Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Altair Flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7558 KiB  
Article
Study on the Characteristics of Turn-to-Turn Short Circuit Faults in the Primary Windings of the Generator Terminal Voltage Transformer
by Yang Wei, Ligui Wu, Guangyao Li, Chen Li, Yue Sun, Pengyu Qiu, Yuzhe Qian and Jun Chen
Electronics 2024, 13(23), 4772; https://doi.org/10.3390/electronics13234772 - 3 Dec 2024
Viewed by 1423
Abstract
Turn-to-turn short circuit faults in the primary winding of generator terminal voltage transformers can lead to erroneous operation of stator grounding protection systems. This paper analyzes the fault characteristics associated with such failures and derives formulas for the fault phase current and zero-sequence [...] Read more.
Turn-to-turn short circuit faults in the primary winding of generator terminal voltage transformers can lead to erroneous operation of stator grounding protection systems. This paper analyzes the fault characteristics associated with such failures and derives formulas for the fault phase current and zero-sequence voltage during a turn-to-turn short circuit in the primary winding. A 3D finite element model of the generator terminal voltage transformer is established by using Altair Flux 3D, and the accuracy of the model is verified. Based on this model, simulation tests were conducted to investigate turn-to-turn short circuits in the primary winding. The results reveal that as the number of shorted turns increases, the voltage of the fault phase decreases continuously while the voltages of the other two phases increase. The current in the short-circuited phase rises significantly, accompanied by an increase in zero-sequence voltage. Visualizations of magnetic field parameters indicate that as the number of shorted turns increases, the magnetic induction magnitude of the fault phase rises steadily and approaches saturation, resulting in heightened magnetic field intensity near the shorted turns. This analysis of fault characteristics through simulation contributes to the advancement of fault diagnosis systems for generator terminal voltage transformers. Full article
Show Figures

Figure 1

21 pages, 12682 KiB  
Article
A New Method of Transformer Short-Circuit Impedance Regulation Based on Magnetic Shunts
by Zhijun Ye, Hao Jia, Wei Cai and Wenhui Zeng
Energies 2024, 17(15), 3714; https://doi.org/10.3390/en17153714 - 27 Jul 2024
Cited by 2 | Viewed by 1782
Abstract
Short-circuit impedance is an important economic and technical index to test the cost, efficiency and operation safety of transformers. Increasing the short-circuit impedance of the transformer can reduce the influence of the transformer fault current on the system. The short-circuit impedance of a [...] Read more.
Short-circuit impedance is an important economic and technical index to test the cost, efficiency and operation safety of transformers. Increasing the short-circuit impedance of the transformer can reduce the influence of the transformer fault current on the system. The short-circuit impedance of a general power transformer is 4~7%. When the short-circuit impedance is too small, the short-circuit current is too large, which will cause harm to electrical equipment. This paper proposes a method to adjust the short-circuit impedance by adding magnetic shunts of different thicknesses between the high and low voltage windings of the transformer. Compared with other methods, this method does not change the structure of the transformer core and winding, and is simple and efficient. In this paper, a three-dimensional simulation model of a single-phase multi-winding transformer is established by Altair Flux to study the influence of the thickness of magnetic shunts on the short-circuit impedance of a transformer. The feasibility of the proposed method is verified by comparing the simulation with the measured values. The magnetic shunt is also introduced into the three-phase transformer. The result shows that adding magnetic shunts of different thicknesses between the high and low voltage windings of the transformer will change the distribution and size of the leakage of the magnetic field. The short-circuit impedance increases significantly with the increase in the thickness of the magnetic shunt, but a certain number of magnetic shunts have minimal effects on the efficiency of the transformer. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 8614 KiB  
Article
Design of Quasi-Halbach Permanent-Magnet Vernier Machine for Direct-Drive Urban Vehicle Application
by Walid Guendouz, Abdelmounaim Tounzi and Toufik Rekioua
Machines 2023, 11(2), 136; https://doi.org/10.3390/machines11020136 - 19 Jan 2023
Cited by 3 | Viewed by 2286
Abstract
Removing the gearbox from the single-motor configuration of an electric vehicle (EV) would improve motor-to-wheel efficiency by preventing mechanical losses, thus extending the autonomy of the EV. To this end, a permanent-magnet Vernier machine (PMVM) is designed to ensure such operation. This machine [...] Read more.
Removing the gearbox from the single-motor configuration of an electric vehicle (EV) would improve motor-to-wheel efficiency by preventing mechanical losses, thus extending the autonomy of the EV. To this end, a permanent-magnet Vernier machine (PMVM) is designed to ensure such operation. This machine avoids the high volume and large pole-pair number of the armature winding since its operating principle resembles that of a synchronous machine with an integrated magnetic gear. Therefore, such a structure achieves low-speed and high-torque operation at standard supply frequencies. From the specification of an urban vehicle, the required specification for direct-drive operation is first determined. On this basis, an initial prototype of a Vernier Machine with permanent magnets in the rotor that can replace the traction part (motor + gearbox) is designed and sized. This first prototype uses radial contiguous surface-mounted magnets and its performance is then analyzed using finite element analysis (FEA), showing a relatively high torque ripple ratio. The rotor magnets are then arranged in a quasi-Halbach configuration and simulations are performed with different stator slot openings and different ratios of the tangential part of the magnet in order to quantify the effect of each of these two quantities in terms of average torque, torque ripples and harmonics of the back-electromotive force at no load. Since the design and optimization of this motor is finite element-assisted, a coupling process between FEA Flux software and Altair HyperStudy is implemented for optimization. This method has the advantages of high accuracy of the magnetic flux densities and electromagnetic torque estimates, and especially the torque ripples. The optimization process leads to a prototype with an average torque value that meets the specification, along with a torque ripple ratio below 5% and a high power factor, while keeping the same amount of magnet and copper. Full article
Show Figures

Figure 1

11 pages, 3702 KiB  
Article
Design of a 3 kW PMSM with Super Premium Efficiency
by Catalin Petrea Ion, Marius Daniel Calin and Ioan Peter
Energies 2023, 16(1), 498; https://doi.org/10.3390/en16010498 - 2 Jan 2023
Cited by 6 | Viewed by 4637
Abstract
Extended use of permanent magnet synchronous motors (PMSMs) has brought the need to design motors that can comply with the latest requirements in terms of efficiency. This paper presents different configurations in the case of a 3 kW PMSM with two pole pairs, [...] Read more.
Extended use of permanent magnet synchronous motors (PMSMs) has brought the need to design motors that can comply with the latest requirements in terms of efficiency. This paper presents different configurations in the case of a 3 kW PMSM with two pole pairs, focusing on finding the optimal constructive solutions to ensure that it falls within the IE4 efficiency class. Six virtual prototypes were developed and simulated using the Altair FluxMotor software. A detailed comparison between the simulated versions was carried out in terms of overall efficiency, torque ripple, weight and flux density, with the focus on the nominal operating point. The results show that the virtual prototype with a relatively simple rotor design but higher stator slots number had the best results in terms of efficiency and torque ripple at the nominal operating point. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 9180 KiB  
Article
Research on Fault Diagnosis of IPMSM for Electric Vehicles Based on Multi-Level Feature Fusion SPP Network
by Bohai Liu, Qinmu Wu, Zhiyuan Li and Xiangping Chen
Symmetry 2021, 13(10), 1844; https://doi.org/10.3390/sym13101844 - 2 Oct 2021
Cited by 8 | Viewed by 2142
Abstract
At this stage, the fault diagnosis of the embedded permanent magnet synchronous motor (IPMSM) mostly relies on the analysis of related signals when the motor is running. It requires designers to deeply understand the motor drive system and fault characteristic signals, which leads [...] Read more.
At this stage, the fault diagnosis of the embedded permanent magnet synchronous motor (IPMSM) mostly relies on the analysis of related signals when the motor is running. It requires designers to deeply understand the motor drive system and fault characteristic signals, which leads to a high threshold for fault diagnosis. This study proposes an IPMSM fault diagnosis method based on a multi-level feature fusion spatial pyramid pooling (SPP) network, which can directly diagnose motor faults through motor operating current data. This method uses the finite element software Altair Flux to build symmetrical normal motor and demagnetization faulty motor models, as well as an asymmetrical eccentric fault model; conduct a joint simulation with MATLAB-Simulink to obtain fault current data; convert the collected current data into grayscale images, using the data set expansion method to form training and test data sets; and improve the convolutional neural network (CNN) network structure, that is, adding jump connections after each pooling layer and adding a spatial pyramid pooling layer after the last pooling layer to form a new CNN structure. Experimental results show that the new CNN can extract different levels and different scales of motor fault features hidden in the image, and can effectively diagnose different types of IPMSM faults. Compared with the traditional CNN, the new CNN has a higher fault diagnosis accuracy, up to 98.16%, 2.3% higher. Full article
(This article belongs to the Special Issue Research on Motor and Special Electromagnetic Device of Symmetry)
Show Figures

Figure 1

29 pages, 4402 KiB  
Article
Analytical Models for Fast and Accurate Calculation of Electromagnetic Performances of Segmented Permanent Magnet Synchronous Machines with Large Angular Gaps
by Eulalie Fleurot, Franck Scuiller and Jean-Frédéric Charpentier
Appl. Sci. 2021, 11(1), 459; https://doi.org/10.3390/app11010459 - 5 Jan 2021
Cited by 9 | Viewed by 3081
Abstract
In this paper original analytical models to determine the electromagnetic performances of segmented permanent magnet synchronous machines (with removed active parts in the stator or the rotor) are presented. These models are adapted to PMSM with large air gap width, large diameter, a [...] Read more.
In this paper original analytical models to determine the electromagnetic performances of segmented permanent magnet synchronous machines (with removed active parts in the stator or the rotor) are presented. These models are adapted to PMSM with large air gap width, large diameter, a high number of poles and large angular gaps. This method based on analytical approach is validated by comparizon with a 2D Finite Element calculation (Altair FluxTM 2D) for the specifications of a large diameter, low speed tidal high power current turbine generator. The presented method allows fast and accurate evaluation of the performances of this kind of particular machine and can be used in a systematic design process. Full article
Show Figures

Figure 1

14 pages, 4236 KiB  
Article
Computation of Stray Losses in Transformer Bushing Regions Considering Harmonics in the Load Current
by Sohail Khan, Serguei Maximov, Rafael Escarela-Perez, Juan Carlos Olivares-Galvan, Enrique Melgoza-Vazquez and Irvin Lopez-Garcia
Appl. Sci. 2020, 10(10), 3527; https://doi.org/10.3390/app10103527 - 20 May 2020
Cited by 9 | Viewed by 3631
Abstract
The presence of harmonics in the load current considerably increases stray losses in electric transformers. In this research paper, a new model for computing the electromagnetic field (EMF) and eddy current (EC) losses in transformer tank covers is derived considering harmonics. Maxwell’s equations [...] Read more.
The presence of harmonics in the load current considerably increases stray losses in electric transformers. In this research paper, a new model for computing the electromagnetic field (EMF) and eddy current (EC) losses in transformer tank covers is derived considering harmonics. Maxwell’s equations are solved with their corresponding boundary conditions. The differential equation thus obtained is solved using the method of separation of variables. The obtained expressions do not require the use of special functions, accommodating them for practical implementation in the industry. The obtained formulas are evaluated for different spectrum contents of the load current and losses. The results are in good agreement with simulations carried out using the Altair Flux finite element (FE) software. Full article
(This article belongs to the Special Issue Power Quality in Electrical Power Systems)
Show Figures

Figure 1

Back to TopTop