Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = Azobenzene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6952 KiB  
Review
Phenolic Azobenzene as Ligand for Cation Complexation—Syntheses and Applications
by Jan Hočevar, Jernej Iskra and Estelle Leonard
Molecules 2025, 30(12), 2499; https://doi.org/10.3390/molecules30122499 - 6 Jun 2025
Viewed by 619
Abstract
Phenolic azobenzenes have garnered significant attention as functional materials due to their ability to undergo reversible photoisomerization and their potential for cation complexation. This review aims to provide a comprehensive overview of the recent developments in the synthesis, properties, and applications of phenolic [...] Read more.
Phenolic azobenzenes have garnered significant attention as functional materials due to their ability to undergo reversible photoisomerization and their potential for cation complexation. This review aims to provide a comprehensive overview of the recent developments in the synthesis, properties, and applications of phenolic azobenzene derivatives in cation binding and complexation. This article explores various synthetic strategies for the preparation of phenolic azobenzenes. Additionally, the mechanisms of cation complexation, including the role of the phenolic hydroxyl group and the azobenzene scaffold, are discussed, along with insights into the coordination chemistry involved. This review further examines the diverse applications of phenolic azobenzene complexes in fields such as ion sensing, catalysis, and biological and DSSC applications. Full article
(This article belongs to the Special Issue Advances in Phenolic Based Complexes)
Show Figures

Graphical abstract

14 pages, 5467 KiB  
Article
A tetra-ortho-Chlorinated Azobenzene Molecule for Visible-Light Photon Energy Conversion and Storage
by Shuxin Tang, Yating Zhang, Jun Xia, Jing Qi, Fan Tang, Fei Zhai and Liqi Dong
Molecules 2025, 30(11), 2333; https://doi.org/10.3390/molecules30112333 - 27 May 2025
Viewed by 518
Abstract
The development of photoactive molecules for photothermal energy storage is a focus of research in solar energy utilization technology. Azobenzene photoswitch has emerged as a promising candidate for solar energy conversion and storage due to its unique photoisomerization characteristics. Nonetheless, a majority of [...] Read more.
The development of photoactive molecules for photothermal energy storage is a focus of research in solar energy utilization technology. Azobenzene photoswitch has emerged as a promising candidate for solar energy conversion and storage due to its unique photoisomerization characteristics. Nonetheless, a majority of azobenzene-based molecular photothermal systems have a significant drawback: they depend on ultraviolet light for E-to-Z isomerization to store photon energy rather than visible light, which seriously hinders the development of azobenzene photoswitch in practical solar energy utilization applications. In this study, an azobenzene photothermal molecule that can effectively store visible-light photon energy was design and synthesized, which includes a tetra-ortho-chlorinated azo structure as the “head” part and an alkyl chain at para-position as the “tail” part. The ultraviolet–visible and 1H NMR spectrum indicated that the obtained tetra-ortho-chlorinated azobenzene photothermal molecule could effectively absorb and store photon energy under 550 nm irradiation and release the stored energy upon 430 nm light irradiation. The storage energy density of the charged azobenzene photothermal molecule was determined to be 13.50 kJ/mol through differential scanning calorimetry and 28.21 kJ/mol via density functional theory theoretical calculations. This discrepancy was ascribed to the 64% Z-isomer yield harvesting during the charging process. Furthermore, the obtained tetra-ortho-chlorinated azobenzene exhibited long-term energy storage (approximately 11 days of half-life) and cyclic stability (100 cycles). Notably, the E-isomer of tetra-ortho-chlorinated azobenzene exhibited a high degree of supercooling, which may be advantageous for use in extremely low-temperature environments. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

14 pages, 3355 KiB  
Article
Molecular Solar Thermal Fuels with High Energy Density Based on Azobenzene Derivatives
by Yan Jiang, Rui Liu, Yupeng Guo, Hai Wang, Wen Luo and Jin Huang
Energies 2025, 18(11), 2672; https://doi.org/10.3390/en18112672 - 22 May 2025
Viewed by 475
Abstract
Molecular solar thermal fuels (MOSTs) based on azobenzene derivatives have become one of the research hotspots for solar thermal conversion and storage due to their excellent cycling stability, resistance to photodegradation, and the capability to precisely adjust their absorption wavelengths, and other merits. [...] Read more.
Molecular solar thermal fuels (MOSTs) based on azobenzene derivatives have become one of the research hotspots for solar thermal conversion and storage due to their excellent cycling stability, resistance to photodegradation, and the capability to precisely adjust their absorption wavelengths, and other merits. Here, a novel MOST with connecting two azobenzene molecules by a short linkage (bis-AZO) has been proposed; the photoisomerization regulation and energy storage performance are studied experimentally in detail. The photoisomerization rate of the resultant MOST could be controlled by diverse irradiation intensities. The energy density for bis-AZO was 275.03 J g−1 at 100% isomerization degree, with excellent thermal and photochemical cycling stability. The macroscale heat release of bis-AZO loaded on fabric reached a temperature increase of about 4.3 °C. This research offers a new design strategy for increasing the energy density in azobenzene-based molecular solar thermal fuels. Full article
Show Figures

Figure 1

19 pages, 6145 KiB  
Article
Study on Photodeformation of Solvent Resistance in Hydrogen-Bonded Cross-Linked Main-Chain Azobenzene Films
by Zhaoyang Zhang, Shengkui Ma and Jianfeng Gao
Molecules 2025, 30(10), 2106; https://doi.org/10.3390/molecules30102106 - 9 May 2025
Viewed by 522
Abstract
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this [...] Read more.
Hydrogen-bonded cross-linked main chain azobenzene (azo) photoactive polymers have broad application prospects in flexible actuators, optical actuators, and other fields. Most of the research on this kind of photoresponsive material is mainly focused on air, and exploration in solvents remains underexplored. In this paper, azobenzene polyamide ester semicrystalline polymer (PEA-6T) with hydrogen-bond cross-linking was synthesized by Michael addition polymerization. The uniaxially oriented polymer film with high orientation (48.85%) and fast response (5 s under UV light and 55 s under visible light) was obtained by a simple solution casting/mechanical stretching method. Compared with PEA-2T and PEA-4T, PEA-6T exhibits enhanced mechanical properties (elastic modulus increased by 17.4%; yield strength increased by 34.1%; breaking strength increased by 75.4%; elongation at break increased by 33.8%; toughness increased by 101.3%; photoinduced stress increased by 43.5%) and reduced light response time (decreased by 58.3% in ultraviolet light and 50% in visible light) due to the elongation of the compliant chain length. The thin PEA-6T film exhibited light-induced deformation not only in air but also in polar solvents such as water, methanol, ethanol, butanol, and saline solutions (e.g., normal saline, 0.9 wt% NaCl, and simulated seawater, 3.5 wt% NaCl). In addition, polarizing optical microscope (POM) observations showed that the brightness and texture direction of the films remained stable (ΔBrightness < 5%), the light response time was consistent (6 s under UV light, 65 s under visible light), the light-induced stress retention rate was 95%, and the films exhibited good solvent resistance. This study bridges the research gap in azobenzene photoresponsive materials in solvent environments, and the material shows potential for applications in marine equipment coatings or biomedical actuators. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

19 pages, 7711 KiB  
Article
Exploring Options for the Application of Azobenzene for Molecular Solar Thermal Energy Storage: Integration with Parabolic Trough Solar Systems
by Li Zhang, Changcheng Guo, Yazhu Zhang, Haofeng Wang, Wenjing Liu, Jing Jin, Shaopeng Guo and Erdem Cuce
Energies 2025, 18(9), 2298; https://doi.org/10.3390/en18092298 - 30 Apr 2025
Viewed by 500
Abstract
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the [...] Read more.
Molecular solar thermal (MOST) energy systems can be utilized for the absorption, storage, and release of energy from the ultraviolet (UV) band of the solar spectrum. In this study, we designed a molecular solar thermal energy storage and release device based on the photoisomerization reaction of azobenzene. The device was integrated with a parabolic trough solar system, broadening the absorption range of the solar spectrum. By utilizing a coated secondary reflector, the system achieved efficient reflection of ultraviolet (UV) light in the 290–490 nm range, while solid-state azobenzene enabled the conversion of photon energy into chemical energy for storage and release. Experimental results under winter outdoor conditions demonstrated that: the secondary reflector significantly enhanced UV light concentration; the molecular solar thermal energy device exhibited remarkable thermal efficiency. Under an average solar irradiance of 302.23 W·m−2, the device demonstrated excellent thermal performance, with the azobenzene reaching a peak temperature of 42.07 °C. The maximum heat release capacity was measured at 10.89 kJ·kg−1·m−1, while achieving a remarkable heat release power of 29.31 W·kg−1·m−1. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

27 pages, 1584 KiB  
Article
Structure–Property Relationships in Novel Series of Photoswitchable Local Anesthetic Ethercaine Derivatives: Emphasis on Biological and Photophysical Properties
by Alexey Noev, Daria Likhobabina, Janna Sutemieva, Anna Plyutinskaya, Dmitry Cheshkov, Natalia Morozova, Aleksandra Vinokurova, Yuriy Vasil’ev, Nikita Suvorov, Elena Nemtzova, Andrei Pankratov, Elena Filonenko, Petr Shegay, Andrey Kaprin and Mikhail Grin
Int. J. Mol. Sci. 2025, 26(7), 3244; https://doi.org/10.3390/ijms26073244 - 31 Mar 2025
Viewed by 720
Abstract
The insufficient selectivity of existing local anesthetics can lead to serious adverse effects. Considering the widespread use of this class of drugs, the development of new local anesthetics that do not cause side effects is an important task. One approach to address this [...] Read more.
The insufficient selectivity of existing local anesthetics can lead to serious adverse effects. Considering the widespread use of this class of drugs, the development of new local anesthetics that do not cause side effects is an important task. One approach to address this issue is the use of photopharmacology, which enables the creation of agents with light-controlled biological activity. Several examples of azobenzene-based photoswitchable blockers of voltage-gated sodium (Nav) channels have been described so far. These compounds can be used as light-controlled local anesthetics, one of which is ethercaine, synthesized by our group earlier. However, systematic studies of the “structure-activity” relationship in the series of light-controlled local anesthetics based on azobenzene are absent in the literature. The aim of this study was to obtain new derivatives of ethercaine and investigate their photophysical and biological properties. A total of 14 new derivatives were synthesized, and their structure was confirmed by various physicochemical analysis methods. The Z-E isomerization half-lifes were determined for all the synthesized compounds. The cytotoxic effect on normal cells was studied in vitro using human dermal fibroblasts (DF2). The local anesthetic activity of all the synthesized compounds was evaluated in vivo on a model of surface anesthesia in both darkness and under UV light irradiation. Based on the results obtained, conclusions were drawn regarding the potential of the proposed substances, and optimal pathways for structural modification were identified. Full article
Show Figures

Figure 1

14 pages, 2949 KiB  
Article
Photo-Responsive Liquid Crystal Elastomer Coils Inspired by Tropism Movements of Plants
by Xiyun Zhan, Zhiyu Ran, Jiajun Li, Jiaqi Zhu, Zhibo Zhang and Kun-Lin Yang
Actuators 2025, 14(4), 171; https://doi.org/10.3390/act14040171 - 31 Mar 2025
Viewed by 625
Abstract
Plant tendrils exhibit intriguing tropism motions like bending, twisting, and coiling. Herein, we report the application of a liquid crystal elastomer (LCE) to make a light-sensitive and biomimetic coil to replicate behaviors of plant tendrils. The LCE coil consists of diacrylate azobenzene, diacrylate [...] Read more.
Plant tendrils exhibit intriguing tropism motions like bending, twisting, and coiling. Herein, we report the application of a liquid crystal elastomer (LCE) to make a light-sensitive and biomimetic coil to replicate behaviors of plant tendrils. The LCE coil consists of diacrylate azobenzene, diacrylate mesogens, and thiol-based spacers. These components are first mixed to form a highly viscous prepolymer solution through a thiol-acrylate Michael addition reaction. Subsequently, an extrusion–rolling process is developed to draw the viscous solution into a coil, which is mechanically stretched in a single direction to align mesogens in the LCE. Finally, the coil is photopolymerized under UV light to form an LCE coil with a diameter of 375 µm. The LCE coil possesses good rigidity and flexibility and shows movement upon light exposure. For example, the LCE coil shows a reversible bending up to 120° to 365 nm UV and 30% contraction to 455 nm visible light, respectively, due to trans-cis photoisomerization of azobenzene derivatives. When the coil is irradiated with UV light with an intensity up to 10 mW cm−2, it can twist and coil up. It can also wrap around the UV light tube in 6 s, similar to a plant tendril. This type of light-responsive coil has great potential in making biomimetic plants or soft robotics. Full article
(This article belongs to the Special Issue Smart Responsive Materials for Sensors and Actuators)
Show Figures

Figure 1

14 pages, 4348 KiB  
Article
The Influence of Pore Size on the Photocatalytic and SERS Performance of Nanoporous Au–Ag Shells
by Wenpeng Yang, Wenguang Geng, Xiyuan Lu, Lihua Qian, Shijun Luo, Rui Zheng, Lei Xu and Dapeng Yang
Molecules 2025, 30(7), 1475; https://doi.org/10.3390/molecules30071475 - 26 Mar 2025
Viewed by 513
Abstract
Nanoporous metals have garnered significant attention in catalysis due to their unique three-dimensional interconnected network structure and pronounced localized surface plasmon resonance (LSPR) properties. In this study, nanoporous Au–Ag shells with varying pore sizes (8, 10, 12, and 18 nm) were synthesized, and [...] Read more.
Nanoporous metals have garnered significant attention in catalysis due to their unique three-dimensional interconnected network structure and pronounced localized surface plasmon resonance (LSPR) properties. In this study, nanoporous Au–Ag shells with varying pore sizes (8, 10, 12, and 18 nm) were synthesized, and their catalytic efficiencies were systematically evaluated. The conversion of p-nitrothiophenol (PNTP) to dimercapto-azobenzene (DMAB) was used to investigate the influence of pore size on the reaction kinetics and surface-enhanced Raman scattering (SERS) effects. Experimental results reveal that the nanoporous Au–Ag shells with a 12 nm pore size exhibit relatively high catalytic efficiency. Furthermore, tuning the pore size enables the modulation of LSPR in the near-infrared region. These findings highlight the critical role of pore size modulation in determining the photocatalytic performance of nanoporous metallic materials and provide valuable insights for the design and optimization of highly efficient photocatalysts. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

19 pages, 5385 KiB  
Article
Synthesis and Characterization of a Two-Station Two-Gate Calix[6]arene-Based [2]Catenane
by Margherita Bazzoni, Francesco Rispoli, Sara Venturelli, Gianpiero Cera and Andrea Secchi
Molecules 2025, 30(3), 732; https://doi.org/10.3390/molecules30030732 - 6 Feb 2025
Viewed by 783
Abstract
The design, construction, and operation of devices and machines at the molecular scale using the bottom-up approach captivates a lot of interest in nanoscience. Particularly intriguing are interlocked molecular architectures, which are ideal candidates for these aims. [n]Pseudorotaxanes, [n]rotaxanes, and [n]catenanes serve as [...] Read more.
The design, construction, and operation of devices and machines at the molecular scale using the bottom-up approach captivates a lot of interest in nanoscience. Particularly intriguing are interlocked molecular architectures, which are ideal candidates for these aims. [n]Pseudorotaxanes, [n]rotaxanes, and [n]catenanes serve as versatile prototypes for constructing molecular machines because they can be engineered to execute a diverse range of functions, including mechanical-like movements in response to chemical, photochemical, or electrochemical stimuli. The study explores the synthesis and characterization of a two-station two-gate calix[6]arene-based [2]catenane. Building on prior work with calix[6]arene-based Mechanically Interlocked Molecules (MIMs), this research integrates two functional gates—an azobenzene unit and a stilbene unit —into a two-station “track” ring. The synthesis employed threading and capping strategies to prepare the precursor [2]rotaxane isomers 12(azo-up) and 12(azo-down). Challenges in the deprotection of TBS groups led to the adoption of a supramolecular-assisted approach for the direct synthesis of the desired pseudorotaxane. The final catenation reaction, using a trans-stilbene-based bisacyl chloride as the “clipping unit”, afforded the [2]catenane C3(azo-down) in 25% yield after purification. Mass spectrometry and NMR spectroscopy confirmed the successful synthesis and orientation of C3(azo-down). Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 4507 KiB  
Article
A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker
by Wenxin Lu, Tiantian Mu, Yuehong Zhang, Bo Chen, Huantao Guo, Luyang Zhao, Peng Wang and Yongzhong Bian
Molecules 2025, 30(2), 326; https://doi.org/10.3390/molecules30020326 - 15 Jan 2025
Viewed by 862
Abstract
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex Azo-1 is reported. Electronic absorption and 1H NMR spectra manifested the [...] Read more.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex Azo-1 is reported. Electronic absorption and 1H NMR spectra manifested the reversible isomerization of the rotor Azo-1 between the trans configuration and the cis configuration. The rotational behavior of phthalocyanine rotator in two configurations were investigated by VT-1H NMR experiments, and the results indicated that the phthalocyanine rotator possessed a smaller rotational energy barrier in the cis isomer than in the trans isomer, which was also supported by DFT calculations. This result demonstrates that the rotation of phthalocyanine rotator in (phthalocyaninato)(porphyrinato) rare earth triple-decker complex can be successfully modulated by photo-isomerization via altering irradiation. Full article
Show Figures

Figure 1

14 pages, 1275 KiB  
Article
Synthesis of CF3-Indazoles via Rh(III)-Catalyzed C-H [4+1] Annulation of Azobenzenes with CF3-Imidoyl Sulfoxonium Ylides
by Yilong Shang, Chen Li, Guiqiu Wang, Guiwei Yao, Hongliang Wu, Xun Chen and Ruirui Zhai
Molecules 2025, 30(1), 183; https://doi.org/10.3390/molecules30010183 - 5 Jan 2025
Viewed by 1189
Abstract
An efficient Rh(III)-catalyzed C-H activation of azobenzenes and subsequent [4+1] cascade annulation with CF3-imidoyl sulfoxonium ylides was developed, yielding diverse CF3-indazoles. This protocol featured easily available starting materials, excellent functional group tolerance and high efficiency. Moreover, the antitumor activities [...] Read more.
An efficient Rh(III)-catalyzed C-H activation of azobenzenes and subsequent [4+1] cascade annulation with CF3-imidoyl sulfoxonium ylides was developed, yielding diverse CF3-indazoles. This protocol featured easily available starting materials, excellent functional group tolerance and high efficiency. Moreover, the antitumor activities of selected CF3-indazoles against human cancer cell lines were also studied, and the results indicated that several compounds displayed considerable antiproliferative activities. Full article
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
Surface Plasmon Mediated Angular and Wavelength Tunable Retroreflectors Using Parallel-Superimposed Surface Relief Bi-Gratings
by Maxwell Dollar, Yazan Bdour, Paul Rochon and Ribal Georges Sabat
Appl. Sci. 2025, 15(1), 339; https://doi.org/10.3390/app15010339 - 1 Jan 2025
Cited by 1 | Viewed by 1151
Abstract
This study presents the design and fabrication of light retroreflectors utilizing surface plasmon resonance (SPR) in parallel-superimposed bi-grating structures. The bi-gratings were inscribed onto a thin azobenzene molecular glass film via photolithography and subsequently coated with a thin gold layer to support SPR. [...] Read more.
This study presents the design and fabrication of light retroreflectors utilizing surface plasmon resonance (SPR) in parallel-superimposed bi-grating structures. The bi-gratings were inscribed onto a thin azobenzene molecular glass film via photolithography and subsequently coated with a thin gold layer to support SPR. The two superimposed gratings operate in tandem, with one grating coupling incident light into the SPR mode and the other coupling it back out toward the light source, thereby achieving retroreflection. Monochromatic retroreflection is demonstrated for a target wavelength (785 nm) at angles from 5° to 10°, while multi-wavelength retroreflection is achieved for red, orange, and green wavelengths at corresponding angles. The findings highlight the potential of these bi-gratings for applications in optical sensing, communication, and advanced photonic systems, where compact, tunable, and angularly responsive designs are essential. Full article
Show Figures

Figure 1

37 pages, 28647 KiB  
Review
Azobenzene as Multi-Targeted Scaffold in Medicinal Chemistry
by Barbara De Filippis, Alice Della Valle, Alessandra Ammazzalorso, Cristina Maccallini, Giuseppe Tesse, Rosa Amoroso, Adriano Mollica and Letizia Giampietro
Molecules 2024, 29(24), 5872; https://doi.org/10.3390/molecules29245872 - 12 Dec 2024
Viewed by 1564
Abstract
The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to [...] Read more.
The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial, anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic. The aim of this review is to highlight the importance of azobenzene as a scaffold in medicinal chemistry, with particular attention to the chemical modifications and structure–activity relationships (SARs). This review emphasizes the main therapeutic applications of phenyldiazenyl derivatives, with a particular focus on structural modification and its influence on activity, with the aim of inspiring medicinal chemists to obtain new, increasingly powerful azobenzenes useful in therapy. Full article
Show Figures

Graphical abstract

19 pages, 5662 KiB  
Article
Synthesis, Characterization and Catalytic/Antimicrobial Activities of Some Transition Metal Complexes Derived from 2-Floro-N-((2-Hydroxyphenyl)Methylene)Benzohydrazide
by Ahmed K. Hijazi, Ziyad A. Taha, Dua’a K. Issa, Heba M. Alshare, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2024, 29(23), 5758; https://doi.org/10.3390/molecules29235758 - 5 Dec 2024
Cited by 1 | Viewed by 1389
Abstract
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal [...] Read more.
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal substances and different industrial and medicinal properties is well established. Methods: A Schiff base ligand (2-fluoro-N’-[(E)-2-hydroxyphenyl) methylene] benzohydrazide) was reacted with a series of transition metals to produce complexes with a general formula [ML2(NO3)]NO3.nH2O, where [M = Zn, Cu, Co, Ni, Mn], and [n = 0, 1], corresponding to complexes 15. The nature of the bond was determined in the solid state and solution using spectral studies (1H-NMR, 13C-NMR, UV-Vis and FT-IR), TGA, EPR, elemental analysis and molar conductivity measurement. Results: All M(II) complexes are 1:1 electrolytes, as illustrated by their molar conductivities. The results demonstrate that all synthesized complexes present a coordination number of six by the bonding of the bidentate ligand via its azomethine nitrogen atoms and carbonyl oxygen atoms, as well as with one nitrate group as a bidentate ligand via two oxygen atoms. The DPPH radical scavenging technique was used to investigate the antioxidant activities of the ligand [L] and the metal complexes. It is clear that the activity increased in M (II) complexes compared to the Schiff base ligand. Complex 5 showed the highest activity, with an excellent activity of 90.4%, while complex 4 showed the lowest. The antibacterial activities of the Schiff base and its complexes have been examined against various pathogenic bacteria to measure their inhibition potential. Complex 2 showed remarkable activity against Gram (+) bacteria and fungi with an MIC value of 8 μg/mL, which is greater than that of the positive controls, oxytetracycline and fluconazole. The catalytic activities of all complexes were examined in the oxidation of aniline, and the results illustrated that all complexes had a 100% selectivity in producing only azobenzene, and complex 4 had the highest activity (91%). Conclusion: The obtained results from this study show that the antioxidant and antibacterial properties of both the Schiff base ligand and its derived complexes are promising, with some demonstrating remarkable activities. Moreover, the catalytic activities and selectivities of the prepared complexes in aniline oxidation are interesting. Full article
Show Figures

Figure 1

508 KiB  
Proceeding Paper
Hybrids of Methylxanthines and Azoderivatives as Acetylcholinesterase Inhibitors: Structure–Activity Relationship Analysis
by Brunella Biscussi, Santiago Gundin, Martina Donozo and Ana Paula Murray
Chem. Proc. 2024, 16(1), 111; https://doi.org/10.3390/ecsoc-28-20258 - 15 Nov 2024
Viewed by 224
Abstract
In this work, we synthesized methylxanthine and azobenzene derivatives, linked to secondary amines via a seven-carbon chain, to evaluate their acetylcholinesterase (AChE) inhibitory activity. Among the azobenzene compounds, 3a exhibited the highest activity with an IC50 of 1.1 µM. Meanwhile, the theobromine [...] Read more.
In this work, we synthesized methylxanthine and azobenzene derivatives, linked to secondary amines via a seven-carbon chain, to evaluate their acetylcholinesterase (AChE) inhibitory activity. Among the azobenzene compounds, 3a exhibited the highest activity with an IC50 of 1.1 µM. Meanwhile, the theobromine derivative 2a was the most potent inhibitor among the methylxanthines, with an IC50 of 0.19 µM. These results highlight the importance of structure–activity relationship analysis to optimize AChE inhibition by modifying pharmacophore fragments and secondary amines. Full article
Show Figures

Scheme 1

Back to TopTop