Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = B. tabaci

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2156 KiB  
Article
Microbiota of the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) by 16S rDNA Illumina Sequencing
by Afef Najjari, Chahnez Naccache, Nour Abdelkefi, Salma Djebbi, Amira Souii, Brahim Chermiti, Mourad Elloumi and Maha Mezghani Khemakhem
Microbiol. Res. 2025, 16(7), 163; https://doi.org/10.3390/microbiolres16070163 - 19 Jul 2025
Viewed by 287
Abstract
Bemisia tabaci (Aleyrodidae family) is one of the most damaging pests of numerous crops worldwide. Insecticides, namely pyrethroids and organophosphates, have long been the primary control tools against this pest, resulting in several resistance cases. In Tunisia, the two most damaging biotypes [...] Read more.
Bemisia tabaci (Aleyrodidae family) is one of the most damaging pests of numerous crops worldwide. Insecticides, namely pyrethroids and organophosphates, have long been the primary control tools against this pest, resulting in several resistance cases. In Tunisia, the two most damaging biotypes of B. tabaci, MEAM1-B and MED-Q, are sympatric, and more concerns about developing resistance keep rising due to the extensive use of insecticides. Here, we aimed to elucidate the molecular mechanism of resistance to pyrethroids and organophosphorus insecticides in two Tunisian populations of B. tabaci, collected respectively on Capsicum annuum and Lantana camara, and then determine the bacterial community associated with insecticide resistance and susceptible biotypes based on 16S rRNA Illumina sequencing. The results showed that the population collected on Capsicum annuum belonged to the MEAM1-B biotype with an insecticide resistance profile. In contrast, the population collected on the Lantana camara belonged to the MED-Q biotype with a sensitive profile. The bacterial communities of the two biotypes were predominantly structured by the Proteobacteria phylum and three genera, including Candidatus Portiera, the secondary facultative symbiont, and Hamiltonella, which were unevenly distributed between the two biotopes. Our results provide the first evidence for insecticide resistance alleles in Tunisian MEAM1-B populations and suggest an association between bacterial community composition within susceptible biotypes and insecticide resistance. Full article
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
A Novel Parvovirus Associated with the Whitefly Bemisia tabaci
by Fani Gousi, Zineb Belabess, Nathalie Laboureau, Michel Peterschmitt and Mikhail M. Pooggin
Pathogens 2025, 14(7), 714; https://doi.org/10.3390/pathogens14070714 - 19 Jul 2025
Viewed by 383
Abstract
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any [...] Read more.
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any member of Aleyrodoidea. Using rolling circle amplification (RCA) of viral DNA from whiteflies collected from crop fields in Morocco, followed by Illumina sequencing of the RCA products, we found a novel insect single-stranded (ss) DNA parvovirus (family Parvoviridae) in addition to plant ssDNA geminiviruses transmitted by whiteflies. Based on its genome organization with inverted terminal repeats and evolutionarily conserved proteins mediating viral DNA replication (NS1/Rep) and encapsidation (VP), encoded on the forward and reverse strands, respectively, we named this virus Bemisia tabaci ambidensovirus (BtaDV) and classified it as a founding member of a new genus within the subfamily Densovirinae. This subfamily also contains three distinct genera of ambisense densoviruses of other hemipteran insects (Aphidoidea, Coccoidea, and Psylloidea). Furthermore, we provide evidence for the genetic variants of BtaDV circulating in whitefly populations and for its partial sequences integrated into the B. tabaci genome, with one integrant locus potentially expressing a fusion protein composed of viral Rep endonuclease and host DNA-binding domains. This suggests a long-term virus-host interaction and neofunctionalization of BtaDV-derived endogenous viral elements. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
Effects of Endosymbionts on the Nutritional Physiology and Biological Characteristics of Whitefly Bemisia tabaci
by Han Gao, Xiang-Jie Yin, Zhen-Huai Fan, Xiao-Hang Gu, Zheng-Qin Su, Bing-Rui Luo, Bao-Li Qiu and Li-He Zhang
Insects 2025, 16(7), 703; https://doi.org/10.3390/insects16070703 - 9 Jul 2025
Viewed by 438
Abstract
Insects and their endosymbionts have a close mutualistic relationship. However, the precise nature of the bacterial endosymbiont-mediated interaction between host plants and whitefly Bemisia tabaci MEAM1 is still unclear. In the present study, six populations of Bemisia tabaci MEAM1 sharing the same genetic [...] Read more.
Insects and their endosymbionts have a close mutualistic relationship. However, the precise nature of the bacterial endosymbiont-mediated interaction between host plants and whitefly Bemisia tabaci MEAM1 is still unclear. In the present study, six populations of Bemisia tabaci MEAM1 sharing the same genetic background were established by rearing insects for ten generations on different host plants, including poinsettia, cabbage, cotton, tomato, and tobacco, and an additional population was reared on cotton and treated with antibiotics. The physiological and nutritional traits of the insects were found to be dependent on the host plant on which they had been reared. Systematic analysis was conducted on the endosymbiont titers, the amino acid molecules and contents, as well as developmental and oviposition changes in the MEAM1 populations reared on each host plant tested. The results indicate that B. tabaci contained the primary symbiont Portiera and the secondary symbionts Hamiltonella and Rickettsia. In addition, the titer of endosymbiotic bacteria in females is higher than that in males. Among the MEAM1 populations reared on each host plant, the variation pattern of Portiera titer generally corresponded with changes in biological characteristics (body length, weight and fecundity) and AA contents. This suggests that changes in the amino acid contents and biological characteristics of different B. tabaci populations may be due to changes in the Portiera content and the differences in the nutrition of the host plants themselves. Our findings were further confirmed by the reduction in Portiera with antibiotic treatment. The amino acids, body size, body weight, and fecundity of B. tabaci were all reduced with the decrease in the Portiera titer after antibiotic treatment. In summary, our research revealed that host plants can affect the content of symbiotic bacteria, particularly Portiera, and subsequently affect the nutrition (i.e., the essential amino acids content) of host insects, thus changing their biological characteristics. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

15 pages, 1680 KiB  
Article
Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops
by Daniel de Lima Alvarez, Rafael Hayashida, Daniel Mariano Santos, Felipe Barreto da Silva, Cristiane Müller, Renate Krause-Sakate, William Wyatt Hoback and Regiane Cristina de Oliveira
Agronomy 2025, 15(7), 1622; https://doi.org/10.3390/agronomy15071622 - 3 Jul 2025
Viewed by 403
Abstract
The whitefly, Bemisia tabaci, is a complex of cryptic species that is a significant pest of different legume hosts that inhabits various regions worldwide with diverse climates and characteristics. Its adaptability is often facilitated by the insect’s microbiome, which can contribute to both [...] Read more.
The whitefly, Bemisia tabaci, is a complex of cryptic species that is a significant pest of different legume hosts that inhabits various regions worldwide with diverse climates and characteristics. Its adaptability is often facilitated by the insect’s microbiome, which can contribute to both the metabolism of host plant secondary compounds and insecticide resistance. The most relevant biotypes in Brazil are Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), because of their ability to damage different hosts. Although MEAM1 is the prevalent species in Brazil, MED has great potential to spread, and there is little current knowledge about the biology of this biotype in the country. Therefore, the objective of this study was to evaluate the development and viability of MED on two legumes, soybean and common bean, alongside cotton, bell pepper, and tomato, at temperatures of 20 °C, 23 °C, 26 °C, 29 °C, 32 °C, and 35 °C and characterize the composition of its endosymbionts. Temperatures between 23 °C and 32 °C were the most suitable for B. tabaci MED development and viability across all tested host plants, whereas 35 °C proved harmful for insects reared on legumes. We observed a temperature threshold (°C) and thermal constant (degree-days) that varied according to the host plant, ranging from 9.81 °C and 384.62 for soybean to 11.17 °C and 333.33 for bell pepper, respectively. The main endosymbionts were in a ratio of 80% Hamiltonella and 20% Cardinium. These results allow the future mapping of risk for the MED biotype on different host plants in Brazil and elsewhere in South America. Full article
(This article belongs to the Special Issue Recent Advances in Legume Crop Protection)
Show Figures

Figure 1

12 pages, 765 KiB  
Article
Effects of Acquisition Time and Viral Load of Source Plants on Infections of Two Tomato Begomoviruses in Bemisia tabaci
by Ya-Yu Huang, Wei-Hua Li, Kyeong-Yeoll Lee, Wen-Shi Tsai and Chi-Wei Tsai
Agriculture 2025, 15(11), 1195; https://doi.org/10.3390/agriculture15111195 - 30 May 2025
Viewed by 664
Abstract
Tomato yellow leaf curl disease poses one of the most severe threats to tomato production worldwide. This disease is associated with a group of closely related tomato yellow leaf curl viruses. These viruses can be transmitted by the sweet potato whitefly (Bemisia [...] Read more.
Tomato yellow leaf curl disease poses one of the most severe threats to tomato production worldwide. This disease is associated with a group of closely related tomato yellow leaf curl viruses. These viruses can be transmitted by the sweet potato whitefly (Bemisia tabaci) in a persistent-circulative mode. Virus particles can infect the midgut and filter chamber of whiteflies feeding on infected plants, circulate in the hemolymph, and eventually infect the primary salivary gland (PSG) of whiteflies. Later, the whiteflies feed on healthy plants, and viral particles are introduced into the plants through their saliva. Virus–vector interactions play a crucial role in the efficiency and dynamics of virus transmission. In this study, we assessed the effects of the acquisition time and viral load of source plants on infections of two tomato begomoviruses, tomato yellow leaf curl Thailand virus (TYLCTHV) and tomato leaf curl Taiwan virus (ToLCTV), in B. tabaci Middle East–Asia Minor 1. We found that more viruses were acquired and accumulated in the whitefly midgut and PSG before reaching a plateau when the acquisition time increased and when the source plant had a higher viral load. The midgut and PSG acquired and accumulated more TYLCTHV than ToLCTV with the same acquisition time and regardless of the viral loads in coinfected source plants. These results not only help us to understand virus–vector interactions but also help in developing integrated disease management strategies. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

12 pages, 1247 KiB  
Article
Insecticide Resistance and Plant Virus Status of Bemisia tabaci on Soybean in Suzhou
by Qi Li, Yao Ji, He Du, Shufang Ma, Jifei Zhu, Dehui Zhu, Natalia A. Belyakova, Youjun Zhang and Xin Yang
Agriculture 2025, 15(10), 1071; https://doi.org/10.3390/agriculture15101071 - 15 May 2025
Viewed by 598
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a super pest that seriously endangers the development of the agricultural economy worldwide. To prevent and control B. tabaci, insecticides have been used for many years, which has inevitably led to increased tolerance to chemical agents. To [...] Read more.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a super pest that seriously endangers the development of the agricultural economy worldwide. To prevent and control B. tabaci, insecticides have been used for many years, which has inevitably led to increased tolerance to chemical agents. To elucidate the development of field resistance and more scientifically and efficiently control B. tabaci, in December 2024, we conducted bioassays on B. tabaci on soybeans in Suzhou, Anhui Province, using 14 insecticides. These fourteen insecticides, namely, abamectin, spinetoram, thiamethoxam, flupyradifurone, imidacloprid, dinotefuran, acetamiprid, thiacloprid, nitenpyram, bifenthrin, deltamethrin, pyridaben, flonicamid, and emamectin benzoate, have multiple action sites and have all shown good control effects on B. tabaci. The results revealed that B. tabaci has developed high resistance to many insecticides and that some insecticides have even tended to fail, but B. tabaci is still sensitive to a small number of insecticides. Different biotypes of B. tabaci differ significantly in terms of insecticide resistance. We determined that the population of B. tabaci on soybean in Suzhou was the MED (Q) biotype. It carried the TYLCV virus, with a virus carrying rate of 60%, but did not carry ToCV or CCYV. Full article
(This article belongs to the Special Issue Sustainable Use of Pesticides—2nd Edition)
Show Figures

Figure 1

24 pages, 3411 KiB  
Article
Virus–Host Interactions and Genetic Exchange in Mixed Infections of Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Leaf Curl New Delhi Virus (ToLCNDV), and Tomato Chlorosis Virus (ToCV)
by Isabel M. Fortes, Luis Díaz-Martínez, Enrique Moriones and Ana Grande-Pérez
Agronomy 2025, 15(5), 1006; https://doi.org/10.3390/agronomy15051006 - 22 Apr 2025
Viewed by 973
Abstract
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, [...] Read more.
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, family Geminiviridae, while ToCV is an RNA virus from the genus Crinivirus (family Closteroviridae). These viruses share overlapping geographic ranges, vectors (the whitefly Bemisia tabaci), and host plants, making mixed infections common. This study investigated interactions between TYLCV and ToLCNDV and between ToLCNDV and ToCV in mixed infections of susceptible and TYLCV-resistant tomato genotypes. We evaluated infection, disease development, trans-replication of genome components, and genetic exchange. Our results showed no significant synergistic or antagonistic interactions, complementation, or interference between the viruses. TYLCV resistance in tomato genotypes remained stable. The DNA-B component of ToLCNDV exhibited impaired functionality and was not complemented by TYLCV. No evidence was found that the crinivirus tomato chlorosis virus (ToCV) enhances ToLCNDV infection, suggesting limited interactions despite shared vectors. Genetic exchange was detected in defective DNA (def-DNA) molecules using high-throughput sequencing (HTS), indicating potential genetic interactions between these viruses. These findings suggest that mixed infections do not pose immediate concerns for increased pathogenicity but highlight the ecological implications of genetic exchange, warranting further study of the evolutionary consequences of such interactions in mixed-virus environments. Full article
(This article belongs to the Special Issue Role of RNA and ssDNA Viruses in Plant–Virus/Viroid Interactions)
Show Figures

Figure 1

17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 679
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

31 pages, 1837 KiB  
Article
Over Time Changes in the Transcriptomic Profiles of Tomato Plants with or Without Mi-1 Gene During Their Incompatible or Compatible Interactions with the Whitefly Bemisia tabaci
by Susana Pascual, Clara I. Rodríguez-Álvarez, Irene López-Vidriero, José M. Franco-Zorrilla and Gloria Nombela
Plants 2025, 14(7), 1054; https://doi.org/10.3390/plants14071054 - 28 Mar 2025
Viewed by 787
Abstract
Understanding the resistance mechanisms of plants against pests contributes to the sustainable deployment of plant resistance in Integrated Pest Management (IPM) programmes. The Mi-1 gene in tomato is the only one described with the capacity to provide resistance to different types of harmful [...] Read more.
Understanding the resistance mechanisms of plants against pests contributes to the sustainable deployment of plant resistance in Integrated Pest Management (IPM) programmes. The Mi-1 gene in tomato is the only one described with the capacity to provide resistance to different types of harmful organisms such as plant parasitic nematodes and pest insects, including the whitefly Bemisia tabaci MED (Mediterranean species). In this work, gene expression in the interaction of B. tabaci with susceptible tomato plants lacking the Mi-1 gene (cv. Moneymaker, compatible interaction), and with resistant plants carrying the Mi-1 gene (cv. Motelle, incompatible interaction) was studied using the oligonucleotide microarray technique. Both interactions were studied 2 and 12 days post infestation (dpi) of plants with adult insects. At 2 dpi, 159 overexpressed and 189 repressed transcripts were detected in the incompatible interaction, while these figures were 32 and 47 in the compatible one. Transcriptional reprogramming was more intense at 12 dpi but, as at 2 dpi, the number of transcripts overexpressed and repressed was higher in the incompatible (595 and 437, respectively) than in the compatible (71 and 52, respectively) interaction. According to the Mapman classification, these transcripts corresponded mainly to genes in the protein and RNA categories, some of which are involved in the defence response (signalling, respiratory burst, regulation of transcription, PRs, HSPs, cell wall or hormone signalling). These results provide a wealth of information about possible genes related to the resistance provided by the Mi-1 gene to B. tabaci, and whose role deserves further investigation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

13 pages, 1878 KiB  
Article
Beauveria bassiana Induces Strong Defense and Increases Resistance in Tomato to Bemisia tabaci
by Mengying Liu, Dong Xiang, Heikki M. T. Hokkanen, Tiandi Niu, Junjie Zhang, Jinlin Yang, Qiuyang Wei, Hanqiu Chen, Huai Liu and Yaying Li
J. Fungi 2025, 11(2), 141; https://doi.org/10.3390/jof11020141 - 13 Feb 2025
Cited by 2 | Viewed by 1066
Abstract
Pre-stimulation of plants can change their resistance mechanisms, thereby enhancing their defense responses. Beauveria bassiana, a broad-spectrum entomogenous fungi, can also induce plant defenses, but it received little attention. Here, we show that B. bassiana can act as a stimulus to prime [...] Read more.
Pre-stimulation of plants can change their resistance mechanisms, thereby enhancing their defense responses. Beauveria bassiana, a broad-spectrum entomogenous fungi, can also induce plant defenses, but it received little attention. Here, we show that B. bassiana can act as a stimulus to prime tomato defense responses, improving resistance in the plant to herbivore stress. The results illustrated that four defense genes (PIN2, PR2, PAL, and MPK3) were upregulated in all B. bassiana treatments, especially the phenylalanine deaminase (PAL) gene, which was highly expressed in tomato plants after B. bassiana inoculation. Feeding through Bemisia tabaci resulted in a weak upregulation of defense genes. However, in combined fungal inoculation and B. tabaci feeding, a total of nine defense genes were upregulated, among which five genes—PAL, PPO, PIN2, PR2, and PR1—were closely related to the phenol synthesis. The results of tomato plant metabolism showed that B. bassiana mainly activates tomato phenylpropane metabolic pathways, with this modulation being influenced by jasmonate. Further explorations revealed a significant enhancement in the antioxidant capacity of the plants, as evidenced by the determination of their antioxidant compounds and the coloration of leaf phenolic substances. Thus, entomopathogenic fungi can act as an exogenous substance to activate the defense responses of tomatoes without damaging the plant, indicating a good potential for developing applications using B. bassiana to promote resistance in tomatoes for pest management. Full article
Show Figures

Figure 1

15 pages, 3013 KiB  
Article
A B-Box (BBX) Transcription Factor from Cucumber, CsCOL9 Positively Regulates Resistance of Host Plant to Bemisia tabaci
by Shuixiang Xie, Baozheng Shi, Mengzhen Miao, Chenchen Zhao, Rune Bai, Fengming Yan and Caiyan Lei
Int. J. Mol. Sci. 2025, 26(1), 324; https://doi.org/10.3390/ijms26010324 - 2 Jan 2025
Viewed by 1003
Abstract
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, CsCOL9I, from cucumber and analyzed its role in the plant’s defense against the feeding [...] Read more.
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, CsCOL9I, from cucumber and analyzed its role in the plant’s defense against the feeding of Bemisia tabaci. CsCOL9 is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves. CsCOL9 is induced by B. tabaci feeding, salicylic acid (SA), methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Cucumber plants with CsCOL9 silence (TRV2-CsCOL9) and overexpression (1301-CsCOL9) were obtained and analyzed. After CsCOL9 silencing, survival rates and host selectivity for B. tabaci increased; however, the expression levels of genes encoding enzymes (CsSOD, CsRBOH, CsPOD), activities of superoxide dismutase (SOD) and peroxidase (POD), and content of H2O2 in plants were all reduced. CsCOL9 overexpression led to decreased survival rates and host selectivity for B. tabaci. Conversely, the expression levels of genes (CsSOD, CsRBOH and CsPOD), activities of SOD and POD, and content of H2O2 increased after CsCOL9 overexpression in plants. Collectively, our results demonstrate CsCOL9 positively regulates cucumber resistance to B. tabaci by activating reactive oxygen species bursts. This study lays a theoretical foundation for the application of CsCOL9 in cucumber resistance breeding and green pest control of B. tabaci. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

15 pages, 3044 KiB  
Article
Evaluation of Different Mode of Action Insecticides for the Control of Bemisia tabaci; Enhancement of Pesticide Efficacy
by Jackie Dunn, Debbie Ann Collins and Neil Audsley
Insects 2024, 15(11), 907; https://doi.org/10.3390/insects15110907 - 20 Nov 2024
Viewed by 1295
Abstract
Bemisia tabaci (Gennadius) is a major pest worldwide, causing damage to a vast range of plants through its feeding on phloem sap and its vectoring of >100 plant viruses. Although not established in the UK, it is regularly introduced on planting material, which [...] Read more.
Bemisia tabaci (Gennadius) is a major pest worldwide, causing damage to a vast range of plants through its feeding on phloem sap and its vectoring of >100 plant viruses. Although not established in the UK, it is regularly introduced on planting material, which poses a significant plant health risk. Restrictions on pesticide use and increasing resistance to available active ingredients limit options for effective control of potential outbreaks. Alternative management options are required to mitigate this risk. There was high variability in the efficacy of the different modes of action products tested against two life stages (adults and larvae) as well as the Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of B. tabaci. For both adults and larvae, MEAM1 were more susceptible than MED insects, possibly due to differences in resistance developed against some active ingredients. All products tested were effective to varying degrees against MEAM1 adults with Tracer (spinosad), PREV-AM (orange oil), Sequoia (sulfoxaflor), and FLiPPER (fatty acids) having similar efficacies (59–78% mortality). In contrast, PREV-AM and FLiPPER were most effective against MED adults (74% and 65% mortalities, respectively). Both MED and MEAM1 larvae were highly susceptible to FLiPPER and PREV-AM (>95% mortality), and the efficacy of Tracer and FLiPPER can be enhanced by using in combination with PREV-AM, and this can be achieved by using low doses of each product. Synergy was measured between PREV-AM and Tracer against MEAM1 larvae, which has the potential to provide effective control with a reduced pesticide application. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 939 KiB  
Article
Molecular Diversity and Distribution of Whiteflies (Bemisia tabaci) in Cassava Fields Across South West and North Central, Nigeria
by Oghenevwairhe P. Efekemo, Olabode A. Onile-ere, Isaac O. Abegunde, Folashade T. Otitolaye, Justin S. Pita, Titus Alicai and Angela O. Eni
Insects 2024, 15(11), 906; https://doi.org/10.3390/insects15110906 - 20 Nov 2024
Viewed by 1213
Abstract
Whitefly Bemisia tabaci (Gennadium, Hemiptera) causes severe damage to cassava plants through excessive feeding on leaves and transmitting viruses, such as African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and ipomoviruses that cause cassava brown streak disease. Currently, little is [...] Read more.
Whitefly Bemisia tabaci (Gennadium, Hemiptera) causes severe damage to cassava plants through excessive feeding on leaves and transmitting viruses, such as African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and ipomoviruses that cause cassava brown streak disease. Currently, little is known about the molecular diversity and distribution of whitefly species in the major cassava-growing zones of Nigeria. This study aimed to address the knowledge gap by assessing the genetic diversity, distribution, and associated cassava mosaic begomoviruses (CMBs) in whiteflies across South West and North Central, Nigeria. Whitefly samples were systematically collected from cassava plants during georeferenced epidemiological surveys in 2017, 2020, and 2022. The samples were genotyped using the mitochondrial cytochrome oxidase I (mtCOI) marker, and CMBs were detected by PCR with virus-specific primers. Phylogenetic analyses revealed four distinct genetic groups of B. tabaci: Sub-Saharan Africa 1 (SSA1; 84.8%), SSA2 (1.4%), SSA3 (13.1%), and Mediterranean (MED) (0.7%). The SSA1 group was the predominant and most widely distributed genotype across the surveyed zones, with three subgroups identified: SSA1-SG1, SSA1-SG3, and SSA1-SG5. The second most frequently identified genotype, SSA3, was restricted to the North Central zone, along with the SSA2 group, which was only identified in two North Central states (Niger and Plateau). African cassava mosaic virus (ACMV) was detected in SSA1-SG1, SSA1-SG5, and SSA3, whereas EACMV was found in only the SSA1-SG3. The findings of this study will aid in developing better whitefly management strategies to reduce the impact of CMD on cassava production in Nigeria. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 767 KiB  
Article
Occurrence of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) in Commercial Fields of Solanum lycopersicum in Brazil
by Daniel de Lima Alvarez, Daniel Mariano Santos, Pedro Hiroshi Passos Ikuno, Caroline da Cruz Martines, Sérgio Roberto Benvenga, Cristiane Müller, Renate Krause-Sakate and Regiane Cristina de Oliveira
Agronomy 2024, 14(11), 2516; https://doi.org/10.3390/agronomy14112516 - 26 Oct 2024
Cited by 1 | Viewed by 1159
Abstract
The tomato (Solanum lycopersicum) is an important crop to the economy of Brazil, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the limiting factors responsible for reducing its yields. These insects are part of a cryptic species group [...] Read more.
The tomato (Solanum lycopersicum) is an important crop to the economy of Brazil, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the limiting factors responsible for reducing its yields. These insects are part of a cryptic species group present across almost the entire globe. The most relevant cryptic species in the world are B. tabaci MEAM1 and MED due to their capability to adapt and cause damage to vegetables, grain, and ornamental crops. The arrival of MED in Brazil through the state of São Paulo represents risks to farmers in the region due to the difficulty in managing these insects. This study assessed the occurrence of both species in tomato crops in the southeastern region of Brazil in 2020 and 2021. An amount of 79 samples containing 767 insects were collected throughout the study period, and in the cities of Sumaré (SP) and Monte Mor (SP), several samples were collected from the same location throughout the year. The insects were stored and sent for molecular analysis. The results showed an increase in MED compared to MEAM1. The presence of MED in the Minas Gerais samples was not recorded. However, a higher percentage of MED was observed in the state of São Paulo, which was detected in the municipalities of Sumaré and Monte Mor. These results possibly indicate that MED could be starting to stabilize in open tomato fields in Brazil. Full article
(This article belongs to the Special Issue Ecological Aspects as a Basis for Future Pest Integrated Management)
Show Figures

Figure 1

15 pages, 2438 KiB  
Article
Non-Feeding Transmission Modes of the Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Do Not Contribute to Reoccurring Leaf Curl Outbreaks in Tomato
by Wendy G. Marchant, Judith K. Brown, Saurabh Gautam, Saptarshi Ghosh, Alvin M. Simmons and Rajagopalbabu Srinivasan
Insects 2024, 15(10), 760; https://doi.org/10.3390/insects15100760 - 30 Sep 2024
Cited by 2 | Viewed by 1544
Abstract
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of [...] Read more.
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of TYLCV has been reported for one strain from Israel. In this study, the potential contribution of the B. tabaci B cryptic species transovarial and sexual transmission of TYLCV (Israel strain, Georgia variant, Georgia, USA) to reoccurring outbreaks was investigated by conducting whitefly-TYLCV transmission assays and virus DNA detection using end point PCR, DNA quantitation via real-time PCR, and virion detection by immunocapture PCR. TYLCV DNA was detectable in four, two, and two percent of first-generation fourth-instar nymphs, first-generation adults, and second-generation adults, respectively, following transovarial acquisition. Post-mating between viruliferous counterparts, the virus’s DNA was detected in four percent of males and undetectable in females. The accumulation of TYLCV DNA in whiteflies from the transovarial and/or sexual experiments was substantially lower (100 to 1000-fold) compared with whitefly adults allowed a 48-hr acquisition-access period on plants infected with TYLCV. Despite the detection of TYLCV DNA in whiteflies from the transovarial and/or mating experiments, the virions were undetectable by immunocapture PCR—a technique specifically designed to detect virions. Furthermore, tomato test plants exposed to whitefly adults that presumably acquired TYLCV transovarially or through mating remained free of detectable TYLCV DNA. Collectively, the extremely low levels of TYLCV DNA and complete absence of virions detected in whiteflies and the inability of the B. tabaci cryptic species B to transmit TYLCV to test tomato plants following transovarial and mating acquisition indicate that neither transovarial nor sexual transmission of TYLCV are probable or epidemiologically relevant for TYLCV persistence in this pathosystem. Full article
(This article belongs to the Special Issue Plant–Insect Vector–Pathogen Interactions)
Show Figures

Figure 1

Back to TopTop