Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = AlxCoCrFeNi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 6546 KiB  
Article
Microstructure and Properties of AlxCr1−xCoFeNi High-Entropy Alloys Prepared by Spark Plasma Sintering
by Gang Li, Xiangran Meng, Chunpin Geng, Chongshuo Wang, Haifang Ren, Xiaoying Guo, Sinan Li and Ying Tao
Materials 2025, 18(4), 755; https://doi.org/10.3390/ma18040755 - 8 Feb 2025
Cited by 2 | Viewed by 1044
Abstract
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure [...] Read more.
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure and properties of the alloy. The preparation of the AlxCr1−xCoFeNi (x = 0.1, 0.2, 0.3, 0.4, 0.5) powders involved the use of a variety of elemental metal powders as raw materials and a mechanical alloying process at 350 rpm for 40 h. The sintering of the alloy powders was subsequently conducted using spark plasma sintering at 1000 °C. The microstructure of the alloys was analyzed using XRD, SEM, and EDS, and the properties were analyzed using a universal testing machine, a hardness measurement, friction and wear measurement, and an electrochemical workstation. The study shows that when x = 0.1, the crystal structure of Al0.1Cr0.9CoFeNi consists of a double FCC phase and a trace amount of σ phase. As the aluminum content increases, part of the FCC phase begins to transform to BCC. When x = 0.2~0.5, the alloy consists of a double FCC phase and a BCC phase and a trace amount of a sigma phase. As the BCC phase in the alloy increases, the tensile strength of the alloy increases, the ability to deform plastically decreases, and the hardness increases. The highest ultimate tensile strength of 1163.14 MPa is exhibited by Al0.5Cr0.5CoFeNi, while the minimum elongation is 26.98% and the maximum hardness value is 412.6 HV. In the initial stage of friction measurement, the wear mechanism of AlxCr1−xCoFeNi is adhesive wear. However, as the test time progresses, an oxide layer begins to form on the alloy’s surface, leading to a gradual increase in the friction coefficient. At this stage, the wear mechanism becomes a combination of both adhesive and abrasive wear. Once the oxidation process and the wear process have reached a dynamic equilibrium, the friction coefficient stabilizes, and the wear mechanism transitions to a state of abrasive wear. The Al0.1Cr0.9CoFeNi alloy demonstrates the lowest friction coefficient and wear rate, exhibiting values of 0.513 and 0.020 × 10−3 mm3/Nm, respectively, while the Al0.5Cr0.5CoFeNi alloy demonstrates the highest performance, with a self-corrosion voltage of 0.202 V in a 3.5 wt.% NaCl solution. The experimental findings demonstrate that, in the presence of a decline in the Cr element within a high-entropy alloy, an augmentation in the Al element can facilitate the transition of the FCC phase to the BCC phase within the alloy, thereby enhancing its mechanical properties. However, in the AlxCr1−xCoFeNi HEAs, the presence of the Cr-rich and Cr-poor phases invariably results in selective corrosion in a neutral NaCl solution. The corrosion resistance of this alloy is weaker than that of a single-phase solid solution alloy with a similar chemical composition that only undergoes pitting corrosion. Full article
(This article belongs to the Special Issue Fabrication, Characterization, and Application of High Entropy Alloy)
Show Figures

Figure 1

18 pages, 23143 KiB  
Article
Effect of Al/Cu Ratio on Microstructure and High-Temperature Oxidation Resistance of AlxCoCrCuyFeNi High-Entropy Alloy Coatings
by Ling Zhou, Hongxi Liu, Qinghua Zhang, Jiazhu Liang, Yuanrun Peng, Xuanhong Hao, Chen Yang, Yaxia Liu and Yueyi Wang
J. Manuf. Mater. Process. 2025, 9(1), 13; https://doi.org/10.3390/jmmp9010013 - 5 Jan 2025
Cited by 3 | Viewed by 1510
Abstract
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate [...] Read more.
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate by a laser cladding technique. The results show that the coatings were mainly composed of FCC, BCC, and Ti-rich phases. Severe segregation of the Cu element occurred in the CoCrCuFeNi HEA coatings as a Cu-rich phase (FCC2). The Cu-rich phases decreased with a decreasing Cu content and completely disappeared until the Al content reached 1.0. The microhardnesses of the Cu1.0, Cu0.7Al0.3, Cu0.5Al0.5, Cu0.3Al0.7, and Al1.0 HEA coatings were 2.01, 2.06, 2.08, 2.09, and 2.11 times that of the substrate, and compared with those of a Ti6Al4V alloy substrate, the oxidation rates of the HEA coatings decreased by 55%, 51%, 47%, 42%, and 35%, respectively. The surface oxides of the five coatings were mainly composed of CuO, TiO2, Fe3O4, Cr2O3, and Al2O3. The increase in the Al content promoted the generation of Al2O3 film and Cr2O3 on the surfaces of the coatings, which significantly improved the high-temperature antioxidant performance of the high-entropy alloy coatings for 50 h at 800 °C. When x = 1.0, the coating showed the best high-temperature antioxidant performance. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

9 pages, 2044 KiB  
Article
Preparation and Characterization of BXFO High-Entropy Oxides
by Saba Aziz, Anna Grazia Monteduro, Ritu Rawat, Silvia Rizzato, Angelo Leo, Shahid Khalid and Giuseppe Maruccio
Magnetochemistry 2024, 10(8), 60; https://doi.org/10.3390/magnetochemistry10080060 - 15 Aug 2024
Viewed by 1590
Abstract
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial [...] Read more.
Increasing demand for functional materials crucial for advancing new technologies has motivated significant scientific and industrial research efforts. High-entropy materials (HEMs), with tunable properties, are gaining attention for their use in high-frequency transformers, microwave devices, multiferroics, and high-density magnetic memory components. The initial exploration of HEMs started with high-entropy alloys (HASs), such as CrMnFeCoNi, CuCoNiCrAlxFe, and AlCoCrTiZn and paved the way for a multitude of HEM variations, including oxides, oxyfluorides, borides, carbides, nitrides, sulfides, and phosphides. In this study, we fabricated the high-entropy oxide (HEO) compound Bi0.5La0.1In0.1Y0.1Nd0.1Gd0.1FeO3 through the solid-state synthesis method. Magnetic measurements at 300 K show ferromagnetic behavior with significant coercivity. At the same time, this novel composition exhibits excellent dielectric properties and shows potential for electronic applications demonstrating that a high-entropy approach can expand the compositional range of rare earth multiferroics and improve the multifunctional properties in multiferroic applications. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

16 pages, 8162 KiB  
Article
Wear Characterization of Cold-Sprayed HEA Coatings by Means of Active–Passive Thermography and Tribometer
by Raffaella Sesana, Luca Corsaro, Nazanin Sheibanian, Sedat Özbilen and Rocco Lupoi
Lubricants 2024, 12(6), 222; https://doi.org/10.3390/lubricants12060222 - 17 Jun 2024
Cited by 4 | Viewed by 1277
Abstract
The aim of this work is to verify the applicability of thermography as a non-destructive technique to quantify the wear performance of several high-entropy alloy coatings. Thermal profiles obtained from passive and active thermography were analyzed and the results were correlated with the [...] Read more.
The aim of this work is to verify the applicability of thermography as a non-destructive technique to quantify the wear performance of several high-entropy alloy coatings. Thermal profiles obtained from passive and active thermography were analyzed and the results were correlated with the classical tribological approaches defined in standards. HEA coatings made of several chemical compositions (AlxCoCrCuFeNi and MnCoCrCuFeNi) and realized by using different cold spray temperatures (650 °C, 750 °C, and 850 °C) were tested in a pin-on-disk configuration, with a dedicated pin developed for the wear tests. Then, the wear performances of each sample were analyzed with the hardness and wear parameter results. The thermal profiles of passive and active thermography allowed a complete characterization of the wear resistance and performance analysis of the coatings analyzed. The results are also compared with those presented in the literature. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

9 pages, 3098 KiB  
Communication
Predicting New Single/Multiphase-Structure High-Entropy Alloys Using a Pattern Recognition Network
by Fang Wang, Jiahao Wang, Jiayu Wang, Ruirui Wu and Ke Liu
Coatings 2024, 14(6), 690; https://doi.org/10.3390/coatings14060690 - 1 Jun 2024
Cited by 3 | Viewed by 1410
Abstract
Machine learning methods were employed to predict the phase structures of high-entropy alloys (HEAs). These alloys were classified into four categories: bcc (body-centered cubic), fcc (face-centered cubic), bcc+fcc (body-centered cubic and face-centered cubic) and others (containing intermetallic compounds and other structural alloys). The [...] Read more.
Machine learning methods were employed to predict the phase structures of high-entropy alloys (HEAs). These alloys were classified into four categories: bcc (body-centered cubic), fcc (face-centered cubic), bcc+fcc (body-centered cubic and face-centered cubic) and others (containing intermetallic compounds and other structural alloys). The utilized algorithm was a Pattern Recognition Network (PRN) utilizing cross-entropy as the loss function, enabling the prediction of HEAs’ phase formation probability. The PRN algorithm demonstrated an accuracy exceeding 87% based on the test data. The PRN algorithm successfully predicted the transformation from fcc to fcc+bcc and subsequently to a bcc structure with the increase in Al content in AlxCoCu6Ni6Fe6 and AlxCoCrCuNiFe HEAs. In addition, AlxCoCu6Ni6Fe6 (x = 1, 3, 6, 9) HEAs were prepared using a vacuum arc furnace, and the microstructure of the as-cast alloy was tested by means of XRD, SEM, and EBSD, confirming the high consistency between the predicted and observed phase structures. This study showcases the efficacy of the PRN algorithm in predicting both single- and multiphase-structure high-entropy alloys, offering valuable insights into alloy design and development. Full article
(This article belongs to the Special Issue Research and Application of High Entropy Alloys)
Show Figures

Figure 1

13 pages, 5208 KiB  
Article
Nano-Structure Evolution and Mechanical Properties of AlxCoCrFeNi2.1 (x = 0, 0.3, 0.7, 1.0, 1.3) High-Entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering
by Guiqun Liu, Ziteng Lu and Xiaoli Zhang
Nanomaterials 2024, 14(7), 641; https://doi.org/10.3390/nano14070641 - 7 Apr 2024
Cited by 5 | Viewed by 1772
Abstract
The AlxCoCrFeNi2.1 (x = 0, 0.3, 0.7, 1.0, 1.3) multi-component high-entropy alloy (HEA) was synthesized by mechanical alloying (MA) and Spark Plasma Sintering (SPS), The impact of the percentage of Al on crystal structure transition, microstructure evolution and mechanical properties [...] Read more.
The AlxCoCrFeNi2.1 (x = 0, 0.3, 0.7, 1.0, 1.3) multi-component high-entropy alloy (HEA) was synthesized by mechanical alloying (MA) and Spark Plasma Sintering (SPS), The impact of the percentage of Al on crystal structure transition, microstructure evolution and mechanical properties were studied. Crystal structure was investigated by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results show that with the increasing of Al content, the crystal structure of the alloys gradually transformed from a nanocrystalline phase of FCC to a mix of FCC and BCC nanocrystalline. The hardness was found to increase steadily from 433 HV to 565 HV due to the increase in fraction of BCC nanocrystalline phase. Thus, the compressive fracture strength increased from 1702 MPa to 2333 MPa; in contrast, the fracture strain decreased from 39.8% to 15.6%. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

17 pages, 5542 KiB  
Article
Research on Arc Erosion Resistance of High-Entropy Alloy-Modified Aluminum Alloy Armature Based on Molecular Dynamics Simulation
by Yuanxin Teng, Li Zhang, Guan Wang, Meiying Wu, Chenlu Fan and Shushuai Liu
Coatings 2024, 14(2), 187; https://doi.org/10.3390/coatings14020187 - 31 Jan 2024
Cited by 4 | Viewed by 1620
Abstract
In an electromagnetic launch system, the surface of the aluminum alloy armature is subjected to high-temperature ablation, leading to the generation of significant metal vapor and the initiation of high-energy arcs. This damages the armature structure and can result in a launch failure. [...] Read more.
In an electromagnetic launch system, the surface of the aluminum alloy armature is subjected to high-temperature ablation, leading to the generation of significant metal vapor and the initiation of high-energy arcs. This damages the armature structure and can result in a launch failure. Enhancing the ablation resistance of the armature surface is crucial for improving launch efficiency. In this study, a model for the surface modification of an aluminum alloy armature was constructed. The impact of the CoCrNiFeAlx surface-modified material on the resistance to ablation and structural changes of the armature during arc ablation was elucidated through molecular dynamics simulation. Results show that adding a CoCrNiFeAlx fused cladding layer can effectively enhance the material’s high-temperature resistance. The CoCrNiFeAlx fused cladding significantly reduces the depth of arc intrusion. The CoCrNiFeAlx aluminum alloy model exhibits a narrower strain range on the bombarded surface and a more flattened bombardment crater shape. CoCrNiFeAlx fused cladding helps to reduce damage from substrate bombardment. Comparing simulation results indicates that CoCrNiFeAl0.25 performs best in high-temperature resistance and impact strength, making it the most preferred choice. This study elucidates the law of high-entropy alloy arc ablation resistance and its micromechanism in armature surface modification. It provides a theoretical basis and technical support for preparing high-entropy alloy–aluminum alloy-modified armatures with superior ablation resistance performance. Full article
Show Figures

Figure 1

11 pages, 925 KiB  
Article
Simulation and Optimization of Shot Peening Process for CoCrFeNiAlx High-Entropy Alloy
by Xiaodong Li, Guoqing Gou, Chuanhai Jiang and Jijin Xu
Metals 2023, 13(9), 1537; https://doi.org/10.3390/met13091537 - 30 Aug 2023
Viewed by 1383
Abstract
In this work, Ti-10V-2Fe-3Al alloy was selected as the test material, and the shot peening process of a CoCrFeNiAlx system high-entropy alloy was simulated based on effective test conditions, and the effects of dry shot peening and wet shot peening on the surface [...] Read more.
In this work, Ti-10V-2Fe-3Al alloy was selected as the test material, and the shot peening process of a CoCrFeNiAlx system high-entropy alloy was simulated based on effective test conditions, and the effects of dry shot peening and wet shot peening on the surface properties were determined. Preliminary simulation results the surface of the test sample display a clear plastic deformation state that gradually diminishes and shifts towards the outermost layer. The stress transfer of the test sample gradually decreases, showing a gradient change, and the twin density also shows a random sample change. Then, the high-entropy alloy shot peening process was optimized, and the best process parameters were determined by analyzing the microhardness data, depth of action layer, and surface state. It was found that after wet shot peening, a new characteristic peak is generated, and with the increase in the size of the shot, its overall kinetic energy becomes increasingly higher, the strain energy of the material surface becomes increasingly higher, and the grain refinement is relatively high. This work provides a new approach to investigating the issues that are present during the shot peening process of CoCrFeNiAlx system high-entropy alloys. Full article
(This article belongs to the Special Issue Numerical Modelling of Mechanical Properties for Metallic Materials)
Show Figures

Figure 1

14 pages, 3660 KiB  
Article
Effect of Various Processes on Microstructure of CoCrFeNiAlx High-Entropy Alloy Shot Peening Layer
by Xiaodong Li, Guoqing Gou, Chuanhai Jiang and Jijin Xu
Metals 2023, 13(8), 1441; https://doi.org/10.3390/met13081441 - 11 Aug 2023
Cited by 2 | Viewed by 1487
Abstract
The change in microstructure caused by shot peening can strengthen the material and play an important role in improving the fatigue properties of the material. In order to investigate the related properties such as plastic strain anddislocation activity, the microstructure of CoCrFeNiAlx alloy [...] Read more.
The change in microstructure caused by shot peening can strengthen the material and play an important role in improving the fatigue properties of the material. In order to investigate the related properties such as plastic strain anddislocation activity, the microstructure of CoCrFeNiAlx alloy shot peening layer under different processes was studied. The material exhibited a single austenitic phase, and the FCC crystal structure remained unchanged despite variations in shot peening intensity. Microstructure analysis indicates that with the increase in shot peening intensity, the grain size of the shot peening layer decreases obviously, and the content of microscopic distortion on the surface of the shot peening layer is the highest, and gradually decreases with the increase in depth. At the same time, the roughness of the sample surface is also reduced, which can enhance the fatigue strength and life of the sample. A TEM study revealed the microstructure of the shot peening layer. During the impact of shot peening, the twins produced gradually subdivided the initial grain into smaller slices. With the accumulation of plastic strain, dislocation activity begins to dominate the deformation process. The deformation-induced dislocations accumulate gradually in the small pieces and accumulate into dislocations perpendicular to the secondary twins. These results could be conducive to providing reference and theoretical basis for improving and strengthening the mechanical properties of a series of materials such as high-entropy alloy. Full article
(This article belongs to the Special Issue Thermomechanical Treatment of Metals and Alloys)
Show Figures

Figure 1

10 pages, 11498 KiB  
Article
Microstructure and Properties of Ti(C,N)-Based Cermets with AlxCoCrFeNiTi Binder
by Meiling Liu, Zhen Sun, Peng Liu, Wanxiu Hai and Yuhong Chen
Materials 2023, 16(7), 2894; https://doi.org/10.3390/ma16072894 - 5 Apr 2023
Cited by 5 | Viewed by 1833
Abstract
AlxCoCrFeNiTi (x = 0.1, 0.3, 0.6, 1) powders were prepared via mechanical alloying and were used as binders for SPS-produced Ti(C,N)-based cermets. The effects of AlxCoCrFeNiTi binder on phase composition, morphology, room-temperature mechanical properties, and oxidation resistance of cermets were studied. [...] Read more.
AlxCoCrFeNiTi (x = 0.1, 0.3, 0.6, 1) powders were prepared via mechanical alloying and were used as binders for SPS-produced Ti(C,N)-based cermets. The effects of AlxCoCrFeNiTi binder on phase composition, morphology, room-temperature mechanical properties, and oxidation resistance of cermets were studied. The research showed that cermets with AlxCoCrFeNiTi binders exhibited a more homogeneous core–rim structure than cermets with cobalt binders. The Vickers hardness and fracture toughness of cermets with AlxCoCrFeNiTi binders increased with the aluminum molar ratio due to the grain refinement and solid solution strengthening effect of carbonitrides. After static oxidation at 1000 °C, the mass gain of the cermets with AlxCoCrFeNiTi binders changed according to a quasi-parabolic law, and the lowest mass gain was obtained in the cermet with Al0.6CoCrFeNiTi binder. The oxidation kinetics curve of the benchmark cermet with cobalt followed a linear law. The oxidation product of Ti(C,N)-based cermet with cobalt was rich in TiO2, and the Ti(C,N)-based cermets with AlxCoCrFeNiTi binders were transformed into complex oxides, such as NiMoO4, NiWO4, FeMoO4, Fe3Ti3O9, and Ni3TiO7. The oxide layer on the cermet with Al0.6CoCrFeNiTi appeared to be dense and protective, which inhibited the diffusion of oxygen into the cermet and improved the oxidation resistance of the final product. Full article
Show Figures

Figure 1

18 pages, 8856 KiB  
Article
Influence of Milling Conditions on AlxCoCrFeNiMoy Multi-Principal-Element Alloys
by Diego Delgado Arroyo, Tim Richter, Dirk Schroepfer, Andreas Boerner, Michael Rhode, Thomas Lindner, Bianca Preuß and Thomas Lampke
Coatings 2023, 13(3), 662; https://doi.org/10.3390/coatings13030662 - 22 Mar 2023
Cited by 1 | Viewed by 2149
Abstract
Multi-Principal-Element or High-Entropy Alloys (MPEAs/HEAs) have gained increasing interest in the past two decades largely due to their outstanding properties such as superior mechanical strength and corrosion resistance. However, research studies on their processability are still scarce. This work assesses the effect of [...] Read more.
Multi-Principal-Element or High-Entropy Alloys (MPEAs/HEAs) have gained increasing interest in the past two decades largely due to their outstanding properties such as superior mechanical strength and corrosion resistance. However, research studies on their processability are still scarce. This work assesses the effect of different machining conditions on the machinability of these novel alloys, with the objective of advancing the introduction of MPEA systems into industrial applications. The present study focuses on the experimental analysis of finish-milling conditions and their effects on the milling process and resulting surface finish of CoCrFeNi, Al0.3CoCrFeNi and Al0.3CoCrFeNiMo0.2 alloys fabricated via Spark Plasma Sintering. Ball-nose-end milling experiments have been carried out various milling parameters such as cutting speed, feed per cutting edge, and ultrasonic assistance. In situ measurements of cutting forces and temperature on the tool edge were performed during the experiments, and surface finish and tool wear were analyzed afterwards. The results exhibited decreasing cutting forces by means of low feed per cutting edge and reduced process temperatures at low cutting speed, with the use of ultrasonic-assisted milling. It was shown that the machinability of these modern alloys through conventional, as well as modern machining methods such as ultrasonic-assisted milling, is viable, and common theories in machining can be transferred to these novel MPEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloy Coatings and Surface Functionalization)
Show Figures

Figure 1

12 pages, 2873 KiB  
Article
Influence of Al Addition on the Microstructure and Wear Behavior of Laser Cladding FeCoCrNiAlx High-Entropy Alloy Coatings
by Yang Liu, Zhixiang Xu, Gaojie Xu and Hongyong Chen
Coatings 2023, 13(2), 426; https://doi.org/10.3390/coatings13020426 - 13 Feb 2023
Cited by 9 | Viewed by 2169
Abstract
In order to improve the wear properties of FeCoCrNi high entropy alloy (HEA), laser cladding was applied to fabricate FeCoCrNiAlx HEA coatings with different Al additions. The Al-modified coatings exhibited excellent metallurgical bonding interfaces with the substrates. The microstructure of FeCoCrNiAl0.5 [...] Read more.
In order to improve the wear properties of FeCoCrNi high entropy alloy (HEA), laser cladding was applied to fabricate FeCoCrNiAlx HEA coatings with different Al additions. The Al-modified coatings exhibited excellent metallurgical bonding interfaces with the substrates. The microstructure of FeCoCrNiAl0.5 coating was the same as of the FeCoCrNi coating: face-centered cubic (FCC). However, the microstructure of FeCoCrNiAl was different: body-centered cubic (BCC) with more Al atoms distributed inside the grains. As the Al content in the coating was increased, the hardness increased as well from 202 to 546 HV0.2, while CoF and wear rate decreased from 0.62 to 0.1 and from 8.55 × 10−7 to 8.24 × 10−9 mm3/(Nm), respectively. The wear mechanisms changed from the mixture of abrasive, adhesive, and oxidative wear patterns to the mixture of abrasive and oxidative patterns. Such a change indicates that the Al addition indeed improved the wear resistance of FeCoCrNiAlx HEA coatings. Our results expand knowledge on HEA coating applications as wear-resistant materials in various applied industrial fields. Full article
(This article belongs to the Special Issue Recent Development in Post-processing for Additive Manufacturing)
Show Figures

Figure 1

15 pages, 5074 KiB  
Article
The Influence of Annealing at 500 and 900 °C on the Structure and Mechanical Properties of AlxCoCrFeNi Alloys
by Marzena Tokarewicz, Małgorzata Grądzka-Dahlke, Katarzyna Rećko and Magdalena Łępicka
Materials 2023, 16(3), 1245; https://doi.org/10.3390/ma16031245 - 1 Feb 2023
Cited by 8 | Viewed by 2109
Abstract
The AlCoCrFeNi high-entropy alloy is sensitive to heat treatment. The aim of the present study was to test a similar correlation for AlxCoCrFeNi alloys with less than equimolar aluminum content. This paper presents a study of the annealing effect on the [...] Read more.
The AlCoCrFeNi high-entropy alloy is sensitive to heat treatment. The aim of the present study was to test a similar correlation for AlxCoCrFeNi alloys with less than equimolar aluminum content. This paper presents a study of the annealing effect on the structure and mechanical properties of selected alloys. AlxCoCrFeNi alloys (x = 0, 0.5, 0.7) were fabricated by the induction melting method. The obtained specimens were annealed at 500 °C and 900 °C. A detailed study of the changes in crystalline structure due to annealing was conducted. Three-point bending and hardness tests were carried out for the as-cast and annealed specimens to determine selected mechanical properties. The study confirmed that increasing the aluminum content in the AlxCoCrFeNi alloy improves mechanical properties. For the alloy with aluminum content x = 0.7, hardness increased by 187% and yield strength by 252% compared to the alloy without aluminum. A significant effect of annealing on the crystalline structure of the Al0.7CoCrFeNi alloy was found, but this was not followed by changes in mechanical properties. Full article
(This article belongs to the Special Issue Advanced Materials for Multifunctional Applications)
Show Figures

Graphical abstract

12 pages, 10482 KiB  
Article
Plasticity Improvement in a Co-Rich Co40Fe25Cr20Ni15 High-Entropy Alloy via Al Alloying
by Yuxiao Li, Yu Chen, Raymond Kwesi Nutor, Nan Wang, Qingping Cao, Xiaodong Wang, Dongxian Zhang and Jian-Zhong Jiang
Materials 2023, 16(3), 1149; https://doi.org/10.3390/ma16031149 - 29 Jan 2023
Cited by 7 | Viewed by 2223
Abstract
The mechanical properties of high-entropy alloys (HEAs) can be regulated by altering the stacking fault energy (SFE) through compositional modulation. The Co-rich HEAs, exhibiting deformation twinning and even strain-induced martensitic transformation at room temperature, suffer from insufficient ductility at high strength. In this [...] Read more.
The mechanical properties of high-entropy alloys (HEAs) can be regulated by altering the stacking fault energy (SFE) through compositional modulation. The Co-rich HEAs, exhibiting deformation twinning and even strain-induced martensitic transformation at room temperature, suffer from insufficient ductility at high strength. In this work, we developed Co-rich (Co40Fe25Cr20Ni15)100−xAlx (x = 0 and 5 at.%) HEAs and investigated their tensile behaviors at room temperature. The addition of Al resulted in a massive improvement in the strength-ductility product, even at similar grain sizes, and also altered the fracture mode from quasi-cleavage to ductile dimple fracture. Interestingly, both alloys were deformed by mechanical twinning, which was also verified by molecular dynamics (MD) simulations. The MD simulations revealed the SFE increased upon Al addition; however, the slip energy barrier was reduced, which favored the mobility of dislocations and twinning propensity to prolong strain hardening. The present findings provide further insights into the regulation of mechanical properties of HEAs by Al-alloying. Full article
Show Figures

Figure 1

Back to TopTop