Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Alder-ene reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1009 KiB  
Article
A Case of Competitive Aromatization vs. Sigmatropic [1,5]-Hydrogen Atom Migration in a 1,2,4-Cyclohexatriene Intermediate Derived from a Bis-Enyne Cyclization
by Rong Tang, Qian Xu and Thomas R. Hoye
Molecules 2025, 30(12), 2610; https://doi.org/10.3390/molecules30122610 - 16 Jun 2025
Viewed by 489
Abstract
1,2,4-Cyclohexatrienes are strained, reactive intermediates often formed by the tetradehydro-Diels–Alder (TDDA) reaction of a conjugated enyne bearing a tethered alkyne as the enynophile. The ene component is commonly the π-bond of an aromatic group. In this focused study, we investigated the reactivity of [...] Read more.
1,2,4-Cyclohexatrienes are strained, reactive intermediates often formed by the tetradehydro-Diels–Alder (TDDA) reaction of a conjugated enyne bearing a tethered alkyne as the enynophile. The ene component is commonly the π-bond of an aromatic group. In this focused study, we investigated the reactivity of a symmetrical substrate in which the pair of terminal ene moieties were simple 2-propenyl groups. The intermediate 1,2,4-cyclohexatriene, now bearing a 5-isopropenyl group, underwent competitive aromatization (the most usual outcome of the strain-relieving event of the cyclohexatriene), along with an intramolecular [1,5]-hydrogen atom migration, ultimately producing a non-benzenoid, pyrrole derivative. This represents a previously unknown process for a 1,2,4-cyclohexatriene derivative. Mechanistic aspects of the competitive processes were revealed by experiments performed in the presence of various protic additives (MeOD and BHT). Full article
Show Figures

Graphical abstract

39 pages, 10969 KiB  
Review
Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine
by Neyra Citlali Cabrera-Quiñones, Luis José López-Méndez, Carlos Cruz-Hernández and Patricia Guadarrama
Int. J. Mol. Sci. 2025, 26(1), 36; https://doi.org/10.3390/ijms26010036 - 24 Dec 2024
Cited by 2 | Viewed by 3287
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, [...] Read more.
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols—such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms—can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), inverse electron-demand Diels–Alder (IEDDA) and thiol–ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities—all essential in the field of nanomedicine. Full article
Show Figures

Graphical abstract

17 pages, 3510 KiB  
Review
Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry
by Samantha Leier and Frank Wuest
Pharmaceuticals 2024, 17(10), 1270; https://doi.org/10.3390/ph17101270 - 26 Sep 2024
Cited by 1 | Viewed by 2250
Abstract
Background: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. Methods: Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] [...] Read more.
Background: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. Methods: Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels–Alder (IEDDA). Results: However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry. Conclusions: This review will discuss the applications of these techniques in peptide radiochemistry. Full article
(This article belongs to the Special Issue Development of Radiolabeled Peptides)
Show Figures

Graphical abstract

67 pages, 15390 KiB  
Article
Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL)
by James P. McKeown, Andrew J. Byrne, Sandra A. Bright, Clara E. Charleton, Shubhangi Kandwal, Ivan Čmelo, Brendan Twamley, Anthony M. McElligott, Darren Fayne, Niamh M. O’Boyle, D. Clive Williams and Mary J. Meegan
Pharmaceuticals 2024, 17(8), 1034; https://doi.org/10.3390/ph17081034 - 5 Aug 2024
Viewed by 2149
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow [...] Read more.
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels–Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17–2.69 µM (HG-3) and 0.35–1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82–95%) and PGA-1 (87–97%) at 10 µM, with low toxicity (12–16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL. Full article
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Evidence through Thermal Analysis of Retro Diels-Alder Reaction in Model Networks Based on Anthracene Modified Polyester Resins
by Daniela Ionita, Mariana Cristea, Constantin Gaina, Mihaela Silion and Bogdan C. Simionescu
Polymers 2023, 15(19), 4028; https://doi.org/10.3390/polym15194028 - 9 Oct 2023
Cited by 1 | Viewed by 2293
Abstract
The present work is focused on polyester resins obtained from the diglycidyl ether of bisphenol A and anthracene modified 5-maleimidoisophthalic acid. Because the maleimide-anthracene Diels–Alder (DA) adduct is stable at high temperatures, it is considered a good option for high performance polymers. However, [...] Read more.
The present work is focused on polyester resins obtained from the diglycidyl ether of bisphenol A and anthracene modified 5-maleimidoisophthalic acid. Because the maleimide-anthracene Diels–Alder (DA) adduct is stable at high temperatures, it is considered a good option for high performance polymers. However, the information related to the retroDA reaction for this type of adduct is sometimes incoherent. A detailed thermal study (conventional TGA, HiRes TGA, MTGA, DSC, MDSC) was performed in order to establish whether the rDA reaction can be revealed for this type of anthracene modified polyester resins. The TGA method confirmed the cleavage of the anthracene–maleimide DA adduct, while the DSC demonstrated the presence of anthracene in the system. At high temperatures, unprotected maleimide homopolymerizes and/or reacts with allyl groups according to the –ene reaction. Therefore, the thermal DA reaction is not displayed anymore upon the subsequent cooling, and the glass transition region is registered at a higher temperature range during the second heating. The use of sample-controlled thermal analysis (HiRes TGA) and MTGA improved the TGA result; however, it was not possible to separate the very complex degradation processes that are interconnected. Full article
(This article belongs to the Special Issue Self-Healing Polymers, Proteins and Composites)
Show Figures

Figure 1

16 pages, 2152 KiB  
Review
Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3
by Ziye Zhan, Jiale Yan, Zhiyou Yu and Lei Shi
Molecules 2023, 28(2), 642; https://doi.org/10.3390/molecules28020642 - 8 Jan 2023
Cited by 7 | Viewed by 3148
Abstract
The prevalence and significance of asymmetric catalysis in the modern medicinal industry has been witnessed in recent years, which have already been used to manufacture the (S)-Naproxen and the (S)-Propranolol. With matched specificities such as the Lewis acidity and steric bulk, B(C6 [...] Read more.
The prevalence and significance of asymmetric catalysis in the modern medicinal industry has been witnessed in recent years, which have already been used to manufacture the (S)-Naproxen and the (S)-Propranolol. With matched specificities such as the Lewis acidity and steric bulk, B(C6F5)3 has gained accelerating attention on its application in asymmetric catalysis of Diels–Alder cycloaddition reactions, carbonyl-ene cyclization, and other various reactions, which have been demonstrated by the elegant examples from the most recent literature. Some significant progress in the reaction of indirect activation of substrates through in situ generation of numerous supramolecular catalysts from B(C6F5)3 based on Lewis-acid-assisted Lewis acid (LLA) or Lewis acid assisted Brønsted acid (LBA) strategies or the reaction promoted by cooperative actions of chiral co-catalysts and B(C6F5)3 which played a direct role on the activation of substrates have been demonstrated in this review. Full article
(This article belongs to the Special Issue Feature Papers in Organic Chemistry)
Show Figures

Figure 1

19 pages, 5813 KiB  
Article
Activation of Vegetable Oils by Reaction with Maleic Anhydride as a Renewable Source in Chemical Processes: New Experimental and Computational NMR Evidence
by Francesco Lanero, Bianca Maria Bresolin, Anna Scettri, Marco Nogarole, Elisabetta Schievano, Stefano Mammi, Giacomo Saielli, Alessia Famengo, Alessandra Semenzato, Giovanni Tafuro, Paolo Sgarbossa and Roberta Bertani
Molecules 2022, 27(23), 8142; https://doi.org/10.3390/molecules27238142 - 23 Nov 2022
Cited by 5 | Viewed by 4774
Abstract
Vegetable oils are bio−based and sustainable starting materials that can be used to develop chemicals for industrial processes. In this study, the functionalization of three vegetable oils (grape, hemp, and linseed) with maleic anhydride was carried out either by conventional heating or microwave [...] Read more.
Vegetable oils are bio−based and sustainable starting materials that can be used to develop chemicals for industrial processes. In this study, the functionalization of three vegetable oils (grape, hemp, and linseed) with maleic anhydride was carried out either by conventional heating or microwave activation to obtain products that, after further reactions, can enhance the water dispersion of oils for industrial applications. To identify the most abundant derivatives formed, trans-3-octene, methyl oleate, and ethyl linoleate were reacted as reference systems. A detailed NMR study, supported by computational evidence, allowed for the identification of the species formed in the reaction of trans-3-octene with maleic anhydride. The signals in the 1H NMR spectra of the alkenyl succinic anhydride (ASA) moieties bound to the organic chains were clearly identified. The reactions achieved by conventional heating were carried out for 5 h at 200 °C, resulting in similar or lower amounts of ASA units/g of oil with respect to the reactions performed by microwave activation, which, however, induced a higher viscosity of the samples. Full article
Show Figures

Figure 1

11 pages, 5404 KiB  
Article
Diastereoselective Synthesis of Highly Functionalized Proline Derivatives
by Anna N. Philippova, Daria V. Vorobyeva, Pavel S. Gribanov, Fedor M. Dolgushin and Sergey N. Osipov
Molecules 2022, 27(20), 6898; https://doi.org/10.3390/molecules27206898 - 14 Oct 2022
Cited by 2 | Viewed by 2612
Abstract
An efficient way to access highly functionalized proline derivatives was developed based on a Cu(I)-catalyzed reaction between CF3-substituted allenynes and tosylazide, which involved a cascade of [3 + 2]-cycloaddition/ketenimine and a rearrangement/Alder-ene cyclization to afford the new proline framework with a [...] Read more.
An efficient way to access highly functionalized proline derivatives was developed based on a Cu(I)-catalyzed reaction between CF3-substituted allenynes and tosylazide, which involved a cascade of [3 + 2]-cycloaddition/ketenimine and a rearrangement/Alder-ene cyclization to afford the new proline framework with a high diastereoselectivity. Full article
(This article belongs to the Special Issue Recent Advances in the Use of Azoles in Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 3078 KiB  
Review
Total Syntheses of Chloropupukeananin and Its Related Natural Products
by Takahiro Suzuki
Organics 2022, 3(3), 304-319; https://doi.org/10.3390/org3030023 - 9 Sep 2022
Cited by 2 | Viewed by 2801
Abstract
Chloropupukeananin is a natural product that inhibits HIV-1 replication and has antitumor activity. Its structure consists of a chlorinated tricyclo[4.3.1.03,7]decane core skeleton with an array of highly oxidized multifunctional groups. In the biosynthesis of chloropupukeananin, (+)-iso-A82775C and (−)-maldoxin are employed as [...] Read more.
Chloropupukeananin is a natural product that inhibits HIV-1 replication and has antitumor activity. Its structure consists of a chlorinated tricyclo[4.3.1.03,7]decane core skeleton with an array of highly oxidized multifunctional groups. In the biosynthesis of chloropupukeananin, (+)-iso-A82775C and (−)-maldoxin are employed as biosynthetic precursors for the intermolecular Diels–Alder and carbonyl–ene reactions, followed by the migration of the p-orcellinate group. Chloropupukeanolides and chloropestolides are intermediates and isomers in biosynthesis; their unique chemical structures and biosynthetic pathways have attracted significant attention from synthetic chemists. In this review, I present the synthetic studies on chloropupukeananin and its related compounds that have been conducted thus far. Full article
(This article belongs to the Special Issue New Reactions and Strategies for Natural Product Synthesis)
Show Figures

Graphical abstract

25 pages, 1422 KiB  
Review
Clickable Biomaterials for Modulating Neuroinflammation
by Chase Cornelison and Sherly Fadel
Int. J. Mol. Sci. 2022, 23(15), 8496; https://doi.org/10.3390/ijms23158496 - 31 Jul 2022
Cited by 4 | Viewed by 4824
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including [...] Read more.
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of ‘immunomodulation’ leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called ‘click’ or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair. Full article
Show Figures

Figure 1

20 pages, 4663 KiB  
Review
Expeditious Asymmetric Synthesis of Polypropionates Relying on Sulfur Dioxide-Induced C–C Bond Forming Reactions
by Pierre Vogel and José Angel Sordo Gonzalo
Catalysts 2021, 11(11), 1267; https://doi.org/10.3390/catal11111267 - 21 Oct 2021
Viewed by 3278
Abstract
For a long time, the organic chemistry of sulfur dioxide (SO2) consisted of sulfinates that react with carbon electrophiles to generate sulfones. With alkenes and other unsaturated compounds, SO2 generates polymeric materials such as polysulfones. More recently, H-ene, sila-ene and [...] Read more.
For a long time, the organic chemistry of sulfur dioxide (SO2) consisted of sulfinates that react with carbon electrophiles to generate sulfones. With alkenes and other unsaturated compounds, SO2 generates polymeric materials such as polysulfones. More recently, H-ene, sila-ene and hetero-Diels–Alder reactions of SO2 have been realized under conditions that avoid polymer formation. Sultines resulting from the hetero-Diels–Alder reactions of conjugated dienes and SO2 are formed more rapidly than the corresponding more stable sulfolenes resulting from the cheletropic additions. In the presence of a protic or Lewis acid catalyst, the sultines derived from 1-alkoxydienes are ionized into zwitterionic intermediates bearing 1-alkoxyallylic cation moieties which react with electro-rich alkenes such as enol silyl ethers and allylsilanes with high stereoselectivity. (C–C-bond formation through Umpolung induced by SO2). This produces silyl sulfinates that react with carbon electrophiles to give sulfones (one-pot four component asymmetric synthesis of sulfones), or with Cl2, generating the corresponding sulfonamides that can be reacted in situ with primary and secondary amines (one-pot four component asymmetric synthesis of sulfonamides). Alternatively, Pd-catalyzed desulfinylation generates enantiomerically pure polypropionate stereotriads in one-pot operations. The chirons so obtained are flanked by an ethyl ketone moiety on one side and by a prop-1-en-1-yl carboxylate group on the other. They are ready for two-directional chain elongations, realizing expeditious synthesis of long-chain polypropionates and polyketides. The stereotriads have also been converted into simpler polypropionates such as the cyclohexanone moiety of baconipyrone A and B, Kishi’s stereoheptad unit of rifamycin S, Nicolaou’s C1–C11-fragment and Koert’s C16–CI fragment of apoptolidin A. This has also permitted the first total synthesis of (-)-dolabriferol. Full article
(This article belongs to the Special Issue Catalysts in Carbon-Carbon Coupling Reactions)
Show Figures

Figure 1

10 pages, 2217 KiB  
Article
Novel Ansa-Chain Conformation of a Semi-Synthetic Rifamycin Prepared Employing the Alder-Ene Reaction: Crystal Structure and Absolute Stereochemistry
by Christopher S. Frampton, James H. Gall and David D. MacNicol
Chemistry 2021, 3(3), 734-743; https://doi.org/10.3390/chemistry3030052 - 11 Jul 2021
Cited by 1 | Viewed by 3377
Abstract
Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it [...] Read more.
Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy groups undergo substitution and are no longer free to act in enzyme inhibition. In the present work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving one predominant product in each case. To determine unambiguously the stereochemistry of the Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group, P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal structure analysis is described. Full article
Show Figures

Graphical abstract

15 pages, 2583 KiB  
Article
Synthesis of the [11]Cyclacene Framework by Repetitive Diels–Alder Cycloadditions
by John B. Bauer, Fatima Diab, Cäcilia Maichle-Mössmer, Hartmut Schubert and Holger F. Bettinger
Molecules 2021, 26(10), 3047; https://doi.org/10.3390/molecules26103047 - 20 May 2021
Cited by 7 | Viewed by 3494
Abstract
The Diels–Alder cycloaddition between bisdienes and bisdienophile incorporating the 7-oxa-bicyclo[2.2.1]heptane unit are well known to show high diastereoselectivity that can be exploited for the synthesis of molecular belts. The related bisdiene 5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octene is a valuable building block for the synthesis of photoprecursors for [...] Read more.
The Diels–Alder cycloaddition between bisdienes and bisdienophile incorporating the 7-oxa-bicyclo[2.2.1]heptane unit are well known to show high diastereoselectivity that can be exploited for the synthesis of molecular belts. The related bisdiene 5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octene is a valuable building block for the synthesis of photoprecursors for acenes, but it has not been employed for the synthesis of molecular belts. The present work investigates by computational means the Diels–Alder reaction between these bisdiene building blocks with syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene, which shows that the diastereoselectivity of the Diels–Alder reaction of the etheno-bridged bisdiene is lower than that of the epoxy-bridged bisdiene. The reaction of the etheno-bridged bisdiene and syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene in 2:1 ratio yields two diastereomers that differ in the orientation of the oxa and etheno bridges based on NMR and X-ray crystallography. The all-syn diastereomer can be transformed into a molecular belt by inter- and intramolecular Diels–Alder reactions with a bifunctional building block. The molecular belt could function as a synthetic intermediate en route to a [11]cyclacene photoprecursor. Full article
(This article belongs to the Special Issue Diels-Alder Reaction in Organic Synthesis)
Show Figures

Graphical abstract

11 pages, 2555 KiB  
Article
Rheometer Evidences for the Co-Curing Effect of a Bismaleimide in Conjunction with the Accelerated Sulfur on Natural Rubber/Chloroprene Rubber Blends
by Marek Pöschl, Shibulal Gopi Sathi, Radek Stoček and Ondřej Kratina
Polymers 2021, 13(9), 1510; https://doi.org/10.3390/polym13091510 - 7 May 2021
Cited by 15 | Viewed by 5331
Abstract
The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has [...] Read more.
The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction. Full article
(This article belongs to the Special Issue Advanced Testing of Soft Polymer Materials)
Show Figures

Graphical abstract

15 pages, 2818 KiB  
Article
Application of New Efficient Hoveyda–Grubbs Catalysts Comprising an N→Ru Coordinate Bond in a Six-Membered Ring for the Synthesis of Natural Product-Like Cyclopenta[b]furo[2,3-c]pyrroles
by Alexandra S. Antonova, Marina A. Vinokurova, Pavel A. Kumandin, Natalia L. Merkulova, Anna A. Sinelshchikova, Mikhail S. Grigoriev, Roman A. Novikov, Vladimir V. Kouznetsov, Kirill B. Polyanskii and Fedor I. Zubkov
Molecules 2020, 25(22), 5379; https://doi.org/10.3390/molecules25225379 - 17 Nov 2020
Cited by 9 | Viewed by 4184
Abstract
The ring rearrangement metathesis (RRM) of a trans-cis diastereomer mixture of methyl 3-allyl-3a,6-epoxyisoindole-7-carboxylates derived from cheap, accessible and renewable furan-based precursors in the presence of a new class of Hoveyda–Grubbs-type catalysts, comprising an N→Ru coordinate bond in a six-membered ring, results [...] Read more.
The ring rearrangement metathesis (RRM) of a trans-cis diastereomer mixture of methyl 3-allyl-3a,6-epoxyisoindole-7-carboxylates derived from cheap, accessible and renewable furan-based precursors in the presence of a new class of Hoveyda–Grubbs-type catalysts, comprising an N→Ru coordinate bond in a six-membered ring, results in the difficult-to-obtain natural product-like cyclopenta[b]furo[2,3-c]pyrroles. In this process, only one diastereomer with a trans-arrangement of the 3-allyl fragment relative to the 3a,6-epoxy bridge enters into the rearrangement, while the cis-isomers polymerize almost completely under the same conditions. The tested catalysts are active in the temperature range from 60 to 120 °C at a concentration of 0.5 mol % and provide better yields of the target tricycles compared to the most popular commercially available second-generation Hoveyda–Grubbs catalyst. The diastereoselectivity of the intramolecular Diels–Alder reaction furan (IMDAF) reaction between starting 1-(furan-2-yl)but-3-en-1-amines and maleic anhydride, leading to 3a,6-epoxyisoindole-7-carboxylates, was studied as well. Full article
(This article belongs to the Special Issue New Insights into Furans Transformations)
Show Figures

Graphical abstract

Back to TopTop