Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = Astragali radix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2455 KiB  
Article
Paeoniflorin Improves Stroke by Modulating the ESR1 Pathway: Data Mining and Validation Based on Network Approaches
by Zhenshan Sun, Junjie Peng, Jiangbangrui Chu, Zhengyi Wang, Kefan Hu, Zhanpeng Feng, Mingfeng Zhou, Xingqin Wang, Songtao Qi, Zhu Zhang and Ken Kin Lam Yung
Pharmaceuticals 2025, 18(7), 933; https://doi.org/10.3390/ph18070933 - 20 Jun 2025
Viewed by 498
Abstract
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the [...] Read more.
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the active compound interactions contained within these clinical cases, with experimental validation after target screening. Methods and Materials: Stroke-related targets were identified through GEO, DisGeNET, and Genecards. Active ingredients were extracted from BATMAN-TCM 2.0. All herbs and diseases were confirmed by the Pharmacopoeia of the People’s Republic of China (2020 edition) and Medical Subject Heading (MeSH). All networks in this study were constructed by Cytoscape, and data analysis was done by Python. All formulations and herbs were retrieved from the literature review. For the molecular docking process, Autodock was applied as the docking platform, and all the protein structures were downloaded from PDB. For experimental validation after target screening, HT22 cells were incubated with glucose-free DMEM and placed in an anaerobic chamber for 2 h. Subsequently, HT22 cells were reoxygenated for 24 h. Estrogen Receptor 1 (ESR1) protein levels were measured in vitro. Results: seven materials, including Angelicae Sinensis Radix, Pheretima, Chuanxiong Rhizoma, Persicae Semen, Astragali Radix, Carthami Flos, and Radix Paeoniae Rubra, were identified as the core herbs for the treatment of stroke. The targets of the stroke mechanism were screened, and the herbs-compound-target network was constructed. Among them, paeoniflorin (PF) was identified as the core active compound, and its interaction with ESR1 was verified by molecular docking as the key interaction for the treatment of stroke. In vitro experiments showed that PF inhibited cell apoptosis under hypoxia by increasing the expression of ESR1 compared with the oxygen-glucose deprivation-reperfusion (OGD/R) model group. Western showed that PF (100 μM, 200 μM) can significantly increase the decreased ESR1 protein level caused by the OGD/R model. Conclusions: seven key herbs were screened. Further bioinformatics and network pharmacology studies suggested that PF is expected to become a new active compound for the treatment of stroke. In vitro validation further demonstrated that PF enhanced neuronal survival and ESR1 expression under ischemic conditions, supporting its therapeutic candidacy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 3780 KiB  
Article
Sinhyotaklisan as a Potential Therapeutic for Psoriasis: Network Pharmacology and Experimental Validation
by Jung-Yun Ahn, Dong-Woo Lim, Jin-Hee Kim, Sung-Yun Park, Sun-Dong Park and Ju-Hee Lee
Int. J. Mol. Sci. 2025, 26(11), 5082; https://doi.org/10.3390/ijms26115082 - 25 May 2025
Viewed by 667
Abstract
Sinhyotaklisan (SHTLS) is a traditional herbal prescription composed of Lonicerae Flos, Angelicae Gigantis Radix, Astragali Radix, and Glycyrrhizae Radix et Rhizoma, commonly used to treat skin disorders. This study aimed to investigate the therapeutic effects and underlying mechanisms of [...] Read more.
Sinhyotaklisan (SHTLS) is a traditional herbal prescription composed of Lonicerae Flos, Angelicae Gigantis Radix, Astragali Radix, and Glycyrrhizae Radix et Rhizoma, commonly used to treat skin disorders. This study aimed to investigate the therapeutic effects and underlying mechanisms of SHTLS in psoriasis through the network pharmacology analysis and experimental validation in vitro and in vivo. Bioactive compounds and molecular targets were identified using the Traditional Chinese Medicine Systems Pharmacology database, and key protein–protein interaction networks were analyzed via STRING and Cytoscape. In vitro, HaCaT cells were pretreated with SHTLS and stimulated with TNF-α, followed by assessments using proliferation assays, scratch assays, quantitative real-time PCR, and Western blotting. In vivo, the anti-psoriatic effects of SHTLS were evaluated in an imiquimod-induced psoriatic mouse model. A total of 36 key targets were significantly enriched in TNF-α, MAPK, HIF-1α, and IL-17 signaling pathways. SHTLS suppressed TNF-α-induced expression of VEGF and HIF-1α, while upregulating p53, thereby inhibiting keratinocyte hyperproliferation and angiogenesis. It also reduced IL-6 and IL-8 levels and blocked activation of the NF-κB and MAPK pathways. Histological analysis confirmed that SHTLS alleviated psoriatic lesions in vivo. These findings suggest that SHTLS may be a promising therapeutic candidate for psoriasis by targeting hyperproliferation, angiogenesis, and inflammation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 21945 KiB  
Article
Drug Pair of Astragali Radix–Ligustri Lucidi Fructus Alleviates Acute Kidney Injury in Mice Induced by Ischemia–Reperfusion Through Inhibiting Ferroptosis
by Xuanhe Liu, Dan Zhang, Yuting Xie, Mengdan Wang, Xiaochun Chen, Weijie Yu, Yuming Ma, Jia Zeng, Qixuan Long, Guangrui Huang, Jie Geng and Anlong Xu
Pharmaceuticals 2025, 18(6), 789; https://doi.org/10.3390/ph18060789 - 25 May 2025
Viewed by 767
Abstract
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise [...] Read more.
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise in renal diseases, but its protective effects against RIRI and associated molecular pathways via ferroptosis inhibition are unknown. This study aimed to investigate DAL’s therapeutic effects on RIRI and its mechanisms. Methods: A mouse model of bilateral renal ischemia–reperfusion was established. Renal function (serum creatinine, Scr; blood urea nitrogen, BUN), inflammatory cytokines (TNF-α, IFN-γ, IL-6), ferroptosis markers (GPX4, MDA, GSH, tissue iron), and pathological damage were evaluated. Transcriptomic sequencing and electron microscopy analyzed gene pathways and mitochondrial structure. In HK-2 cells, oxygen–glucose deprivation/reoxygenation (OGD/R) and RSL3-induced ferroptosis models were used to assess DAL-containing serum effects via cell viability, GPX4 expression, and mitochondrial morphology. LC-MS analyzed DAL’s chemical components, and network pharmacology predicted ferroptosis-related targets. Results: DAL significantly reduced Scr/BUN levels, alleviated tubular injury, fibrosis, and apoptosis, and downregulated inflammatory cytokines and damage markers. It inhibited ferroptosis by upregulating GPX4, decreasing MDA/tissue iron, and increasing GSH. Transcriptomics revealed enrichment in lipid metabolism pathways. DAL restored the mitochondrial cristae structure; DAL-containing serum improved cell viability, blocked RSL3-induced GPX4 downregulation, and mitigated mitochondrial dysfunction. Network pharmacology identified DAL’s potential active components and targets. Molecular docking validated binding affinity and interaction patterns of active components with targets. Conclusions: DAL protects against RIRI by upregulating GPX4, preserving the mitochondrial structure, and inhibiting ferroptosis, highlighting its therapeutic potential for AKI prevention and treatment. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Figure 1

16 pages, 3130 KiB  
Article
Ozone Treatment Inhibited the Blue Mold Development and Maintained the Main Active Ingredient Content in Radix astragali Infected by Penicillium polonicum Through Activating Reactive Oxygen Species Metabolism
by Jihui Xi, Qili Liu, Qingru Zhang, Zhiguang Liu, Huali Xue and Yuqin Feng
J. Fungi 2025, 11(6), 402; https://doi.org/10.3390/jof11060402 - 23 May 2025
Viewed by 588
Abstract
Radix astragali is a homologous plant of medicine and food with a variety of health benefits. However, our previous study showed that blue mold, caused by Penicillium polonicum, is the most important postharvest disease of fresh R. astragali during storage. Ozone, as [...] Read more.
Radix astragali is a homologous plant of medicine and food with a variety of health benefits. However, our previous study showed that blue mold, caused by Penicillium polonicum, is the most important postharvest disease of fresh R. astragali during storage. Ozone, as a strong oxidizing agent, can effectively control the occurrence of postharvest diseases in fruits and vegetables. Nevertheless, there are few research studies on the effect of ozone-treated fresh Chinese traditional medicine. In this study, we investigated the effect of ozone gas on the postharvest blue mold development, mycotoxin accumulation, and main active component contents in fresh R. astragali infected by P. polonicum, and analyzed the possible action mechanism on ROS metabolism. The result indicates that ozone application significantly inhibited the development of postharvest blue mold caused by P. polonicum infection, reduced the disease incidence, disease index, and weight loss rate, maintained the main active ingredients in fresh R. astragali by activating ROS metabolism, enhanced the antioxidant enzymatic activity, thus avoiding oxidative damage caused by excessive ROS accumulation, and maintained the integrity of the cell membrane, ultimately controlling the occurrence of blue mold of R. astragali. Moreover, ozone treatment also maintained the contents of the main active ingredients in R. astragali before 14 d during P. polonicum infection. In addition, the amount of active ingredients of astragaloside I, calycosin-7-glucoside, and ononin in the ozone-treated group was higher than that in the control group during the storage period. We speculate that, under the action of ozone, astragaloside IV was converted into astragaloside II by oxidative modification and astragaloside II was further oxidized to astragaloside I, resulting in the accumulation of astragaloside I. Similarity, the hydrogen atoms (-H) on the benzene ring in formononetin were oxidized to phenolic hydroxyl groups (-OH) to generate calycosin, which was further converted into calycosin-7-glucoside, resulting in calycosin-7-glucoside accumulation. This study will provide the theoretical basis for ozone commercial application to control the occurrence of postharvest diseases of R. astragali. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

22 pages, 9092 KiB  
Article
α-Glucosidase Inhibition Mechanism and Anti-Hyperglycemic Effects of Flavonoids from Astragali Radix and Their Mixture Effects
by Xing Han, Pengpu Wang, Jing Zhang, Yang Lv, Zhigao Zhao, Fengxian Zhang, Mingying Shang, Guangxue Liu, Xuan Wang, Shaoqing Cai and Feng Xu
Pharmaceuticals 2025, 18(5), 744; https://doi.org/10.3390/ph18050744 - 18 May 2025
Cited by 1 | Viewed by 1519
Abstract
Background: Inhibition of intestinal α-glucosidase is a key strategy for controlling postprandial hyperglycemia in diabetes. Astragali Radix (AR), a traditional medicinal and dietary herb widely consumed in China, is rich in flavonoids that are believed to exhibit hypoglycemic properties. Methods: A [...] Read more.
Background: Inhibition of intestinal α-glucosidase is a key strategy for controlling postprandial hyperglycemia in diabetes. Astragali Radix (AR), a traditional medicinal and dietary herb widely consumed in China, is rich in flavonoids that are believed to exhibit hypoglycemic properties. Methods: A total of 29 AR-related flavonoids, including both original constituents and metabolites, were screened for α-glucosidase inhibitory activity using in vitro enzymatic assays. Mechanistic investigations were conducted through enzyme kinetics, circular dichroism (CD) spectroscopy, surface plasmon resonance (SPR), and molecular docking. The in vivo hypoglycemic effects were assessed using a postprandial hyperglycemic mouse model. Additionally, potential mixture effects of flavonoid combinations were evaluated. Results: Of the 29 flavonoids, 16 demonstrated significant α-glucosidase inhibitory activity, with five (C3, C17, C19, C28, and C29) identified as novel inhibitors. Structure–activity relationship (SAR) analysis revealed that hydroxylation, particularly at the C-3 position, enhanced activity, while glycosylation and methoxylation reduced it. Mechanistic studies demonstrated that these compounds bind to distinct amino acid residues within the active site of α-glucosidase, inducing conformational changes and exerting different types of inhibition, leading to varying inhibitory mechanisms. Additionally, 15 compounds reduced postprandial blood glucose levels, with C3, C16, C17, C19, and C28 confirmed as novel in vivo inhibitors. Notably, two compositions of flavonoids combined at their individually ineffective concentrations exhibited significant inhibitory effects. Conclusions: This study provides a comprehensive evaluation of AR-related flavonoids as α-glucosidase inhibitors and offers valuable insights for the development of highly effective, low-toxicity, flavonoid-based, antidiabetic therapeutics and functional foods. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

53 pages, 5164 KiB  
Review
From Traditional Efficacy to Drug Design: A Review of Astragali Radix
by Xiaojie Jin, Huijuan Zhang, Xiaorong Xie, Min Zhang, Ruifeng Wang, Hao Liu, Xinyu Wang, Jiao Wang, Dangui Li, Yaling Li, Weiwei Xue, Jintian Li, Jianxin He, Yongqi Liu and Juan Yao
Pharmaceuticals 2025, 18(3), 413; https://doi.org/10.3390/ph18030413 - 14 Mar 2025
Cited by 2 | Viewed by 1434
Abstract
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine [...] Read more.
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine (TCM) theory, AR is believed to tonify qi, elevate yang, consolidate the body’s surface to reduce sweating, promote diuresis and reduce swelling, generate body fluids, and nourish the blood. It has been widely used to treat general weakness and chronic illnesses and to improve overall vitality. Extensive research has identified various medicinal properties of AR, including anti-tumor, antioxidant, cardiovascular-protective, immunomodulatory, anti-inflammatory, anti-diabetic, and neuroprotective effects. With advancements in technology, methods such as computer-aided drug design (CADD) and artificial intelligence (AI) are increasingly being applied to the development of TCM. This review summarizes the progress of research on AR over the past decades, providing a comprehensive overview of its traditional efficacy, botanical characteristics, drug design and distribution, chemical constituents, and phytochemistry. This review aims to enhance researchers’ understanding of AR and its pharmaceutical potential, thereby facilitating further development and utilization. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

19 pages, 10669 KiB  
Article
Insights into the Regulatory Effect of Danggui Buxue Tang in Postpartum Dairy Cows Through an Integrated Analysis of Multi-Omics and Network Analysis
by Kang Yong, Zhengzhong Luo, Zheng Zhou, Yixin Huang, Chuanshi Zhang and Suizhong Cao
Life 2025, 15(3), 408; https://doi.org/10.3390/life15030408 - 5 Mar 2025
Viewed by 777
Abstract
Postpartum dairy cows often face significant challenges due to metabolic disorders. Danggui Buxue Tang (DBT), a botanical drug composed of Astragali radix and Angelica sinensis radix in a 5:1 ratio, has been recognized for its potential to alleviate metabolic disorders. Its regulatory mechanisms [...] Read more.
Postpartum dairy cows often face significant challenges due to metabolic disorders. Danggui Buxue Tang (DBT), a botanical drug composed of Astragali radix and Angelica sinensis radix in a 5:1 ratio, has been recognized for its potential to alleviate metabolic disorders. Its regulatory mechanisms on livestock metabolic health have remained unexplored. This study integrated the analyses of serum pharmacochemistry, network pharmacology, serum metabolomics, and fecal microbiota to investigate the regulatory effects of DBT on metabolic adaptation in postpartum dairy cows. Following the oral administration of DBT, levels of blood non-esterified fatty acids and beta-hydroxybutyrate were decreased in multiparous dairy cows one week after calving. Five absorbed prototype metabolites of DBT were identified, specifically formononetin and nicotinic acid, both of which play roles in the regulation of lipid metabolic homeostasis. Furthermore, DBT modified the composition of the gut microbial community and glycerophospholipid levels. Decreases in serum phosphatidylethanolamine and phosphatidylcholine levels were closely correlated with the relative abundance of Bacillus and the concentration of circulating beta-hydroxybutyrate. These findings suggest that DBT contributes positively to metabolic health in postpartum dairy cows by regulating the gut microbiota and glycerophospholipid metabolism, providing new insights into strategies for promoting metabolic adaptation in dairy cows. Full article
(This article belongs to the Special Issue Natural Bioactives: Exploring Their Therapeutic Potential)
Show Figures

Figure 1

19 pages, 3947 KiB  
Article
Comparison of the Immune Enhancing Activity and Chemical Constituents Between Imitation Wild and Cultivated Astragali Radix
by Shuo Zhao, Xueting Li, Yumeng Wang, Rui Xu, Xu Li, Jiushi Liu, Xiaolin Hou and Haitao Liu
Molecules 2025, 30(4), 923; https://doi.org/10.3390/molecules30040923 - 17 Feb 2025
Cited by 1 | Viewed by 841
Abstract
Astragali Radix (AR), a traditional food and medicinal herb used for thousands of years, is widely recognized for its role in enhancing immunity, particularly when combined with adjuvant chemotherapy. The two primary types of AR available in the market are imitation wild AR [...] Read more.
Astragali Radix (AR), a traditional food and medicinal herb used for thousands of years, is widely recognized for its role in enhancing immunity, particularly when combined with adjuvant chemotherapy. The two primary types of AR available in the market are imitation wild AR (grown for seven years) and cultivated AR (grown for two years). However, whether differences exist in their immune-enhancing effects and chemical constituents remains unclear. In this study, a comparative analysis was performed to evaluate the immune activity and chemical composition of cultivated and imitation wild AR. Immune activity was assessed through in vivo animal studies, while metabolomic analysis was used to characterize their chemical profiles. The results demonstrate that AR possesses significant antitumor and immune-enhancing activities, with imitation wild AR showing superior efficacy compared with cultivated AR. Following 16 days of daily AR treatment, both the thymus and spleen coefficients were significantly increased, effectively reversing the immune dysfunction induced by cyclophosphamide (CTX). Moreover, the administration of AR showed no significant toxicity, as evidenced by the stable liver and kidney function indicators, including ALT, UREA, and CRE levels. To investigate chemical differences, a customized chemotaxonomic-based in-house library containing 215 compounds was developed and integrated with the Progenesis QI informatics platform for metabolite annotation. Using multivariate analysis, 48 constituents were identified in total: 46 unique to the imitation wild AR and 45 specific to the cultivated AR. The correlation between chemical constituents and the pharmacological effects of AR was evaluated. Based on orthogonal partial least-squares discriminant analysis (OPLS-DA) and S-plot analysis, five potential biomarkers were identified, including Calycosin-7-glucoside, Rhamnocitrin-3-O-β-D-glucopyranoside, Ononin, 3,5-Dicaffeoylquinic acid, and Acetylastragaloside I. These biomarkers likely account for the differences in immune-enhancing effects between the two AR types. This study provides a scientific foundation for the rational use of Astragali Radix. Full article
Show Figures

Figure 1

23 pages, 21338 KiB  
Article
The Multi-Target Action Mechanism for the Anti-Periodontitis Effect of Astragali radix Based on Bioinformatics Analysis and In Vitro Verification
by Ningli Li, Bowen Wang, Mingzhen Yang, Miaomiao Feng, Xiaoran Xu, Cory J. Xian, Tiejun Li and Yuankun Zhai
Nutrients 2025, 17(4), 627; https://doi.org/10.3390/nu17040627 - 10 Feb 2025
Viewed by 2199
Abstract
Background: Astragali radix is a traditional Chinese medicine with potential therapeutic effects on periodontitis; however, its underlying mechanisms require further investigation. Methods: We employed network pharmacology, molecular docking, molecular dynamics simulations, and in vitro experiments to explore the potential actions and mechanisms [...] Read more.
Background: Astragali radix is a traditional Chinese medicine with potential therapeutic effects on periodontitis; however, its underlying mechanisms require further investigation. Methods: We employed network pharmacology, molecular docking, molecular dynamics simulations, and in vitro experiments to explore the potential actions and mechanisms of Astragali radix in treating periodontitis. Results: A total of 17 compounds (including the most prevalent one, Kaempferol) from Astragali radix and 464 corresponding targets were identified, from which five major active ingredients were selected based on the drug-active ingredient and periodontitis gene network. Protein–protein interaction (PPI) network analysis identified the top ten core potential targets, seven of which possess suitable crystal structures for molecular docking. These include interleukin-6 (IL6), tumor necrosis factor (TNF), AKT serine/threonine kinase 1 (AKT1), interleukin-1β (IL1β), prostaglandin G/H synthase-2 (PTGS2), matrix metalloproteinase-9 (MMP9), and caspase-3 (CASP3). Additionally, 58 Gene Ontology (GO) terms and 146 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. The five major active ingredients and seven core targets mentioned above were subjected to molecular docking analysis using Discovery Studio 2019 software. Molecular dynamic simulations confirmed a stable interaction between the CASP3 and the Kaempferol ligand system. In vitro experiments indicated that Kaempferol significantly inhibited lipopolysaccharide (LPS)-induced apoptosis in human periodontal ligament stem cells and reduced the expression levels of IL6, CASP3 and MMP9. Conclusions: This study systematically elucidates that the primary active ingredients derived from Astragali radix exert their pharmacological effects (including anti-inflammation and anti-apoptosis) primarily by interacting with multiple targets. These findings establish a promising foundation for the targeted application of Astragali radix in the treatment of periodontitis. Full article
(This article belongs to the Special Issue Antioxidants in Metabolic Disorders and Inflammatory Diseases)
Show Figures

Figure 1

18 pages, 3109 KiB  
Article
Enhancement of Active Substances in Astragali Radix Broth with Lactic Acid Bacteria Fermentation and the Promotion Role of Chlorella Growth Factor
by Xiaomeng Li, Wei Liu, Qingyan Ge, Tongtong Xu, Xiang Wu and Ruohui Zhong
Fermentation 2024, 10(9), 455; https://doi.org/10.3390/fermentation10090455 - 3 Sep 2024
Cited by 1 | Viewed by 1737
Abstract
Astragali Radix, a traditional Chinese herbal medicine widely used for its medicinal properties, is known to be rich in active components that possess various pharmacological effects. However, the effectiveness of microbial fermentation in enhancing the content of these active substances remains unclear. In [...] Read more.
Astragali Radix, a traditional Chinese herbal medicine widely used for its medicinal properties, is known to be rich in active components that possess various pharmacological effects. However, the effectiveness of microbial fermentation in enhancing the content of these active substances remains unclear. In this study, a microflora of lactic acid bacteria was used to ferment Astragali Radix, and the promoting effect of Chlorella Growth Factor (CGF) on the fermentation process was investigated so as to clarify the changes in major active compound content in the fermented Astragali Radix broth. Non-targeted metabolomic analysis based on ultra-high-performance liquid chromatography–mass spectrometry was conducted to analyze the differences in metabolites before and after fermentation. The results showed that the total polysaccharide, total flavonoid, and total saponin content in the fermented Astragali Radix broth increased by up to 51.42%, 97.76%, and 72.81% under the optimized conditions, respectively. Streptococcus lutetiensis was the dominant bacterial species during the fermentation process. There were significant differences in metabolites in the fermentation broth before and after fermentation, among which amino acids (such as L-Aspartyl-L-Phenylalanine, etc.) and saponin compounds (such as Cloversaponin I, Goyasaponin I, etc.) were the main upregulated metabolites, which can enhance the physiological functions of Astragali Radix fermentation broth. The CGF exhibited the ability to promote the increase of active substance content in the fermented Astragali Radix broth. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

21 pages, 4738 KiB  
Review
Germplasm Resources and Genetic Breeding of Huang-Qi (Astragali Radix): A Systematic Review
by Pengbin Dong, Lingjuan Wang, Yong Chen, Liyang Wang, Wei Liang, Hongyan Wang, Jiali Cheng, Yuan Chen and Fengxia Guo
Biology 2024, 13(8), 625; https://doi.org/10.3390/biology13080625 - 16 Aug 2024
Cited by 3 | Viewed by 1790
Abstract
Huang-Qi (Astragali radix) is one of the most widely used herbs in traditional Chinese medicine, derived from the dried roots of Astragalus membranaceus or Astragalus membranaceus var. mongholicus. To date, more than 200 compounds have been reported to be isolated and identified [...] Read more.
Huang-Qi (Astragali radix) is one of the most widely used herbs in traditional Chinese medicine, derived from the dried roots of Astragalus membranaceus or Astragalus membranaceus var. mongholicus. To date, more than 200 compounds have been reported to be isolated and identified in Huang-Qi. However, information pertaining to Huang-Qi breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Huang-Qi germplasm resources, genetic diversity, and genetic breeding, including wild species and cultivars, and summarizes the breeding strategy for cultivars and the results thereof as well as recent progress in the functional characterization of the structural and regulatory genes related to horticultural traits. Perspectives about the resource protection and utilization, breeding, and industrialization of Huang-Qi in the future are also briefly discussed. Full article
Show Figures

Figure 1

17 pages, 4564 KiB  
Article
A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms
by Xiuxiu Qiu, Wentao Luo, Haotian Li, Tingting Li, Yaxue Huang, Qi Huang and Rui Zhou
Biology 2024, 13(6), 427; https://doi.org/10.3390/biology13060427 - 10 Jun 2024
Cited by 1 | Viewed by 1805
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic [...] Read more.
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

16 pages, 5179 KiB  
Article
A Rapid and Accurate UHPLC Method for Determination of Monosaccharides in Polysaccharides of Different Sources of Radix Astragali and Its Immune Activity Analysis
by Yali Guo, Lijun Wang, Kaishuang Liu, Meifang Li, Yibao Jin, Lifei Gu, Xie-An Yu, Shuhong Wang, Ping Wang, Bing Wang and Tiejie Wang
Molecules 2024, 29(10), 2287; https://doi.org/10.3390/molecules29102287 - 13 May 2024
Cited by 4 | Viewed by 1826
Abstract
With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from [...] Read more.
With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971–0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA. Full article
Show Figures

Graphical abstract

23 pages, 2680 KiB  
Review
The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis
by Juan Yao, Ting Peng, Changxin Shao, Yuanyuan Liu, Huanhuan Lin and Yongqi Liu
Molecules 2024, 29(8), 1691; https://doi.org/10.3390/molecules29081691 - 9 Apr 2024
Cited by 23 | Viewed by 3693
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as [...] Read more.
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants. Full article
Show Figures

Graphical abstract

18 pages, 2375 KiB  
Article
Effects of Designed Herbal Formula on Growth Performance, Blood Indices, Organ Traits, and Cecum Microbiology in Broilers
by Yuelong Sun, Mengjie Zhang, Dongdong Shi, Xiaofeng Dai and Xiumei Li
Vet. Sci. 2024, 11(3), 107; https://doi.org/10.3390/vetsci11030107 - 29 Feb 2024
Cited by 2 | Viewed by 2490
Abstract
The objective of this study was to investigate the effect of the designed herbal formula (DHF) on growth performance, blood indices, organ traits, and cecum microbiology in broilers. A total of 96 male broilers of 1 d were selected and randomly assigned to [...] Read more.
The objective of this study was to investigate the effect of the designed herbal formula (DHF) on growth performance, blood indices, organ traits, and cecum microbiology in broilers. A total of 96 male broilers of 1 d were selected and randomly assigned to two groups with six replicates of eight broilers each. The control (CON) and the basal diet containing 1.0% DHF (Astragali radix, Atractylodes macrocephala Koidz., Isatis tinctoria Linnaeus, and Citri reticulatae pericarpium, 2:1:1:2) were fed separately. The experiment was conducted for 35 days. The results showed that the DHF diet increased body weight and decreased the feed conversion ratio (FCR) (p < 0.05). At 21 days, the spleen, thymus, lymphocytes, and thrombocytes were increased (p < 0.05), and pancreas, duodenum, heterophils, and mean corpuscular hemoglobin (MCH) were decreased (p < 0.05). At 35 days, the heart, pancreas, white blood cell, heterophils, hemoglobin, MCH and mean corpuscular hemoglobin concentration (MCHC) were decreased, while lymphocytes and middle cells were increased (p < 0.05). The results of microbial diversity analysis showed that the DHF diet decreased the microbial diversity of the cecum. Firmicutes and Bacteroidetes were the dominant phyla, where the DHF diet increased the relative abundances of Bacteroides uniformis, Bacteroides vulgatus, and Faecalibacterium prausnitzii, and then decreased the relative abundance of Shigella sonnei. In conclusion, DHF played a positive role in improving the growth performance, immune performance, and relative abundance of Bacteroides uniformis, Bacteroides vulgatus, and Faecalibacterium prausnitzii in cecum microbiology in broilers, and has the potential to be used as a novel feed additive. Full article
Show Figures

Figure 1

Back to TopTop