys. Res. Lett. 2001, 28, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ren, R.; Xu, H. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. JAS. 2014, 71, 2319–2334. [Google Scholar] [CrossRef]
- Peings, Y.; Magnusdottir, G. Response of the wintertime northern hemisphere atmospheric circulation to current and projected arctic sea ice decline: A numerical study with CAM5. J. Clim. 2014, 27, 244–264. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Yang, S.; Li, W.; Zhang, R.; Wu, R. Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Clim. Dyn. 2016, 47, 481–496. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ding, S. Influence of spring Arctic sea ice melt on Eurasian surface air temperature. Clim. Dyn. 2022, 59, 3305–3316. [Google Scholar] [CrossRef]
Affiliation | CMIP6 ID and Names | Resolution (Models Top) | Sea Ice Model |
---|---|---|---|
CSIRO, Australia | (1) ACCESS-CM2 | N96L85 (85 km) | CICE5.1.2 |
(2) ACCESS-ESM1-5 | N96L38 (39.2 km) | CICE4.1 | |
AWI, Germany | (3) AWI-CM-1-1-MR | T27L95 (80 km) | FESOM 1.4 |
CMA BCC, China | (4) BCC-CSM2-MR | T106L46 (1.46 hPa) | SIS2 |
(5) BCC-ESM1 | T42L26 (2.19 hPa) | SIS2 | |
CAMS, China | (6) CAMS-CSM1-0 | T106L31 (10 hPa) | SIS 1.0 |
(9) CAS-ESM2-0 | 256 × 128L35 (2.2 hPa) | CICE4 | |
CCCMA, Canada | (7) CanESM5 | T63L49 (1 hPa) | LIM2 |
(8) CanESM5-CanOE | T63L49 (1 hPa) | LIM2 | |
NCAR,USA | (10) CESM2 | F09L32 (2.25 hPa) | CICE5.1 |
(11) CESM2-FV2 | F19L32 (2.25 hPa) | CICE5.1 | |
(12) CESM2-WACCM | F9L70 (4.5 × 10−6 hPa) | CICE5.1 | |
(13) CESM2-WACCM-FV2 | F19L66 (4.5 × 10−6 hPa) | CICE5.1 | |
CMCC, Italy | (14) CMCC-CM2-HR4 | 288 × 192L26 (2 hPa) | CICE4.0 |
(15) CMCC-ESM2 | 288 × 192L30 (2 hPa) | CICE4.0 | |
CNRM, France | (16) CNRM-CM6-1 | T127L91 (78.4 km) | Gelato 6.1 |
(17) CNRM-ESM2-1 | T127L91 (78.4 km) | Gelato 6.1 | |
E3SM-Project,USA | (18) E3SM-1-0 | F09L72 (0.1 hPa) | MPAS-Sea ice |
(19) E3SM-1-1 | F09L72 (0.1 hPa) | MPAS-Sea ice | |
(20) E3SM-1-1-ECA | F09L72 (0.1 hPa) | MPAS-Sea ice | |
EC-Earth-Consortium, Europe | (21) EC-Earth3-AerChem | TL255L91 (0.01 hPa) | LIM3 |
(22) EC-Earth3-CC | TL255L91 (0.01 hPa) | LIM3 | |
(23) EC-Earth3-Veg | TL255L91 (0.01 hPa) | LIM3 | |
(24) EC-Earth3-Veg-LR | TL159L62 (5 hPa) | LIM3 | |
CAS, China | (25) FGOALS-f3-L | C96L32 (2.16 hPa) | CICE4.0 |
(26) FGOALS-g3 | 180 × 80L26 (2.19 hPa) | CICE4.0 | |
FIO, China | (27) FIO-ESM-2-0 | 192 × 288L26 (2 hPa) | CICE4.0 |
NOAA-GFDL, USA | (28) GFDL-CM4 | C96L33 (1 hPa) | GFDL-SIM4p25 |
(29) GFDL-ESM4 | C96L49 (0.01 hPa) | GFDL-SIM4p5 | |
NASA-GISS, USA | (30) GISS-E2-1-G | 144 × 90L40 (0.1 hPa) | GISS SI |
(31) GISS-E2-1-G-CC | 144 × 90L40 (0.1 hPa) | GISS SI | |
(32) GISS-E2-1-H | 144 × 90L40 (0.1 hPa) | GISS SI | |
MOHC, UK | (33) HadGEM3-GC31-LL | N96L85 (85 km) | CICE-HadGEM3-GSI8 |
(34) HadGEM3-GC31-MM | N216L85 (85 km) | CICE-HadGEM3-GSI8 | |
INM, Russia | (35) INM-CM4-8 | 180 × 120L21 (10 hPa) | INM-ICE1 |
(36) INM-CM5-0 | 180 × 120L73 (0.2 hPa) | INM-ICE1 | |
IPSL, France | (37) IPSL-CM6A-LR | N96L79 (80 km) | NEMO-LIM3 |
MIROC, Japan | (38) MIROC6 | T85L81 (0.004 hPa) | COCO4.9 |
(39) MIROC-ES2L | T42L40 (3 hPa) | COCO4.9 | |
MPI, Germany | (40) MPI-ESM1.2-HAM | T63L47 (0.01 hPa) | unnamed |
(41) MPI-ESM1.2-LR | T63L47 (0.01 hPa) | unnamed | |
NUIST, China | (42) NESM | T63L47 (1 hPa) | CICE4.1 |
(43) NorCPM1 | 144 × 96L32 (2 hPa) | CICE4 | |
BCCR and NCC, Norway | (44) NorESM2-LM | 144 × 96L32 (3 hPa) | CICE |
(45) NorESM2-MM | 288 × 192L32 (3 hPa) | CICE | |
SNU, South Korea | (46) SAM0-UNICON | 288 × 192L30 (2 hPa) | CICE4.0 |
AS-RCEC, Taiwan, China | (47) TaiESM1 | 288 × 192L30 (2 hPa) | CICE4 |
MOHC, UK | (48) UKESM1-0-LL | N96L85 (85 km) | CICE-HadGEM3-GSI8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Rao, J.; Yang, H.; Luo, J.; Wu, G. Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models. Atmosphere 2023, 14, 1044. https://doi.org/10.3390/atmos14061044
Chen H, Rao J, Yang H, Luo J, Wu G. Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models. Atmosphere. 2023; 14(6):1044. https://doi.org/10.3390/atmos14061044
Chicago/Turabian StyleChen, Haohan, Jian Rao, Huidi Yang, Jingjia Luo, and Gangsen Wu. 2023. "Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models" Atmosphere 14, no. 6: 1044. https://doi.org/10.3390/atmos14061044
APA StyleChen, H., Rao, J., Yang, H., Luo, J., & Wu, G. (2023). Underrepresentation of the Linkage between the Barents–Kara Sea Ice and East Asian Rainfall in Early Summer by CMIP6 Models. Atmosphere, 14(6), 1044. https://doi.org/10.3390/atmos14061044