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Abstract: At this stage, the fault diagnosis of the embedded permanent magnet synchronous motor
(IPMSM) mostly relies on the analysis of related signals when the motor is running. It requires
designers to deeply understand the motor drive system and fault characteristic signals, which leads
to a high threshold for fault diagnosis. This study proposes an IPMSM fault diagnosis method based
on a multi-level feature fusion spatial pyramid pooling (SPP) network, which can directly diagnose
motor faults through motor operating current data. This method uses the finite element software
Altair Flux to build symmetrical normal motor and demagnetization faulty motor models, as well
as an asymmetrical eccentric fault model; conduct a joint simulation with MATLAB-Simulink to
obtain fault current data; convert the collected current data into grayscale images, using the data set
expansion method to form training and test data sets; and improve the convolutional neural network
(CNN) network structure, that is, adding jump connections after each pooling layer and adding a
spatial pyramid pooling layer after the last pooling layer to form a new CNN structure. Experimental
results show that the new CNN can extract different levels and different scales of motor fault features
hidden in the image, and can effectively diagnose different types of IPMSM faults. Compared with
the traditional CNN, the new CNN has a higher fault diagnosis accuracy, up to 98.16%, 2.3% higher.

Keywords: convolutional neural network; IPMSM; Altair Flux; jump connection; spatial pyramid
pooling; fault diagnosis

1. Introduction

In recent years, with the increase in the use of electric vehicles, the traffic safety
problems caused by them have also increased, and the failure of vehicle motors is an
important factor that causes hidden dangers in electric vehicles. Vehicle motor failure
will not only cause damage to electric vehicles and threaten the safe operation of electric
vehicles, but the additional downtime caused by motor failures will also cause huge
economic losses [1]. IPMSM has the advantages of high efficiency, high power density,
high reliability, and convenient maintenance, and is widely used in electric vehicles [2].
Therefore, the development of IPMSM fault diagnosis and monitoring technology to realize
fault warning has an important application value.

Based on the relevant literature on motor fault diagnosis at home and abroad, the
current motor fault diagnosis methods can be mainly summarized into three categories:
model-based, data-driven, and knowledge-based methods [3]. Among them, the model-
based method needs to establish, first, the mathematical model of the faulty motor. The
modeling methods can be based on the classic state estimation or process parameter
estimation method, on the equivalent magnetic circuit method, on the winding function
and the improved winding function method [4], on the finite element method, and so
on [5,6]. The basis of this method is an accurate mathematical model of the motor, and
a fault analysis is performed on the basis of the model. The advantage is that it goes
deep into the nature of motor operation, but the disadvantage is that it must rely on
an accurate mathematical model of the motor. However, the mathematical model of
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the motor is affected by various factors, such as the non-linearity of the iron core, the
working environment, etc., so that it is difficult to establish. Therefore, the accuracy of
their diagnosis results is not high, and the realization of the diagnosis technology is also
difficult. The second method is data-driven, avoiding the problem of the mathematical
model of the diagnostic object to a certain extent. At present, the methods that have
been successfully applied to motor fault diagnosis based on data driving include: (1) the
spectrum analysis method of stator current [7], (2) the park vector method [8], (3) the
instantaneous power decomposition method [9], (4) the wavelet analysis method [10],
(5) the high frequency signal injection method [11], (6) and a method based on vibration
signal spectrum analysis [12]. However, to adopt these methods, the designer needs to
have a wealth of prior knowledge in signal processing and expertise in fault diagnosis. The
third method is a knowledge-based method, which has been widely used over the years,
mainly due to the development of various artificial intelligence algorithms in various fields,
such as aircraft [13,14], transportation [15], and agriculture [16] and many other fields. At
present, knowledge-based motor fault diagnosis methods mainly include the following:
(1) diagnosis methods based on fuzzy logic; (2) fault diagnosis methods based on expert
systems; (3) diagnosis methods based on artificial neural networks [17]. Compared with
expert systems, artificial neural networks do not need to construct a knowledge base and
an inference engine. They only need a large number of examples of training and to fix the
parameters of the neural network to complete the fault diagnosis of the motor.

In recent years, many mechanical faults have been diagnosed based on vibration
signal analysis using artificial neural networks and support vector machines [18]. The
literature [19–21] proposed DTS-CNN, adaptive DCNN and TICNN, respectively, which
are realized by processing motor vibration signals. One study [22] uses CNN to realize the
fault classification of the rotating machinery, including bearings with mildly insufficient
lubrication, bearings with insufficient lubrication and damage to the outer ring of the
bearing. Another study [23] inputs the FFT amplitude of the motor current and the detailed
parameters of the wavelet transform into the one-dimensional CNN for learning, which
is used to diagnose PMSM demagnetization faults and bearing faults. Tamilselvan and
Wang proposed a new multi-sensor health diagnosis method in [24]. This method uses a
deep belief network based on a restricted Boltzmann machine and trains each layer as a
deep network structure, one by one. Although the above-mentioned intelligent diagnosis
method based on vibration signal analysis can achieve good results in fault diagnosis, it is a
complicated process to eliminate background noise. In addition, vibration measurement is
also affected by the installation position of the sensor, and installing the sensor on the motor
will also bring additional costs. Electric vehicles are prone to bumps and jitters during
driving, which will affect the sensors that measure vibration signals, thereby affecting
the reliability of motor fault diagnosis. Therefore, this study proposes an IPMSM fault
diagnosis method based entirely on the time-domain signal of the motor stator current to
monitor the faults of the IPMSM under the working conditions of electric vehicles.

The main contributions of this article are:
(1) The current signal is used for motor fault diagnosis. In terms of cost, there is

no need to add sensors other than the motor drive system, which reduces the use of
components. In terms of diagnostic performance, it can reduce the influence of background
noise and other mechanical interference, and make the diagnostic method more reliable.

(2) The neural network is applied to the fault diagnosis of IPMSM. Compared with
the traditional fault diagnosis method, this method does not need to rely on precise motor
mathematical models, nor does it require researchers to have a rich prior knowledge and
professional knowledge.

(3) In the traditional convolutional neural network, jump connection and spatial
pyramid pooling (SPP) are added to enhance the feature extraction ability of the model
and improve the accuracy of motor fault diagnosis.

The rest of this article is arranged as follows: Section 2 introduces the construction
of symmetric and asymmetric IPMSM models on the finite element software Altair Flux,
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and a co-simulation with MATLAB; Section 3 compares several image conversion methods
to convert the current signal into a grayscale image to obtain data; Section 4 describes the
neural network architecture used in this article; Section 5 mainly introduces the training
process and performance analysis of the built neural network; Section 6 presents the
conclusions. The overall flow chart of the entire experiment is shown in Figure 1.

Figure 1. Overall flow chart.

2. Establish a Faulty IPMSM Simulation System Based on Altair Flux and MATLAB

Altair Flux is a finite element modeling software, which is normally used for the
modeling and simulation of magnetic, electrical, and thermal fields [25]. Flux is widely
used in the field of motor design, in DC motors, induction motors, synchronous motors,
etc. In addition, Flux’s manager also integrates a material manager, a unit manager, and
some common system options. The process of using Flux to build a motor model can be
divided into the following four parts:

(1) Establish a geometric model of the motor;
(2) Set the physical properties, including material setting, external circuit design, and

mechanical property setting;
(3) Set the solution parameters and solve the model;
(4) To process the solution results, Flux saves a corresponding file for each step of the

solution state. To obtain the solution results of each parameter, you need to perform
“post-processing” to visualize or save the results.

Motor faults can be divided into three main categories [26]: electrical faults, mechanical
faults, and magnetic faults. In this study, the eccentric fault in the mechanical fault category
and the demagnetization fault in the magnetic fault category are taken as examples, and
the neural network is used to diagnose these two faults.

Taking into account the structural characteristics of the electric vehicle machine, this
article refers to the geometric parameters of the hybrid energy vehicle motor in the Flux
official tutorial, and redesigns the electrical, mechanical, and permanent magnet structure
of the motor on the basis of the original parameters. In this study, an 8-pole, 48-slot IPMSM
geometric model is established, and its size specifications are shown in Table 1.

Table 1. Geometric parameters of the IPMSM model.

Stator Design Parameters Rotor Design Parameters

Number of stator slots 48 mm Number of poles 8
Notch width 2 mm Embedded magnet type V
Tooth depth 30 mm Rotor shaft radius 56 mm
Tooth width 6.5 mm Rotor outer diameter 92 mm

Number of phases 3 Permanent magnet thickness 5 mm
Winding shape Single-pole double-layer winding Magnet width 54 mm

Outer diameter of stator 141 mm Permanent magnet pole arc 140◦
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2.1. Modeling the Static Eccentric Fault Motor

Because the motor with eccentric fault is an asymmetric structure, the complete
geometric structure of the motor body needs to be designed when the motor with eccentric
fault is built in Flux. Therefore, when establishing the IPMSM geometric model, you need
to select “With Eccentricity” at the air gap setting. The rotation center of the IPMSM rotor
can be set in the mechanical properties to further determine the type of eccentricity fault of
the IPMSM. By changing the center coordinates of the motor stator, this study establishes
IPMSM with 10% and 20% static eccentricity faults.

As shown in Figure 2a, the stator center coordinates Or and the rotor axis coordinates
Os of the 10% eccentric IPMSM are set to (0.06,0) and (0,0), respectively, so that |OsOr| is
0.06 mm (uniform air, the gap length is 0.6 mm); Figure 2b shows that the stator and rotor
axis of a 20% eccentric IPMSM are set to (0.12,0) and (0.0), respectively, so that |OsOr| is
0.12 mm. Then, in the mechanical properties, set the rotor rotation center to (0.0) so that
the rotor rotation center and the rotor axis coincide.

Figure 2. Static eccentric fault motor model: (a) eccentricity 10%; (b) eccentricity 20%.

2.2. Demagnetization Fault IPMSM Modeling

The neodymium boron (NdFeB) permanent magnet is currently the material of choice
for permanent magnet synchronous motors. Compared with other types of magnets, it
has a better energy density and a lower cost, but its magnetization will be affected by
the working conditions. After demagnetization occurs, it is irreversible and will increase
with time. IPMSM for electric vehicles often works in a high-temperature environment
with a small space, so demagnetization is prone to occur. The built-in installation method
makes the permanent magnets less susceptible to vehicle shaking and damage. Therefore,
in the working condition of electric vehicles, the demagnetization of permanent magnets
is mostly uniform demagnetization [27]. This study also mainly analyzes the uniform
demagnetization failure of IPMSM.

In Flux, NdFeB permanent magnets can be defined by “Linear magnetic described
by the Br module”. Set the value in “Remanent flux density” to define the remanence of
permanent magnet materials; set “Relative permeability” to define the slope of the magnetic
curve. In order to establish an IPMSM model for permanent magnets with different degrees
of demagnetization failures on pole pairs, this study defines three magnetic curves, which
are the magnetic curves of normal, 25%, and 50% demagnetized materials.

As shown in Figure 3, the remanence Br of the normal permanent magnet is set to 1.2 T,
and the permeability is set to 1.05. The remanence Br of 25% and 50% demagnetization
permanent magnets is set at 0.9 T and 0.6 T, respectively, while the permeability remains
unchanged, and the coercivity increases correspondingly. Figure 4a–c show the magnetic
density distribution diagrams of the normal, demagnetized, 25%, and 50% demagnetized
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IPMSM permanent magnets. The magnetic density distribution of the permanent magnet
in the left column of the picture shows that the degree of demagnetization is deeper when
the magnetic density distribution becomes sparser.

Figure 3. Magnetic curve of the NdFeB material and its demagnetization material.

Figure 4. The permanent magnet flux density distribution diagram of the demagnetization faulty
motor: (a) normal; (b) demagnetization 25%; (c) demagnetization 50%.
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2.3. Design of the IPMSM Coupling Circuit

In addition to the geometric model, the coupling circuit between the external power
supply circuit and the electrical components in the motor body is also an important part
of IPMSM. Figure 5 shows the circuit diagram of the coupling circuit embedded in the
motor body. The IPMSM winding connection shape adopts a Y connection, VA, VB, VC,
and the internal resistance R constitute a three-phase controllable power supply, which can
be controlled by an external power supply circuit to input the voltage vector of the motor;
AC Coil P&N represents the two parts of the single-phase winding. The direction of one
part needs to be set to be opposite to the current, and the number of turns of each winding
is 104.

Figure 5. IPMSM coupling circuit.

2.4. Co-Simulation

In this study, combining the accuracy of the finite element model and the convenience
of the MATLAB control algorithm, the IPMSM finite element model established by Altair
Flux is embedded into the vector control system in the MATLAB-Simulink environment,
and then a real-time simulation is performed in the loop. The current strategy in the
vector control system uses id = 0, and the space vector pulse width modulation (SVPWM)
algorithm is used to modulate the motor supply voltage vector. The control system block
diagram is shown in Figure 6. Figure 7 shows the IPMSM finite element model-in-the-loop
simulation system of Altair Flux and MATLAB-Simulink co-simulation.

Figure 6. Vector control block diagram.
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Figure 7. Co-simulation system diagram of Altair Flux and MATLAB-Simulink.

The IPMSM model and the normal IPMSM model of the four fault categories are
jointly simulated. There are eight operating processes for each motor model during the
simulation, as shown in Table 2.

Table 2. The running process of each model.

Load/N.m Speed/rpm

0 0–2000 0–3000 0–4000 0–5000
10 0–2000 0–3000 0–4000 0–5000

Figure 8 shows the simulation results of normal, demagnetized 25%, and 50% de-
magnetized IPMSM at a given speed of 4000 rpm and a load of 0N.m. Figure 8a–c are
the three-phase current simulation results of the three types of motors. It can be seen that
the demagnetization fault has a certain effect on the current. The greater the degree of
demagnetization, the longer the adjustment time required for the phase current to enter the
steady state. Figure 8d is a comparison of the speeds of three types of motors. It can be seen
that the speed of the motors with demagnetization faults needs more time to stabilize than
that of the normal motors. Figure 8e is the comparison of the electromagnetic torque. From
the directly distinguishable characteristics, the dynamic process becomes longer with the
increase of the fault intensity, just like the influence on current and speed; and the greater
the degree of demagnetization, the smaller the electromagnetic torque. It can be seen that
the demagnetization failure reduces the output torque of the motor, which is equivalent to
increasing the motor load, which increases the time from the start of the motor to the stable
speed.

Figure 9 shows the simulation results of a normal IPMSM with 10% eccentricity and
20% eccentricity at a given speed of 4000 rpm and a load of 0N.m. Figure 9a–c are the
simulation results of three-phase stator currents of three types of motors, Figure 9d is the
comparison of three types of motor speed, and Figure 9e is the comparison of the electro-
magnetic torque. From Figure 9a–e, it can be seen that the pure static eccentricity fault
has very little effect on the motor, and the three-phase current, speed, and electromagnetic
torque trend of the normal, eccentric 10%, and eccentric 20% IPMSM stators are basically
the same.
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Figure 8. IPMSM simulation results of different degrees of demagnetization: (a) Normal IPMSM
stator three-phase current; (b) Demagnetization 25% IPMSM stator three-phase current; (c) Demag-
netization 50% IPMSM stator three-phase current; (d) Comparison of three types of motor speed;
(e) Comparison of the electromagnetic torque of three types of motors.

Figure 9. IPMSM simulation results of different degrees of eccentricity: (a) Normal IPMSM stator
three-phase current; (b) eccentric 10% IPMSM stator three-phase current; (c) eccentric 20% IPMSM
stator three-phase current; (d) Comparison of three types of motor speed; (e) Comparison of the
electromagnetic torque of three types of motors.
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3. Convert IPMSM Operating Current Data into Images

Because convolutional networks are not good at processing high-frequency continuous
signals such as motor current, it is difficult to directly extract fault features from the IPMSM
stator current time-domain signal. In order to use the convolutional network to extract
useful features from the time-domain signal of the motor current signal, this study converts
the current signal into a picture, so that the motor signal can adapt to the mechanism of the
convolutional network for processing the signal. An image data is a matrix composed of
pixel values from 0 to 255. The conversion of data into an image is essentially a process of
converting a data sequence into a multi-dimensional matrix. The methods of converting
time series data into images in the current literature can be divided into three categories,
respectively summarized as the image conversion methods of arrangement, color filling,
and coordinate mapping.

3.1. Conversion Method Based on Data Sorting

The image conversion method based on data arrangement directly samples the con-
tinuous data and arranges them into a matrix, and then converts the values in the matrix
into pixel values in the image through a layer of mapping relationship. Figure 10 shows
this conversion process. The literature [28] adopted this transformation method. However,
this conversion method requires a long sample data. If the motor status changes too fast,
forming an image requires the motor to run for several cycles.

Figure 10. Image conversion method based on data arrangement.

3.2. Image Conversion Method Based on Color Filling

The color-filling-based image conversion method is used to map the sample data to
a specified color gamut according to a function. The color-filling method is essentially a
linear transformation, and this process can be represented by a uniform distribution:{

P
(

px,y
)
= 1

b−a , a < px,y < b
P
(

px,y
)
= 0, else

(1)

In the formula, px,y represents the pixel in the x-th row and y-th column of the image
matrix; a and b represent the maximum and minimum values, respectively, in the original
sample; in this uniform distribution, probability P

(
px,y

)
corresponds to the weight of the

color bar. On study [29] visualizes the variable changes in the semiconductor production
process in this way, links key variables with defective semiconductors, and finds defective
semiconductors by observing key variables. However, this linear mapping method may
not be able to express the characteristics of the original data, because there is no logical
relationship between the pixel value and the data between the selected color bars.

3.3. Image Conversion Method Based on Coordinate Transformation

On study [30] proposed a method for transforming the characteristic amplitude and
phase of the frequency response into polar coordinates, so that each point in the polar coor-
dinates corresponds to the phase and amplitude of the frequency response characteristic at
a specific frequency, which makes the frequency response’s characteristic distribution more
recognizable. This essentially transforms the turn-to-turn short circuit characteristics of
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a transformer to another coordinate system. This method is a great improvement for the
human eye, but for the machine, this method still has the problem of mapping logic that
appears in the coloring method.

3.4. Image Conversion Method Based on Autocorrelation Matrix

There are some shortcomings in the three above-mentioned image conversion methods
(excessively long original data are required; there are logic problems, etc.). This article
abandons the idea of converting data into three-channel images and converts the original
data into a grayscale image with only one channel, so that the original data and the image
maintain a rigorous mapping logic relationship. In principal component analysis (PCA),
the autocorrelation matrix of a signal is normally used for feature decomposition [31]; in
the ESPRIT algorithm, which is often used in radar signal analysis, the autocorrelation
matrix and mutual correlation matrix of the array signal are also used. The correlation
matrix is used to estimate the parameters of the array signal, such as phase and frequency.
Inspired by the PCA and ESPRIT algorithms, this study converts the motor current signal
into a two-dimensional matrix by obtaining its autocorrelation matrix. This is essentially a
method of upscaling data, and high-dimensional features often contain more data features.
In addition, the data sample value scattered into the gray value range can be regarded
as a probability problem. Like the image conversion method based on color filling, the
weight value of the original data converted to the color area is regarded as a uniform
distribution. According to the law of large numbers, as long as the data sample size is
large enough, these data will obey the Gaussian distribution. For this reason, this study
sets the mapping function of data scattered to the gray value range as a one-dimensional
Gaussian distribution function, as shown in Equation (6). Figure 11 shows the flow of
image conversion based on the autocorrelation matrix.

f
(

xij
)
= 255× 1√

2πσ
e
(xij−u)2

σ2 (2)

In the formula, xij represents the element in the i-th row and j-th column in the
autocorrelation matrix; µ is the mean value of the original data; σ2 is the variance of the
original data.

Figure 11. Image conversion flowchart based on autocorrelation matrix.

Compared with the image conversion method based on the arrangement, the image
conversion method based on the signal autocorrelation matrix requires less original data
and higher timeliness. Compared with the color-filling conversion method, the image
conversion method based on the autocorrelation matrix makes the original data and the
image pixel value have a complete mapping relationship, and the logic is more rigorous.
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3.5. Data Set

In this study, the current data in the joint simulations are converted into grayscale
images from the time corresponding to the speed of 50 rpm. First, take a sample of 500 data
every 30 data points for the phase current. The way to intercept the data is shown in
Figure 12:

Figure 12. Data interception method.

Then, use the above-mentioned image conversion method based on the autocorrela-
tion matrix to convert each sample into a grayscale image. After converting the current data
of five kinds of motors in eight kinds of operation processes (refer to Table 2) into grayscale
images, part of the images are randomly selected and rotated by 90 degrees through the
method of data expansion, and an image data set including five categories (25% demagne-
tization, 50% demagnetization, normal, 10% static eccentricity and 20% static eccentricity).
It contains 50,000 samples, and the number of samples for each type of motor is 10,000. To
verify the reliability of the algorithm, this study randomly and uniformly selects 20% of
the 50,000 samples as the model test set, and each category contains 2000 samples. Due to
space limitations, Figures 13 and 14 show the grayscale images after a partial fault current
data conversion.

Figure 13. The grayscale image converted into the phase current during the operation of the IPMSM with different faults,
from 1000 rpm to 2000 rpm (load 0N.m): (a) 25% demagnetization; (b) 50% demagnetization; (c) normal; (d) eccentricity
10%; (e) eccentricity 20%.
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Figure 14. The grayscale image of the phase current converted into the phase current when the IPMSM speed is stable at 4000
rpm for different faults (load is 10N.m): (a) 25% demagnetization; (b) 50% demagnetization; (c) normal; (d) 10% eccentricity;
(e) 20% eccentricity.

It can be seen from Figures 13 and 14 that during the increase of the motor speed, the
electromagnetic torque needs to be increased, and the current amplitude is larger when the
speed is stable. Therefore, most of the image during the ascent process has low gray values,
and more areas of the gray image appear black; most of the images during the stabilization
process have higher gray values, and more areas of the gray image appear white. In the
process of data preprocessing, because CNN training generally requires a large data set, the
method of reading photos one by one is a waste of CPU and GPU computing resources. In
this study, in the TensorFlow framework system, the sample image is made into a TFRecord
format file, so that the image is compressed into a binary code. During training, the binary
code is decoded into a picture and input into the convolutional network model for training.

4. Network Structure
4.1. Multi-Level Feature Fusion

The traditional neural network model only considers the information of the previous
layer for the input of each layer and does not consider the information input of other
layers globally. The original design intention of the residual network (ResNet) uses jump
connections to solve the problem of gradient disappearance in the case of deep network
layers, and at the same time helps the back propagation of the gradient and speed up
the training process. In the process of forward transmission, as the number of layers
deepens, the image information contained in the Feature Map will decrease layer by layer,
and the addition of ResNet direct mapping ensures that the network of layer l + 1 must
contain more images than the information on layer l. One study [32] improved the VSDR
and DRRN models by jumping connections, but directly connecting the data of different
layers to obtain more features will also cause a greater occupation of computer resources
and reduce the training speed of the network. Referring to the Resnet model, the jump
connection network designed in this study firstly carries out the maximum pooling of
different layers of data at different scales, then carries out jump connection, and then
carries out data fusion with the last pool layer as the input of the full connection layer. It
can effectively extract features of different levels by fusing data with lower and higher
abstractions [33], and will not cause too much influence on the training speed. Figure 15
shows the jump connection process.
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Figure 15. Jump connection process.

4.2. Spatial Pyramid Pooling Network

The Spatial Pyramid Pooling Layer (SPP) is a special pooling layer proposed by
SPPNet [34] to solve the fixed output problem of the fully connected layer. As the fully
connected layer of the classifier, it is necessary to map the various features learned by the
convolutional layer to the label and to fix the size of the feature map [35]. Before the fully
connected layer, SPPNet uses pooling structures with different sizes to extract features
from feature maps of any size by adding spatial pyramids, and the resulting feature maps
have a fixed size, and then connect to the fully connected layer. One study [36] proposed a
convolutional neural network based on spatial pyramid pooling to classify and diagnose
seven types of motor faults, which effectively improved the accuracy of the network model.
Another [37] pointed out that SPPNet not only obtains better results, but also shares the
computational cost between SPP layers and improves the detection efficiency. Therefore,
this study designs a spatial pyramid pooling layer placed before the fully connected layer.
The data before the full connection is multi-level, pooled through four pooling structures,
and multi-scale features are extracted and sent to the fully connected layer. It can effectively
improve the convergence speed and accuracy of the network [38]. Figure 16 shows the SPP
pooling process in this study, where the input data size is 6 × 6, the four pooling layers are
1 × 1, 2 × 2, 3 × 3, 6 × 6, and the final output size is 1 × 50 data.

Figure 16. The process of spatial pyramid pooling.

4.3. MCNN Network Structure

Based on the traditional CNN model, this study designs an eight-layer convolutional
neural network MCNN with SPP and jump connection, which includes six convolution
layers and two full connection layers, and Max pool is selected for all the pooling layers
to extract the feature texture of the image. A spatial pyramid is introduced after the sixth
pooling layer to facilitate the extraction of different scale features of the data; the first
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five pooling layers are separately pooled and then jumped and connected to extract data
features with different levels of abstraction, and then finally combined with the data after
SPP Data Fusion. The MCNN network model has a total of 714,053 training parameters,
and the network structure is shown in Figure 17:

Figure 17. MCNN network structure.

5. Training and Performance Analysis
5.1. Experimental Environment

The simulations were accomplished on Python 3.7 using TensorFlow 2.0. The network
training platform is based on the high-performance server Sugon W580-G20, in which Tesla
P4 is selected as GPU, CUDA version is 10.0, and CUDNN version is 7.6.5. The specific
platform environment configuration was listed in Table 3.

Table 3. Experimental environment configuration.

Platform Related Information

CPU Intel(R) Xeon(R) CPU E5-2620
GPU Tesla P4

Operating system Windows 7 64 bit
CUDA version 10.0

CUDNN version 7.6.5
TensorFlow version 2.0.0

Python version 3.7.0

5.2. Training Parameter Settings

In this study, the step-like attenuation learning rate is selected. In the training process,
according to the attenuation coefficient, it is reduced once every five rounds. The initial
learning rate is large, and can converge quickly and save training time. The later learning
rate is small to avoid parameters missing the optimal solution. The attenuation learning
rate function used in this study is:

l = l0 × α[
n
k ] (3)

In the formula, l0 is the initial learning rate; α is the attenuation coefficient; n is the
current iteration round number; k is a constant, which can control the rate of change of the
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learning rate;
[ n

k
]

represents the rounding of n
k ; l is the learning rate of the n-th generation

of neural network training.
After many experiments, it is found that the convergence is faster when the learning

rate is 0.01 at the beginning, and the optimal solution can be better obtained when the
learning rate is about 0.001 in the later period, so the learning rate interval should be
between 0.001 and 0.01. The initial learning rate is set to 0.01, the attenuation coefficient
is set to 0.85, k is set to 5, the training is performed for 30 rounds, and the training results
can be obtained faster and better. The graph of the stepwise decay learning rate function is
shown in Figure 18:

Figure 18. Stepped decay learning rate.

The loss function selected in this study is the cross entropy loss function, which is
used to evaluate the difference between the probability distribution obtained by the current
training and the real distribution. It depicts the distance between the actual output and
the expected output, that is, the smaller the cross entropy, the closer the two probability
distributions. Its definition is as follows:

C = − 1
n∑

x
[y ln a + (1− y) ln(1− a)] (4)

where x represents the sample, n represents the total number of samples, y represents the
desired output, and a represents the actual output of the neuron. Other model parameters
are shown in Table 4:

Table 4. MCNN network model parameters.

Network Parameters Value

MCNN layers 8
Epoch 30

Loss function Categorcal_crossentropy
Optimizer Adagrad

Activation function Relu
Initial learning rate 0.01

Learning rate decay rate 0.85
Number of convolution kernels per layer 64

Batch size 16

In the above table, the selection of the parameter values of the convolution kernel and
pooling kernel of the MCNN has been given in Figure 11.

5.3. Evaluation Index

To make the experimental results more convincing, this article compares multiple
evaluation indicators, including accuracy, Macro-precision, Macro-recall, and Macro-F1.
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For the two-category problem, the input and output can be divided into the following four
situations, as shown in Table 5:

Table 5. Two-class confusion matrix.

Label Is Positive Label Is Negative

Prediction is a positive sample TP FP
Prediction is a negative

sample FN TN

In the table, TP indicates that the prediction is positive and the actual is positive; FP
indicates that the prediction is positive and the actual is negative; TN indicates that the
prediction is negative and the actual is negative; FN indicates that the prediction is negative
and the actual is positive. Macro-precision, Macro-recall, and Macro-F1 can be obtained
by averaging Precision, Recall, and F1-score of each category after considering multiple
classification problems as multiple binary problems. Precision is the ratio of the number of
samples correctly retrieved as a positive class to the total number of samples retrieved as a
positive class, Recall is the ratio of the number of samples correctly retrieved as a positive
class to the number of samples that should be retrieved as a positive class, and F1-score is
the harmonic average of Precision and Recall, and is a comprehensive index of precision
and recall. The formulas of Precision, Recall, and F1-score are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score =
2

P−1 + R−1 =
2PR

P + R
(7)

Based on the above formula, we get the Accuracy, Macro-Precision, Macro-Recall, and
Macro-F1 formulas for multiple classifications [39]:

n_correct = TP0 + TP1 + · · ·+ TPN−1 (8)

Accuracy =
n_correct
n_total

(9)

Macro-Precision =

(
TP0

TP0 + FP0
+

TP1

TP1 + FP1
+ · · · TPN−1

TPN−1 + FPN−1

)
× 1

N
(10)

Macro-Recall =
(

TP0

TP0 + FN0
+

TP1

TP1 + FN1
+ · · · TPN−1

TPN−1 + FNN−1

)
× 1

N
(11)

Macro-F1 =

(
2P0R0

P0 + R0
+

2P1R1

P1 + R1
+ · · · 2PN−1RN−1

PN−1 + RN−1

)
× 1

N
(12)

where N represents the number of categories, n_correct represents the total number of
samples, and P and R represent the previous Precision and Recall, respectively.

5.4. Performance Analysis

The traditional convolutional neural network model (hereafter denoted by CNN) only
uses jump connection CNN (hereafter denoted by JCNN), spatial pyramid pooling CNN
(hereafter denoted by SCNN), and the network model MCNN designed in this article’s
comparative analysis. The basic parameters of the four network models are shown in
Table 4. They are trained for 30 rounds under the same data set, and their test accuracy
and loss in each round are shown in Figure 19. Among them, CNN val_acc, JCNN val_acc,
SCNN val_acc, and MCNN val_acc are the test accuracy curves of CNN, JCNN, SCNN, and
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MCNN, respectively. CNN val_loss, JCNN val_loss, SCNN val_loss, and MCNN val_loss
are the test loss curves of CNN, JCNN, SCNN, and MCNN, respectively.

Figure 19. Test comparison of CNN models with different structures: (a) Accuracy curve; (b) Loss
curve.

It can be seen from Figure 19 that the test accuracy of JCNN and SCNN is significantly
higher than that of CNN, and the test loss is significantly lower than that of CNN. The
test accuracy of MCNN is higher than that of JCNN and SCNN, and the test loss is lower
than that of JCNN and SCNN. In addition to using accuracy as the evaluation index of the
network model, this study also selects Macro-Precision, Macro-Recall, and Macro-F1 as
the evaluation index. The diagnosis and evaluation status of CNN models with different
structures was listed in Table 6.

Table 6. Evaluation indicators of CNN models with different structures.

Model Accuracy Macro-Precision Macro-Recall Macro-F1

MCNN 98.21% 98.22% 98.21% 98.21%
SCNN 97.25% 97.26% 97.25% 97.25%
JCNN 97.36% 97.37% 97.36% 97.36%
CNN 95.86% 95.87% 95.86% 95.86%

It can be seen from Table 6 that the CNN test accuracy rate is 95.86%, and the JCNN
test accuracy rate is 97.36%, which is 1.5% higher than the traditional CNN. This shows
that jump connections can better obtain different levels of data characteristics and improve
the prediction accuracy of the network. The test accuracy of SCNN is 97.25%, which is
1.39% higher than traditional CNN. This shows that spatial pyramid pooling can better
extract multi-scale features, thereby improving the network performance of traditional
CNN. The prediction accuracy of the MCNN model proposed in this study is 2.35% higher
than that of traditional CNN, and it is 0.85% higher than that of JCNN and 0.96% higher
than that of SCNN, which further improves the learning ability of the network. In this
article, a high Macro-Precision means that the diagnosis is a fault, and the probability of
a real fault is high. A higher Macro-Recall means that more faults are diagnosed. The
Macro-F1 value reflects the integrated level of Macro-Precision and Macro-Recall. The
Motor fault diagnosis needs to maintain a high accuracy and high Macro-Precision, and
real-time detection must ensure a high Macro-Recall. So, in addition to the accuracy of the
previous comparison, we will also comprehensively compare the values of Macro-Precision,
Macro-Recall, and Macro-F1. In order to better compare the various indicators of several
models, draw a comparison chart of four indicators for each network model, as shown
in Figure 20. In the figure, Accuracy, MP, MR, and MF are used to represent Accuracy,
Macro-Precision, Macro-Recall, and Macro-F1.
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Figure 20. Comparison of the four evaluation indicators of the four models.

It can be clearly seen from Figure 20 that after 30 rounds of training, the values of
Macro-Precision, Macro-Recall, and Macro-F1 of JCNN and SCNN are all higher than those
of the CNN model, and the MCNN model designed in this article has improved a lot
compared to JCNN and SCNN, indicating that the overall performance of MCNN is better
than the other three network structures.

Then, analyze the prediction results of the MCNN model separately, and the confusion
matrix is shown in Figure 21. From the figure, it can be seen that the network model
designed in this study has a high recognition rate for the five types of motors. Among them,
the normal motor has the highest accuracy rate, reaching 99%. The other four faulty motors
are slightly lower than the normal motors, but they are all higher than 97%, indicating
that the network model designed in this study has a higher recognition rate for motors in
various states. Table 7 shows the specific conditions of the test results of each state of the
motor. The number of pictures in the test set is 2000 pictures for each type, and a total of
10,000 pictures form the data set, which fully guarantees the reliability of the experimental
results.

Figure 21. Confusion matrix.
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Table 7. Classification results of MCNN.

Motor Fault Type Right False Total Accuracy

Demagnetization 25% 1961 39 2000 98.05%
Demagnetization 50% 1963 37 2000 98.15%

Health 1990 10 2000 99.50%
Eccentric 10% 1964 36 2000 98.20%
Eccentric 20% 1943 57 2000 97.15%

This paper uses k-fold cross-validation to verify the repeatability of the proposed
MCNN network model to avoid the influence of random factors. Choose five-fold cross-
validation. MCNN verification results are shown in Table 8. The verification results show
that the difference between the five cross-validation results is small, and the difference
between the averaged results and the results obtained by the random split data experiment
is only 0.05%, which can fully prove the reproducibility of the experimental results.

Table 8. MCNN 5-fold cross validation results.

5-Fold Cross-Validation Accuracy Macro-Precision Macro-Recall Macro-F1

1 98.94% 98.95% 98.94% 98.94%
2 98.72% 98.73% 98.72% 98.72%
3 98.23% 98.24% 98.23% 98.23%
4 97.75% 97.76% 97.75% 97.75%
5 97.16% 97.17% 97.16% 97.16%

Mean 98.16% 98.17% 98.16% 98.16%

To prove the superiority of the network model proposed in this study, this study
compares with k-nearest neighbor (KNN), bidirectional long and short-term memory (Bi-
LSTM), and random forest (RF). Since the inputs of these shallow learning algorithms are
all one-dimensional vectors, this study takes the corresponding transformations to the
input data before training and then adjusts the parameters of the algorithms to achieve
the best results. Among them, k is selected as 5 after KNN is optimized; the number of
the Bi-LSTM hidden layer units is (128, 64, 32); RF uses 90 trees. At the same time, it is
compared with the stack auto-encoder (SAE) used in [40], the deep belief neural network
(DBN) used in [41], and the recurrent neural network (RNN) used in [42]. The test results
of different classification algorithms are shown in Table 9.

Table 9. The prediction results of different classification models.

Model Accuracy Macro-Precision Macro-Recall Macro-F1

MCNN 98.16% 98.17% 98.16% 98.16%
KNN 86.91% 87.73% 86.91% 87.10%

Bi-LSTM 90.11% 90.26% 89.91% 90.16%
RF 90.36% 90.44% 90.91% 90.48%

SAE [40] 92.32% 92.21% 92.24% 92.45%
DBN [41] 94.42% 94.12% 94.52% 94.32%
RNN [42] 91.78% 91.93% 91.76% 91.85%

It can be seen from Table 9 that, among several algorithms, DBN has the highest pre-
diction accuracy rate, and the other three types of indicators are relatively good. However,
compared with the network model designed in this paper, there is a big gap, in which the
accuracy rate is 3.74%, the Macro-Precision is 4.05%, the Macro-Recall is 3.64%, and the
Macro-F1 is 3.84%. This shows that the network model designed in this paper has a better
prediction performance than these learning networks. In summary, the MCNN model
proposed in this study can effectively improve the prediction accuracy of the network by
extracting data features of different levels, different levels of abstraction, and different
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scales, and can effectively identify different types of motor faults. Compared with the
traditional shallow learning algorithm, it also has a better fault diagnosis performance,
which improves the diagnosis ability of the network.

6. Conclusions

This study proposed a permanent magnet synchronous motor fault diagnosis method
based on an improved convolutional neural network:

(1) Since a physical platform for permanent magnet synchronous motor demagnetiza-
tion and eccentricity faults has a high cost, a simulation platform was built on the finite
element software Altair Flux and MATLAB-Simulink to conduct joint simulations to obtain
IPMSM fault current data.

(2) In view of the fact that there are many influencing factors based on the vibration
signal analysis method and that the cost is relatively high, the diagnosis method in this
study is completely based on the time domain signal of the stator current of the motor, and
the reliability is higher.

(3) Aiming at the fact that traditional motor fault diagnosis methods require high
motor mathematical models and professional knowledge of R&D personnel, this study
constructs an improved convolutional neural network for IPMSM fault diagnosis.

Experimental results demonstrate that the use of jump connections and spatial pyra-
mid pooling (SPP) enhances the feature extraction capabilities of the model. Compared
with traditional shallow learning algorithms and CNN models, the model proposed in this
study can effectively improve the motor fault diagnosis capabilities.

Author Contributions: Conceptualization, B.L. and Q.W.; data curation, B.L. and Q.W.; formal
analysis, B.L. and Z.L.; funding acquisition, Q.W.; investigation, B.L.; methodology, B.L., Q.W. and
Z.L.; project administration, B.L. and Q.W.; resources, B.L.; software, B.L.; supervision, Q.W. and X.C.;
validation, B.L. and Z.L.; visualization, B.L.; writing—original draft, B.L.; writing—review & editing,
B.L., Q.W. and X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by National Natural Science Foundation of China (grant number
51867006, 51867007) and the Natural Science and Technology Foundation of the Guizhou province,
China (grant number [2018]5781, [2018]1029).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank Q.W. for the experimental platform.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Dayong, Z.; Pinjia, Z. Overview of AC Motor Stator Insulation Fault Diagnosis and Online Monitoring Technology. Proc. Chin.

Soc. Electr. Eng. 2019, 39, 395–406.
2. Wu, Q.; An, L.; Li, Y.; Cao, M. The current solution method of IPMSM loss minimization for electric vehicles. J. Huazhong Univ.

Sci. Technol. (Nat. Sci. Ed.) 2016, 44, 128–132.
3. Kommuri, S.K.; Defoort, M.; Karimi, H.R.; Veluvolu, K.C. A Robust Observer-Based Sensor Fault-Tolerant Control for PMSM in

Electric Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 7671–7681. [CrossRef]
4. Gao, Y.; Qu, R.; Li, D. Improved hybrid method to calculate inductances of permanent magnet synchronous machines with

skewed stators based on winding function theory. Chin. J. Electr. Eng. 2016, 2, 52–61.
5. Sun, W.; Hang, J.; Ding, S.; Hu, Q.; Ren, X. Electromagnetic Parameters Analysis of Inter-Turn Short Circuit Fault in DTP-

PMSM Based on Finite Element Method. In Proceedings of the 8th International Conference on Power Electronics Systems and
Applications (PESA), Hong Kong, China, 7–10 December 2020; pp. 1–4.

6. Fu, S.; Jianbin, Q.; Chen, L.; Chadli, M. Adaptive fuzzy observer-based fault estimation for a class of nonlinear stochastic hybrid
systems. IEEE Trans. Fuzzy Syst. 2020, 1. [CrossRef]

http://doi.org/10.1109/TIE.2016.2590993
http://doi.org/10.1109/TFUZZ.2020.3031033


Symmetry 2021, 13, 1844 21 of 22

7. Saidi, L.; Fnaiech, F.; Capolino, G.-A.; Henao, H. Stator current bi-spectrum patterns for induction machines multiple-faults
detection. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC,
Canada, 25–28 October 2012.

8. Eftekhari, M.; Moallem, M.; Sadri, S.; Hsieh, M.F. Online Detection of Induction Motor’s Stator Winding Short-Circuit Faults.
IEEE Syst. J. 2014, 8, 1272–1282. [CrossRef]

9. Hou, X.G.; Wu, Z.G.; Xia, L.; Bu, L.P. Application of instantaneous power decomposition technique in induction motors stator
fault diagnosis. Proc. Csee 2005, 5, 112–117.

10. Keskes, H.; Braham, A. Recursive Undecimated Wavelet Packet Transform and DAG SVM for Induction Motor Diagnosis. IEEE
Trans. Ind. Inform. 2015, 11, 1059–1066. [CrossRef]

11. Du, B.; Wu, S.; Han, S.; Cui, S. Interturn Fault Diagnosis Strategy for Interior Permanent-Magnet Synchronous Motor of Electric
Vehicles Based on Digital Signal Processor. IEEE Trans. Ind. Electron. 2016, 63, 1694–1706. [CrossRef]

12. Li, Y.; Liang, Y. The correlation analysis of PM inter-turn fault based on stator current and vibration signal. In Proceedings of the
2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 1733–1737.

13. Nguyen, N.P.; Mung, N.X.; Thanh Ha, L.N.N.; Huynh, T.T.; Hong, S.K. Finite-Time Attitude Fault Tolerant Control of Quadcopter
System via Neural Networks. Mathematics 2020, 8, 1541. [CrossRef]

14. Nguyen, N.P.; Mung, N.X.; Thanh Ha, L.N.N.; Huynh, T.T.; Lam, N.T.; Hong, S.K. Adaptive Sliding Mode Control for Attitude
and Altitude System of a Quadcopter UAV via Neural Network. IEEE Access 2021, 9, 940076–940085.

15. Zhang, J.; Liu, J.; Wang, Z. Convolutional Neural Network for Crowd Counting on Metro Platforms. Symmetry 2021, 13, 703.
[CrossRef]

16. Hossain, S.M.M.; Deb, K.; Dhar, P.K.; Koshiba, T. Plant Leaf Disease Recognition Using Depth-Wise Separable Convolution-Based
Models. Symmetry 2021, 13, 511. [CrossRef]

17. Wagner, T.; Sommer, S. Bearing fault detection using deep neural network and weighted ensemble learning for multiple
motor phase current sources. In Proceedings of the 2020 International Conference on INnovations in Intelligent SysTems and
Applications (INISTA), Novi Sad, Serbia, 24–26 August 2020; pp. 1–7.

18. Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011,
38, 1876–1886. [CrossRef]

19. Liu, R.; Meng, G.; Yang, B.; Sun, C.; Chen, X. Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault
Diagnosis Approach for Electric Machine. IEEE Trans. Ind. Inform. 2017, 13, 1310–1320. [CrossRef]

20. Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis.
Measurement 2016, 93, 490–502. [CrossRef]

21. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing
fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

22. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional
Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]

23. Kao, I.H.; Wang, W.J.; Lai, Y.H.; Perng, J.W. Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning.
IEEE Trans. Instrum. Meas. 2019, 68, 310–324. [CrossRef]

24. Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013,
115, 124–135. [CrossRef]

25. Rodriguez, A.L.; Huang, L.; Lombard, P.; Leconte, V.; Villar, I. Vibration Analysis of a PMSM through FEM Multiphysics
Simulation with Experimental Validation. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM),
Gothenburg, Sweden, 23–26 August 2020; pp. 2560–2566.

26. Eker, M.; Akar, M. Eccentricity fault diagnosis in a permanent magnet synchronous motor under nonstationary speed conditions.
Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1881–1893. [CrossRef]

27. Krichen, M.; Elbouchikhi, E.; Benhadj, N.; Chaieb, M.; Benbouzid, M.; Neji, R. Motor Current Signature Analysis-Based Permanent
Magnet Synchronous Motor Demagnetization Characterization and Detection. Machines 2020, 8, 35. [CrossRef]

28. Shahriar, M.R.; Ahsan, T.; Chong, U. Fault diagnosis of induction motors utilizing local binary pattern-based texture analysis.
EURASIP J. Image Video Process. 2013, 2013, 29. [CrossRef]

29. Ma, M.D.; Wong, D.S.H.; Jang, S.S.; Tseng, S.T. Fault Detection Based on Statistical Multivariate Analysis and Microarray
Visualization. IEEE Trans. Ind. Inform. 2010, 6, 18–24.

30. Aljohani, O.; Abu-Siada, A. Application of Digital Image Processing to Detect Short-Circuit Turns in Power Transformers Using
Frequency Response Analysis. IEEE Trans. Ind. Inform. 2016, 12, 2062–2073. [CrossRef]

31. Du, B.; Kong, X.; Luo, J. Weighting Rules of Principle Component Extraction Information Criterion. Acta Autom. Sin. 2019, 8, 1–9.
32. Yang, W.; Zhang, Y. Image super-resolution reconstruction based on parallel residual convolutional network. J. Air Force Eng.

Univ. (Nat. Sci. Ed.) 2019, 20, 84–89.
33. Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-based concrete crack detection in tunnels using deep fully

convolutional networks. Constr. Build. Mater. 2020, 234, 117367. [CrossRef]
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

http://doi.org/10.1109/JSYST.2013.2288172
http://doi.org/10.1109/TII.2015.2462315
http://doi.org/10.1109/TIE.2015.2496900
http://doi.org/10.3390/math8091541
http://doi.org/10.3390/sym13040703
http://doi.org/10.3390/sym13030511
http://doi.org/10.1016/j.eswa.2010.07.119
http://doi.org/10.1109/TII.2016.2645238
http://doi.org/10.1016/j.measurement.2016.07.054
http://doi.org/10.1016/j.ymssp.2017.06.022
http://doi.org/10.1016/j.jsv.2016.05.027
http://doi.org/10.1109/TIM.2018.2847800
http://doi.org/10.1016/j.ress.2013.02.022
http://doi.org/10.3906/elk-1601-157
http://doi.org/10.3390/machines8030035
http://doi.org/10.1186/1687-5281-2013-29
http://doi.org/10.1109/TII.2016.2594773
http://doi.org/10.1016/j.conbuildmat.2019.117367
http://doi.org/10.1109/TPAMI.2015.2389824


Symmetry 2021, 13, 1844 22 of 22

35. Zhang, Z.; Wei, H.; Liu, H.; Jia, F. Intelligent recognition of multi-object ferrographic wear particles based on improved YOLO
algorithm. Lubr. Eng. 2021, 46, 27–33.

36. Ma, L.; Liu, X.; Shen, W.; Wang, J. Motor fault diagnosis method based on an improved one-dimensional convolutional neural
network. J. Beijing Inst. Technol. 2020, 40, 1088–1093.

37. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 3212–3232. [CrossRef] [PubMed]

38. Jiang, W.; Peng, J.; Ye, G. Research on Adaptive Learning Rate Algorithm of Deep Learning. J. Huazhong Univ. Sci. Technol. (Nat.
Sci. Ed.) 2019, 47, 79–83.

39. Feng, X.; Gao, X.; Luo, L. X-SDD: A New Benchmark for Hot Rolled Steel Strip Surface Defects Detection. Symmetry 2021, 13, 706.
[CrossRef]

40. Chen, L.; Zhang, Z.; Cao, J.; Wang, X. A novel method of combining nonlinear frequency spectrum and deep learning for complex
system fault diagnosis. Measurement 2020, 151, 107190. [CrossRef]

41. Zhang, T.; Li, Z.; Deng, Z.; Hu, B. Hybrid Data Fusion DBN for Intelligent Fault Diagnosis of Vehicle Reducers. Sensors 2019, 19,
2504. [CrossRef] [PubMed]

42. He, J.; Lee, J.; Song, T.; Li, H. Recurrent neural network (RNN) for delay-tolerant repetition-coded (RC) indoor optical wireless
communication systems. Opt. Lett. 2019, 44, 3745–3748. [CrossRef] [PubMed]

http://doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://doi.org/10.3390/sym13040706
http://doi.org/10.1016/j.measurement.2019.107190
http://doi.org/10.3390/s19112504
http://www.ncbi.nlm.nih.gov/pubmed/31159290
http://doi.org/10.1364/OL.44.003745
http://www.ncbi.nlm.nih.gov/pubmed/31368958

	Introduction 
	Establish a Faulty IPMSM Simulation System Based on Altair Flux and MATLAB 
	Modeling the Static Eccentric Fault Motor 
	Demagnetization Fault IPMSM Modeling 
	Design of the IPMSM Coupling Circuit 
	Co-Simulation 

	Convert IPMSM Operating Current Data into Images 
	Conversion Method Based on Data Sorting 
	Image Conversion Method Based on Color Filling 
	Image Conversion Method Based on Coordinate Transformation 
	Image Conversion Method Based on Autocorrelation Matrix 
	Data Set 

	Network Structure 
	Multi-Level Feature Fusion 
	Spatial Pyramid Pooling Network 
	MCNN Network Structure 

	Training and Performance Analysis 
	Experimental Environment 
	Training Parameter Settings 
	Evaluation Index 
	Performance Analysis 

	Conclusions 
	References

