Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,617)

Search Parameters:
Keywords = B318L protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

16 pages, 931 KiB  
Article
Evaluation of the Effects of Drying Techniques on the Physical and Nutritional Characteristics of Cricket (Gryllus bimaculatus) Powder for Use as Animal Feedstuff
by Warin Puangsap, Padsakorn Pootthachaya, Mutyarsih Oryza, Anusorn Cherdthong, Vibuntita Chankitisakul, Bundit Tengjaroensakul, Pheeraphong Phaengphairee and Sawitree Wongtangtintharn
Insects 2025, 16(8), 814; https://doi.org/10.3390/insects16080814 - 6 Aug 2025
Abstract
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color [...] Read more.
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color parameters (L*, a*, and b*; p < 0.05), and particle size distribution at 850 µm and 250 µm (p = 0.04 and p = 0.02, respectively). Microwave–vacuum drying produced the lightest powder with a higher proportion of coarse particles, while sun drying resulted in a darker color and greater particle retention at 850 µm. Hot-air-oven drying yielded the lowest moisture content (1.99%) and the highest gross energy (6126.43 kcal/kg), with no significant differences observed in crude protein (p = 0.61), ether extract (p = 0.08), crude fiber (p = 0.14), ash (p = 0.22), or amino acid profiles (p > 0.05). These findings indicate that all drying methods preserved the nutritional value of cricket powder, and based on the overall results, hot-air-oven drying is the most suitable method for producing high-quality cricket meal with optimal physical properties and feed value, while also providing a practical balance between drying efficiency and cost. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

10 pages, 1283 KiB  
Communication
Optimized Ribonucleoprotein Complexes Enhance Prime Editing Efficiency in Zebrafish
by Lang Qin and Qiupeng Lin
Animals 2025, 15(15), 2295; https://doi.org/10.3390/ani15152295 - 6 Aug 2025
Abstract
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined [...] Read more.
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined with La-accessible prime editing guide RNAs (pegRNAs), to enhance editing efficiency in zebrafish. By co-incubating PE7 protein with La-accessible pegRNAs to form ribonucleoprotein (RNP) complexes and microinjecting these complexes into zebrafish embryos, we achieved up to 15.99% editing efficiency at target loci—an improvement of 6.81- to 11.46-fold over PE2. Additionally, we observed 16.60% 6 bp insertions and 13.18% 10 bp deletions at the adgrf3b locus, representing a 3.13-fold increase over PE2. Finally, we used PE to introduce desired edits at the tyr locus, successfully generating zebrafish with the tyr P302L mutation that exhibited melanin reduction. These findings demonstrate that PE7 significantly enhances prime editing efficiency in fish, providing novel tools for functional gene studies and genetic breeding in aquatic species. Full article
Show Figures

Figure 1

17 pages, 251 KiB  
Article
Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese
by Dariusz Kokoszyński, Arkadiusz Nędzarek, Joanna Żochowska-Kujawska, Marek Kotowicz, Marcin Wegner, Karol Włodarczyk, Dorota Cygan-Szczegielniak, Barbara Biesiada-Drzazga and Marcin Witkowski
Foods 2025, 14(15), 2742; https://doi.org/10.3390/foods14152742 - 6 Aug 2025
Abstract
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, [...] Read more.
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, gizzards, hearts) obtained from 42 geese from three Polish native breeds (Rypin, Suwałki, Kartuzy) at 220 weeks of age. Edible giblets were obtained during goose evisceration from seven males and seven females of each breed. Each bird was an experimental unit. Goose breed and sex had a significant effect on the chemical composition and physicochemical properties of the edible giblets. Rypin geese had higher (p < 0.05) intramuscular fat content in the gizzard and heart, as well as higher protein content in the heart and lower water content in the gizzard, compared to Kartuzy and Suwałki geese. Kartuzy geese, in turn, had higher content of water in the heart, and higher concentrations of phosphorus, calcium, iron, manganese, sodium, and chromium in the liver, compared to Rypin and Suwałki geese. In turn, Suwałki geese had higher concentrations of phosphorus in the gizzard, and potassium, phosphorus, copper, and iron in the heart compared to the hearts of Rypin and Suwałki geese, while Kartuzy and Suwałki geese higher concentrations of sodium, magnesium, zinc, and manganese in hearts than the hearts of Rypin geese. In these studies, the highest lightness (L*) was observed in the liver and heart of Rypin geese, the lowest yellowness (b*) was observed in the gizzard of Suwałki geese, and the highest pH24 and EC24 were observed in the heart of Kartuzy geese. Regardless of breed, males had higher protein, collagen, and intramuscular fat contents in the heart, a higher water content in the gizzard, higher concentrations of potassium, and sodium in the liver and gizzard, copper in the heart and liver, and phosphorus in the gizzard, and less water in the heart and zinc in the liver, as well as higher (p < 0.05) concentrations of iron in the liver and heart compared with females. The breed by sex interaction was significant for intramuscular fat and water content in the gizzard and heart, and protein content in the heart. Significant differences were also noted for EC24 in the liver and heart, yellowness of the gizzard, and concentrations of most labeled minerals in edible giblets. The obtained results indicate that the nutritional value and suitability of edible goose giblets for the poultry industry vary depending on breed and sex. Due to the limited research on the chemical composition and physicochemical properties of goose giblets, further research in this area is necessary in the future. Full article
16 pages, 1921 KiB  
Article
A Bivalent mRNA Vaccine Efficiently Prevents Gammaherpesvirus Latent Infection
by Yannan Yin, Jinkai Zang, Huichun Shi, Zhuang Wang, Linlin Kuang, Shuxia Wang, Haikun Wang, Ning Li, Xiaozhen Liang and Zhong Huang
Vaccines 2025, 13(8), 830; https://doi.org/10.3390/vaccines13080830 - 4 Aug 2025
Abstract
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper [...] Read more.
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper assessment of vaccine efficacy. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of wild rodents and laboratory mice and therefore can be used as a surrogate for human gammaherpesviruses to evaluate vaccination strategies. Methods: In this study, two mRNA vaccine candidates were generated, one encoding a fusion protein of the MHV68 gH with the gL (gHgL-mRNA) and the other expressing the MHV68 gB protein (gB-mRNA). The immunogenicity and protective efficacy of the mRNA vaccine candidates were evaluated in a mouse model of MHV68 infection. Results: The gHgL-mRNA but not the gB-mRNA candidate vaccine was able to induce neutralizing antibodies in mice, whereas both vaccines could elicit antigen-specific T-cell responses. Following MHV68 intranasal inoculation, complete blocking of the establishment of viral latency was observed in some mice immunized with individual gHgL-mRNA or gB-mRNA vaccines. Notably, co-immunization with the two mRNA vaccines appeared to be more effective than individual vaccines, achieving sterile immunity in 50% of the vaccinated mice. Conclusions: This study demonstrates that immunization with mRNA platform-based subunit vaccines is indeed capable of preventing MHV68 latent infection, thus validating a safe and efficacious vaccination strategy that may be applicable to human gammaherpesviruses. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

17 pages, 972 KiB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Viewed by 29
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

16 pages, 332 KiB  
Systematic Review
Blood Biomarkers as Optimization Tools for Computed Tomography in Mild Traumatic Brain Injury Management in Emergency Departments: A Systematic Review
by Ángela Caballero Ballesteros, María Isabel Alonso Gallardo and Juan Mora-Delgado
J. Pers. Med. 2025, 15(8), 350; https://doi.org/10.3390/jpm15080350 - 3 Aug 2025
Viewed by 80
Abstract
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. [...] Read more.
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. Blood-based biomarkers have emerged as potential tools to optimize CT scan use. This systematic review aims to evaluate recent evidence on the role of specific blood biomarkers in guiding CT decisions in patients with mTBI. Methods: A systematic search was conducted in the PubMed, Cochrane, and CINAHL databases for studies published between 2020 and 2024. Inclusion criteria focused on adult patients with mTBI evaluated using both CT imaging and at least one of the following biomarkers: glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and S100 calcium-binding protein B (S100B). After screening, six studies were included in the final review. Results: All included studies reported high sensitivity and negative predictive value for the selected biomarkers in detecting clinically relevant intracranial lesions. GFAP and UCH-L1, particularly in combination, consistently identified low-risk patients who could potentially forgo CT scans. While S100B also showed high sensitivity, discrepancies in cutoff values across studies highlighted the need for harmonization. Conclusions: Blood biomarkers such as GFAP, UCH-L1, and S100B demonstrate strong potential to reduce unnecessary CT imaging in mTBI by identifying patients at low risk of significant brain injury. Future research should focus on standardizing biomarker thresholds and validating protocols to support their integration into clinical practice guidelines. Full article
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 98
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

29 pages, 6122 KiB  
Article
Lacticaseibacillus paracasei L21 and Its Postbiotics Ameliorate Ulcerative Colitis Through Gut Microbiota Modulation, Intestinal Barrier Restoration, and HIF1α/AhR-IL-22 Axis Activation: Combined In Vitro and In Vivo Evidence
by Jingru Chen, Linfang Zhang, Yuehua Jiao, Xuan Lu, Ning Zhang, Xinyi Li, Suo Zheng, Bailiang Li, Fei Liu and Peng Zuo
Nutrients 2025, 17(15), 2537; https://doi.org/10.3390/nu17152537 - 1 Aug 2025
Viewed by 302
Abstract
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate [...] Read more.
Background: Ulcerative colitis (UC), characterized by chronic intestinal inflammation, epithelial barrier dysfunction, and immune imbalance demands novel ameliorative strategies beyond conventional approaches. Methods: In this study, the probiotic properties of Lactobacillus paracaseiL21 (L. paracaseiL21) and its ability to ameliorate colitis were evaluated using an in vitro lipopolysaccharide (LPS)-induced intestinal crypt epithelial cell (IEC-6) model and an in vivo dextran sulfate sodium (DSS)-induced UC mouse model. Results: In vitro, L. paracaseiL21 decreased levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-8) while increasing anti-inflammatory IL-10 levels (p < 0.05) in LPS-induced IEC-6 cells, significantly enhancing the expression of tight junction proteins (ZO-1, occludin, claudin-1), thereby restoring the intestinal barrier. In vivo, both viable L. paracaseiL21 and its heat-inactivated postbiotic (H-L21) mitigated weight loss, colon shortening, and disease activity indices, concurrently reducing serum LPS and proinflammatory mediators. Interventions inhibited NF-κB signaling while activating HIF1α/AhR pathways, increasing IL-22 and mucin MUC2 to restore goblet cell populations. Gut microbiota analysis showed that both interventions increased the abundance of beneficial gut bacteria (Lactobacillus, Dubococcus, and Akkermansia) and improved faecal propanoic acid and butyric acid levels. H-L21 uniquely exerted an anti-inflammatory effect, marked by the regulation of Dubosiella, while L. paracaseiL21 marked by the Akkermansia. Conclusions: These results highlight the potential of L. paracaseiL21 as a candidate for the development of both probiotic and postbiotic formulations. It is expected to provide a theoretical basis for the management of UC and to drive the development of the next generation of UC therapies. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

19 pages, 1584 KiB  
Article
Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy
by Krzysztof Piątek, Grażyna Kurzawińska, Marcin Ożarowski, Piotr Józef Olbromski, Adam Kamiński, Maciej Brązert, Tomasz M. Karpiński, Wiesław Markwitz and Agnieszka Seremak-Mrozikiewicz
Int. J. Mol. Sci. 2025, 26(15), 7456; https://doi.org/10.3390/ijms26157456 - 1 Aug 2025
Viewed by 106
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is [...] Read more.
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is to evaluate the association between CYP7A1, NR1H1, RXRA, and PPARA gene variants and risk of ICP. Five single nucleotide variants (SNVs), rs3808607 (CYP7A1), rs56163822 (NR1H4), rs1800206 (PPARA), rs749759, and rs11381416 (NR2B1), were genotyped in a group of 96 ICP and 211 controls. The T allele of the CYP7A1 (rs3808607) variant may be a protective factor against ICP risk (OR = 0.697, 95% CI: 0.495–0.981, p = 0.038). Genetic model analysis showed that rs3808607 was associated with decreased risk of ICP under dominant (OR = 0.55, 95% CI: 0.32–3.16, p = 0.032, AIC = 380.9) and log-additive models (OR = 0.71, 95% CI: 0.51–1.00, p = 0.046, AIC = 381.4). The A insertion in the rs11381416 NR2B1 variant was associated with the degree of elevation in the liver function tests TBA (34.3 vs. 18.8 μmol/L, p = 0.002), ALT (397.0 vs. 213.0 IU/L, p = 0.017), and AST (186.0 vs. 114.4 IU/L, p = 0.032) in ICP women. Results indicate an association between the CYP7A1 rs3808607 and the risk of ICP and the association of the rs11381416 of the NR2B1 receptor with higher values of liver function tests in women with ICP. A better understanding of the cooperation of proteins involved in BA metabolism may have important therapeutic implications in ICP and other hepatobiliary diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 159
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

19 pages, 6096 KiB  
Article
Functional Characterization of Two Glutamate Dehydrogenase Genes in Bacillus altitudinis AS19 and Optimization of Soluble Recombinant Expression
by Fangfang Wang, Xiaoying Lv, Zhongyao Guo, Xianyi Wang, Yaohang Long and Hongmei Liu
Curr. Issues Mol. Biol. 2025, 47(8), 603; https://doi.org/10.3390/cimb47080603 - 1 Aug 2025
Viewed by 104
Abstract
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. [...] Read more.
Glutamate dehydrogenase (GDH) is ubiquitous in organisms and crucial for amino acid metabolism, energy production, and redox balance. The gdhA and gudB genes encoding GDH were identified in Bacillus altitudinis AS19 and shown to be regulated by iron. However, their functions remain unclear. In this study, gdhA and gudB were analyzed using bioinformatics tools, such as MEGA, Expasy, and SWISS-MODEL, expressed with a prokaryotic expression system, and the induction conditions were optimized to increase the yield of soluble proteins. Phylogenetic analysis revealed that GDH is evolutionarily conserved within the genus Bacillus. GdhA and GudB were identified as hydrophobic proteins, not secreted or membrane proteins. Their structures were primarily composed of irregular coils and α-helices. SWISS-MODEL predicts GdhA to be an NADP-specific GDH, whereas GudB is an NAD-specific GDH. SDS-PAGE analysis showed that GdhA was expressed as a soluble protein after induction with 0.2 mmol/L IPTG at 24 °C for 16 h. GudB was expressed as a soluble protein after induction with 0.1 mmol/L IPTG at 16 °C for 12 h. The proteins were confirmed by Western blot and mass spectrometry. The enzyme activity of recombinant GdhA was 62.7 U/mg with NADPH as the coenzyme. This study provides a foundation for uncovering the functions of two GDHs of B. altitudinis AS19. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 193
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

15 pages, 748 KiB  
Article
Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation
by Ulises Alvarado, Jhon Tacuri, Alejandro Coloma, Edgar Gallegos Rojas, Herbert Callo, Cristina Valencia-Sullca, Nancy Curasi Rafael and Manuel Castillo
Dairy 2025, 6(4), 41; https://doi.org/10.3390/dairy6040041 - 1 Aug 2025
Viewed by 365
Abstract
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour [...] Read more.
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour parameters (L, a*, b*). Reconstituted milk powder with 12% total solids was prepared with varying protein levels (4.2–4.8%), inoculum concentrations (1–3%), and fermentation temperatures (36–44 °C). Data were collected every 10 min until pH 4.6 was reached. Forty models were trained for each output variable, using 90% of the data for training and 10% for validation. The first two phases of the fermentation process were clearly distinguishable, lasting between 4.5 and 7 h and exceeding 0.6% lactic acid in all treatments evaluated. The best pH model used two hidden layers with 28 neurons (R2 = 0.969; RMSE = 0.007), while the optimal acidity model had four hidden layers with 32 neurons (R2 = 0.868; RMSE = 0.002). The strong correlation between colour and physicochemical changes confirms the feasibility of this non-destructive approach. Integrating ANN models and colourimetry offers a practical solution for real-time monitoring, helping improve process control in industrial yoghurt production. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 240
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

Back to TopTop