Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = BIRC5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2351 KiB  
Article
Transcriptomic Profiling Reveals Gene Expression Changes in Mouse Liver Tissue During Alveolar Echinococcosis
by Xiongying Zhang, Qing Zhang, Na Liu, Jia Liu, Huixia Cai, Cunzhe Zhao, Kemei Shi, Wen Lei, Wanli Ma, Shuai Guo, Wei Wang, Xiao Ma and Mei Wang
Genes 2025, 16(7), 839; https://doi.org/10.3390/genes16070839 - 18 Jul 2025
Viewed by 237
Abstract
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, [...] Read more.
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, there remains a dearth of knowledge concerning changes in gene expression profiles during the progression of AE. In this study, we employed transcriptome sequencing (RNA sequencing, RNA-Seq) to detect alterations in gene expression profiles in the liver tissues of mice with AE. Our aims were to understand the transcriptome differences in the liver during E. multilocularis infection and to explore the molecular mechanisms underlying the early progression of this disease. Methods: We established a mouse model of AE by intraperitoneally injecting protoscoleces of E. multilocularis. All the inoculated mice were randomly divided into four groups. Liver tissues were collected at 6, 12, 19, and 25 weeks after inoculation. Paired non-infected mouse-derived liver tissues were used as controls, and transcriptome sequencing was carried out. Results: A total of 629 differentially expressed genes (DEGs) were identified. Among them, 370 genes were upregulated and 259 genes were downregulated. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were significantly associated with immune system modulation, the cell cycle, and the fibrosis process during the pathological changes. Additionally, weighted gene co-expression network analysis (WGCNA) identified several genes, including CCNA2, BIRC5, KIF2C, OTC, TLR2, and NCKAP1L. These hub genes involved in immunoinflammatory processes may be related to E. multilocularis larvae infection. Conclusions: The findings of this research provide a theoretical foundation for a more in-depth understanding of the molecular mechanisms of AE. They offer valuable insights into the molecular mechanisms and potential key factors involved in the pathogenesis of this disease. Full article
Show Figures

Figure 1

20 pages, 1298 KiB  
Article
Genetic Variants in BIRC5 (rs8073069, rs17878467, and rs9904341) Are Associated with Susceptibility in Mexican Patients with Breast Cancer: Clinical Associations and Their Analysis In Silico
by María Renee Jiménez-López, César de Jesús Tovar-Jácome, Alejandra Palacios-Ramírez, Martha Patricia Gallegos-Arreola, Teresa Giovanna María Aguilar-Macedo, Rubria Alicia González-Sánchez, Efraín Salas-González, José Elías García-Ortiz, Clara Ibet Juárez-Vázquez and Mónica Alejandra Rosales-Reynoso
Genes 2025, 16(7), 786; https://doi.org/10.3390/genes16070786 - 30 Jun 2025
Viewed by 499
Abstract
Background/Objectives: Breast cancer (BC) is a multifactorial disease, with genetic alterations in cell proliferation and migration pathways being significant risk factors. This study examines the association between three variants in the BIRC5 gene (rs8073069, rs17878467, and rs9904341) and breast cancer (BC) susceptibility. Methods: [...] Read more.
Background/Objectives: Breast cancer (BC) is a multifactorial disease, with genetic alterations in cell proliferation and migration pathways being significant risk factors. This study examines the association between three variants in the BIRC5 gene (rs8073069, rs17878467, and rs9904341) and breast cancer (BC) susceptibility. Methods: Peripheral blood DNA samples were collected from 423 women (221 BC patients and 202 healthy controls). Genotyping was performed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) methodology. Associations were calculated using odds ratios (OR), with p-values adjusted by the Bonferroni test (significance at p ≤ 0.016). In silico analyses were conducted to predict the functional impact of the analyzed variants. Results: Patients carrying the C/C genotype for the rs8073069 variant showed increased susceptibility to BC with early TNM (tumor-node-metastasis classification) stage and Luminal A subtype (OR > 2.00; p ≤ 0.004). For the rs17878467 variant, patients with the C/T or T/T genotype exhibited a higher susceptibility to developing breast cancer (BC), particularly at early TNM stages or with a histological lobular type (OR > 2.00; p ≤ 0.012). Regarding the rs9904341 variant, patients with the G/C or C/C genotype had a higher susceptibility to breast cancer. Notably, G/C genotype carriers with Luminal A and B subtypes, and C/C genotype carriers who had TNM stages II and III, and Luminal A, Luminal B, and HER2 subtypes demonstrated increased risk (OR > 2.00; p ≤ 0.009). The C-T-C haplotype (rs8073069–rs17878467–rs9904341) was significantly associated with BC (OR = 4.20; 95% CI = 2.38–7.41; p ≤ 0.001). In silico analysis using CADD indicated a low probability of deleterious effects. Conclusions: The results suggest that the rs8073069, rs17878467, and rs9904341 variants in BIRC5 have a significant influence on breast cancer susceptibility. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 5609 KiB  
Article
Effects of Chronic Low-Salinity Stress on Growth, Survival, Antioxidant Capacity, and Gene Expression in Mizuhopecten yessoensis
by Haoran Xiao, Xin Jin, Zitong Wang, Qi Ye, Weiyan Li, Lingshu Han and Jun Ding
Biology 2025, 14(7), 759; https://doi.org/10.3390/biology14070759 - 25 Jun 2025
Viewed by 319
Abstract
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth [...] Read more.
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth performance, antioxidant capacity, and gene expression profile of M. yessoensis using a 60-day salinity gradient experiment. S33 represents the control treatment with normal seawater salinity (33‰), while S30, S28, and S26 represent experimental groups with progressively lower salinities of 30‰, 28‰, and 26‰, respectively. A decline in salinity was accompanied by an increase in oxygen consumption. The S26 group exhibited a higher ammonia excretion rate (2.73 μg/g·h) than other groups, indicating intensified nitrogen metabolism. Growth was inhibited under low-salinity conditions. The S33 group exhibited greater weight gain (16.7%) and shell growth (8.4%) compared to the S26 group (11.6% and 6%), which also showed a substantially higher mortality rate (46%) compared to the control (13%). At 28‰, antioxidant enzyme activities (T-AOC, SOD, CAT, POD) were elevated, indicating a moderate level of stress. However, at the lowest salinity (26‰), these indicators decreased, reflecting the exhaustion of the antioxidant systems and indicating that the mollusks’ adaptive capacity had been exceeded, leading to a state of stress fatigue. NAD-MDH activity was elevated in the S26 group, reflecting enhanced aerobic metabolism under stress. Transcriptome analysis revealed 564 differentially expressed genes (DEGs) between the S33 and S26 groups. Functional enrichment analysis indicated that these DEGs were mainly associated with immune and stress response pathways, including NF-κB, TNF, apoptosis, and Toll/Imd signaling. These genes are involved in key metabolic processes, such as alanine, aspartate, and glutamate metabolism. Genes such as GADD45, ATF4, TRAF3, and XBP1 were upregulated, contributing to stress repair and antioxidant responses. Conversely, the expressions of CASP3, IKBKA, BIRC2/3, and LBP were downregulated, potentially mitigating apoptosis and inflammatory responses. These findings suggest that M. yessoensis adapts to chronic low-salinity stress through the activation of antioxidant systems, modulation of immune responses, and suppression of excessive apoptosis. This study provides new insights into the molecular mechanisms underlying salinity adaptation in bivalves and offers valuable references for scallop aquaculture and selective breeding programs. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

16 pages, 625 KiB  
Review
Survivin Interference and SurVaxM as an Adjunct Therapy for Glioblastoma Multiforme
by Willie James Elliott, Nandini Gurramkonda, Maheedhara R. Guda, Andrew J. Tsung and Kiran K. Velpula
Cells 2025, 14(10), 755; https://doi.org/10.3390/cells14100755 - 21 May 2025
Cited by 1 | Viewed by 733
Abstract
Glioblastoma, IDH wild-type WHO Grade IV, is a devastating diagnosis in pediatric and adult populations with a poor prognosis and median overall survival of less than two years. Despite the advent of the Stupp protocol and advances in neurosurgical tumor resection techniques, there [...] Read more.
Glioblastoma, IDH wild-type WHO Grade IV, is a devastating diagnosis in pediatric and adult populations with a poor prognosis and median overall survival of less than two years. Despite the advent of the Stupp protocol and advances in neurosurgical tumor resection techniques, there has been minimal change to both the quantity and quality of life in individuals diagnosed. Provided the extensive research on survivin’s association with glioblastoma tumor microenvironment, this review suggests that priming the individual’s immune systems to the tumor-promoting protein may reduce tumor burden through multiple mechanisms, including the arrest of the G2/M phase, microtubule dysfunction, induction of autophagy, and ultimately activation of apoptosis in glioblastoma cells. SurVaxM, a multiple peptide, survivin-specific vaccine, may assist in tumor cell destruction by eliciting the production of cytotoxic T-cells specific to survivin-expression glioblastoma tumors. Although phase I and II clinical trials suggest relatively safe adverse effects and potential efficacy, additional research is necessary to evaluate further how this vaccine may compare to standard treatment. Full article
Show Figures

Figure 1

20 pages, 7593 KiB  
Article
Epigenetic Silencing of miR-218-5p Modulates BIRC5 and DDX21 Expression to Promote Colorectal Cancer Progression
by Hibah Shaath, Radhakrishnan Vishnubalaji, Khalid Ouararhni and Nehad M. Alajez
Int. J. Mol. Sci. 2025, 26(9), 4146; https://doi.org/10.3390/ijms26094146 - 27 Apr 2025
Viewed by 781
Abstract
Colorectal cancer remains one of the leading causes of cancer-related deaths globally. Non-protein coding RNAs, including microRNAs, have emerged as crucial regulators in cancer progression. Herein, we analyzed publicly available datasets for miRNA expression in healthy controls, adenomatous polyps, and colorectal cancer and [...] Read more.
Colorectal cancer remains one of the leading causes of cancer-related deaths globally. Non-protein coding RNAs, including microRNAs, have emerged as crucial regulators in cancer progression. Herein, we analyzed publicly available datasets for miRNA expression in healthy controls, adenomatous polyps, and colorectal cancer and identified their regulatory networks using HCT116 and HT-29 CRC models. Differentially expressed miRNAs in adenomatous polyps and colorectal cancer were identified, highlighting their role in colorectal cancer initiation and progression. Notably, miR-218-5p was significantly downregulated in adenomatous polyps and colorectal cancer, suggesting a role in colorectal cancer initiation. Functional investigations revealed a tumor suppressive role for miR-218-5p in HCT116 and HT-29 CRC cell models, affecting cell proliferation and three-dimensional organoid formation and promoting cell death. RNA-Seq and bioinformatics identified BIRC5 and DDX21 as bona fide gene targets for miR-218-5p, validated by reverse transcription quantitative PCR and Western blotting. Further investigation into the genomic location of miR-218-5p, embedded within the SLIT2 and SLIT3 introns on chromosome 4 and chromosome 5, respectively, revealed epigenetic silencing through promoter hypermethylation in colorectal cancer cell models. These findings highlight epigenetic silencing of miR-218-5p in colorectal cancer, suggesting its potential as a biomarker and therapeutic target for early detection and intervention. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Human Diseases)
Show Figures

Graphical abstract

16 pages, 3427 KiB  
Article
BIRC3 RNA Editing Modulates Lipopolysaccharide-Induced Liver Inflammation: Potential Implications for Animal Health
by Wangchang Li, Duming Cao, Meiyi Shi and Xiaogan Yang
Int. J. Mol. Sci. 2025, 26(7), 2941; https://doi.org/10.3390/ijms26072941 - 24 Mar 2025
Viewed by 520
Abstract
Animals and humans are frequently infected by bacteria or exposed to bacterial derivatives in contaminated food, drinking water, or air, which significantly impacts their health. Among these bacterial sources, LPS (lipopolysaccharide) is the primary culprit. While it is widely known that LPS can [...] Read more.
Animals and humans are frequently infected by bacteria or exposed to bacterial derivatives in contaminated food, drinking water, or air, which significantly impacts their health. Among these bacterial sources, LPS (lipopolysaccharide) is the primary culprit. While it is widely known that LPS can cause liver inflammation and damage in animals, few studies have investigated this mechanism from the perspective of RNA editing. In this study, we administered LPS to mice via gavage to induce a liver injury model. We then used RNA editing omics approaches (RE-seq) to analyze RNA editing events potentially leading to liver inflammation following LPS administration, aiming to reveal the crucial role of RNA editing in LPS-induced processes. At the RNA editing level, we observed significant differences between the LPS group and the control (CON) group. Specifically, we identified 354 differentially edited genes, with 192 upregulated and 162 downregulated. These differentially edited genes were significantly enriched in pathways related to apoptosis, mTOR signaling, oxidative stress, and Nf-Kappa B signaling. By further integrating gene expression profiles and using a nine-quadrant analysis, we identified an important gene, Birc3, which showed significantly higher editing and expression levels in the LPS group. This gene is directly linked to liver inflammation and damage. The RNA editing of Birc3 represents a significant potential mechanism underlying LPS-induced liver damage, providing a novel approach for addressing animal and human health issues. Full article
Show Figures

Figure 1

34 pages, 2242 KiB  
Review
Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer
by Francesca Pia Carbone, Pietro Ancona, Stefano Volinia, Anna Terrazzan and Nicoletta Bianchi
Biology 2025, 14(3), 253; https://doi.org/10.3390/biology14030253 - 2 Mar 2025
Viewed by 2809
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind [...] Read more.
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments. Full article
(This article belongs to the Special Issue Advances in Biological Breast Cancer Research)
Show Figures

Graphical abstract

25 pages, 65903 KiB  
Article
Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments
by Xinhe Lu, Yuhang Luo, Yun Huang, Zhiqiang Zhu, Hongyan Yin and Shunqing Xu
Int. J. Mol. Sci. 2025, 26(2), 773; https://doi.org/10.3390/ijms26020773 - 17 Jan 2025
Cited by 1 | Viewed by 1826
Abstract
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine [...] Read more.
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated BIRC5 knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene BIRC5 and the natural killer (NK) cells that express BIRC5 at the highest levels. BIRC5 knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 6915 KiB  
Article
RIPK4 Downregulation Reduces ABCG2 Expression, Increasing BRAF-Mutated Melanoma Cell Susceptibility to Cisplatin- and Doxorubicin-Induced Apoptosis
by Bartlomiej Olajossy, Norbert Wronski, Ewelina Madej, Joanna Komperda, Małgorzata Szczygieł and Agnieszka Wolnicka-Glubisz
Biomolecules 2024, 14(12), 1573; https://doi.org/10.3390/biom14121573 - 10 Dec 2024
Cited by 2 | Viewed by 1485
Abstract
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. [...] Read more.
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. Despite this, the role of RIPK4 in response to chemotherapeutics in melanoma has not been reported. In this study, we examined how the downregulation and overexpression of RIPK4 affect the sensitivity of BRAF-mutated melanoma cells (A375 and WM266.4) to CisPt and DOX along with determining the underlying mechanism. Using two RIPK4 silencing methods (siRNA and CRISPR/Cas9) and overexpression (dCas9-VPR), we assessed CisPt and DOX-induced apoptosis using caspase 3/7 activity, annexin V/7AAD staining, and FASC analysis. In addition, qRT-PCR and Western blotting were used to detect apoptosis-related genes and proteins such as cleaved PARP, p53, and cyclin D1. We demonstrated that the overexpression of RIPK4 inhibits, while its downregulation enhances, CisPt- or DOX-induced apoptosis in melanoma cells. The effects of downregulation are similar to those observed with pre-incubation with cyclosporin A, an ABCG2 inhibitor. Additionally, our findings provide preliminary evidence of crosstalk between RIPK4, BIRC3, and ABCG2. The results of these studies suggest the involvement of RIPK4 in the observed resistance to CisPt or DOX. Full article
(This article belongs to the Special Issue Molecular Advances in Drug Resistance and Novel Therapies for Cancer)
Show Figures

Figure 1

15 pages, 4653 KiB  
Article
Identification of Tumor-Suppressive miR-30a-3p Controlled Genes: ANLN as a Therapeutic Target in Breast Cancer
by Reiko Mitsueda, Ayako Nagata, Hiroko Toda, Yuya Tomioka, Ryutaro Yasudome, Mayuko Kato, Yoshiaki Shinden, Akihiro Nakajo and Naohiko Seki
Non-Coding RNA 2024, 10(6), 60; https://doi.org/10.3390/ncrna10060060 - 30 Nov 2024
Cited by 1 | Viewed by 1493
Abstract
Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some miR-30 family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the miR-30 family members, miR-30a-3p (the passenger strand derived [...] Read more.
Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some miR-30 family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the miR-30 family members, miR-30a-3p (the passenger strand derived from pre-miR-30a) was significantly downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse prognoses. Ectopic expression assays showed that miR-30a-3p transfected cancer cells (MDA-MB-157 and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation, migration, and invasion abilities. These data indicated that miR-30a-3p acted as a tumor-suppressive miRNA in BC cells. Our subsequent search for miR-30a-3p controlled molecular networks in BC cells yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (ANLN, MKI67, CCNB1, NCAPG, ZWINT, E2F7, PDS5A, RIF1, BIRC5, MAD2L1, CACUL1, KIF23, UBE2S, EML4, SEPT10, CLTC, and PCNP) were enriched according to a GeneCodis 4 database analysis. Moreover, the overexpression of four genes (ANLN, CCNB1, BIRC5, and KIF23) significantly predicted worse prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the overexpression of ANLN had cancer-promoting functions in BC cells. The involvement of miR-30a-3p (the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs in BC cells. Full article
(This article belongs to the Special Issue Non-coding RNA as Biomarker in Cancer)
Show Figures

Figure 1

18 pages, 3056 KiB  
Article
Combination Treatment of Resistant Acute Promyelocytic Leukemia Cells with Arsenic Trioxide and Anti-Apoptotic Gene Inhibitors
by Manuela Giansanti, Tiziana Ottone, Serena Travaglini, Maria Teresa Voso, Grazia Graziani and Isabella Faraoni
Pharmaceuticals 2024, 17(11), 1529; https://doi.org/10.3390/ph17111529 - 14 Nov 2024
Cited by 1 | Viewed by 1644
Abstract
Background: Arsenic trioxide (ATO) is an anticancer agent for treating acute promyelocytic leukemia (APL). However, 5–10% of patients fail to respond, developing relapsed/refractory disease. The aim of this study was to identify potential new therapeutic approaches for ATO-unresponsive APL by targeting the anti-apoptotic [...] Read more.
Background: Arsenic trioxide (ATO) is an anticancer agent for treating acute promyelocytic leukemia (APL). However, 5–10% of patients fail to respond, developing relapsed/refractory disease. The aim of this study was to identify potential new therapeutic approaches for ATO-unresponsive APL by targeting the anti-apoptotic genes that contribute to drug resistance. Methods: RNA expression of dysregulated genes involved in the apoptotic pathway was analyzed by comparing ATO-resistant APL cell clones generated in our lab with the corresponding sensitive clones, at basal levels and after 48 h of treatment with ATO. Results: ATO-resistant APL cells showed upregulation of APAF1, BCL2, BIRC3, and NOL3 genes, while CD70 and IL10 genes were downregulated, compared to ATO-sensitive cells. Treatment with ATO strongly increased the expression of the anti-apoptotic genes BIRC3, NOL3, and BCL2A1 and significantly downregulated BCL2 in ATO-sensitive clones. Although all these genes can be relevant to ATO-resistance, we selected BCL2 and BIRC3 as druggable targets. A direct correlation between BCL2 expression and the sensitivity to the BCL2 inhibitor venetoclax was observed, indicating BCL2 as predictive biomarker of the response. Moreover, the combination of venetoclax with ATO exerted synergistic cytotoxic effects, thus reverting the resistance to ATO. APL treatment with SMAC mimetics such as LCL161 and xevinapant (inhibitors of BIRC3) was not as effective as the BCL2 inhibitor as a monotherapy but exerted synergistic effects in combination with ATO in cells with low BIRC expression. Conclusions: This study demonstrates the therapeutic potential of venetoclax in combination with ATO in vitro and strongly encourages further investigation of relapsed/refractory APL with high BCL2 expression. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 18277 KiB  
Article
Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs
by Innokenty A. Savin, Aleksandra V. Sen’kova, Elena P. Goncharova, Marina A. Zenkova and Andrey V. Markov
Int. J. Mol. Sci. 2024, 25(22), 11958; https://doi.org/10.3390/ijms252211958 - 7 Nov 2024
Viewed by 1509
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration [...] Read more.
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation. Full article
(This article belongs to the Special Issue Influenza Viruses: Infection and Genomics)
Show Figures

Figure 1

18 pages, 3426 KiB  
Article
Effect of Gossypol on Gene Expression in Swine Granulosa Cells
by Min-Wook Hong, Hun Kim, So-Young Choi, Neelesh Sharma and Sung-Jin Lee
Toxins 2024, 16(10), 436; https://doi.org/10.3390/toxins16100436 - 10 Oct 2024
Cited by 1 | Viewed by 1497
Abstract
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and [...] Read more.
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM–receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation–reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP. Full article
Show Figures

Figure 1

16 pages, 1322 KiB  
Article
Expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO in Relation to Left Ventricular Remodeling in Patients Six Months after the First Myocardial Infarction: A Prospective Study
by Jovana Kuveljic, Ana Djordjevic, Ivan Zivotic, Milica Dekleva, Ana Kolakovic, Maja Zivkovic, Aleksandra Stankovic and Tamara Djuric
Genes 2024, 15(10), 1296; https://doi.org/10.3390/genes15101296 - 2 Oct 2024
Cited by 1 | Viewed by 1471
Abstract
Background: After myocardial infarction (MI), adverse left ventricular (LV) remodeling may occur. This is followed by LV hypertrophy and eventually heart failure. The remodeling process is complex and goes through multiple phases. The aim of this study was to investigate the expression of [...] Read more.
Background: After myocardial infarction (MI), adverse left ventricular (LV) remodeling may occur. This is followed by LV hypertrophy and eventually heart failure. The remodeling process is complex and goes through multiple phases. The aim of this study was to investigate the expression of HMGB1, TGF-β1, BIRC3, ADAM17, CDKN1A, and FTO, each involved in a specific step of LV remodeling, in association with the change in the echocardiographic parameters of LV structure and function used to assess the LV remodeling process in the peripheral blood mononuclear cells (PBMCs) of patients six months after the first MI. The expression of selected genes was also determined in PBMCs of controls. Methods: The study group consisted of 99 MI patients, who were prospectively followed-up for 6 months, and 25 controls. Cardiac parameters, measured via conventional 2D echocardiography, were evaluated at two time points: 3–5 days and 6 months after MI. The mRNA expression six-months-post-MI was detected using TaqMan® technology (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). Results:HMGB1 mRNA was significantly higher in patients with adverse LV remodeling six-months-post-MI than in patients without adverse LV remodeling (p = 0.04). HMGB1 mRNA was significantly upregulated in patients with dilated LV end-diastolic diameter (LVEDD) (p = 0.03); dilated LV end-diastolic volume index (LVEDVi) (p = 0.03); severely dilated LV end-systolic volume index (LVESVi) (p = 0.006); impaired LV ejection fraction (LVEF) (p = 0.01); and LV enlargement (p = 0.03). It was also significantly upregulated in PBMCs from patients compared to controls (p = 0.005). TGF-β1 and BIRC3 mRNA were significantly lower in patients compared to controls (p = 0.02 and p = 0.05, respectively). Conclusions: Our results suggest that HMGB1 is involved in adverse LV remodeling six-months-post-MI, even on the mRNA level. Further research and validation are needed. Full article
(This article belongs to the Special Issue Genetic and Genomic Research of Cardiovascular Diseases)
Show Figures

Figure 1

28 pages, 2602 KiB  
Review
FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer
by Padmashree Rida, Sophia Baker, Adam Saidykhan, Isabelle Bown and Nikita Jinna
Cancers 2024, 16(18), 3191; https://doi.org/10.3390/cancers16183191 - 18 Sep 2024
Cited by 1 | Viewed by 2282
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER/PR/HER2/androgen receptor (AR)], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification [...] Read more.
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER/PR/HER2/androgen receptor (AR)], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC. Full article
(This article belongs to the Special Issue Feature Papers in Section "Cancer Biomarkers" in 2023–2024)
Show Figures

Figure 1

Back to TopTop