Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3
Abstract
:1. Introduction
2. Discussion
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.L.; Stephan, D.W. Radicals derived from Lewis acid/base pairs. Chem. Soc. Rev. 2019, 48, 3454–3463. [Google Scholar] [CrossRef]
- Corma, A.; García, H. Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chem. Rev. 2003, 103, 4307–4366. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis pair chemistry: Development and perspectives. Angew. Chem. Int. Ed. 2015, 54, 6400–6441. [Google Scholar] [CrossRef]
- Stephan, D.W. Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137, 10018–10032. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. The broadening reach of frustrated Lewis pair chemistry. Science 2016, 354, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Welch, G.C.; Juan, R.R.S.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef] [Green Version]
- Carden, J.L.; Dasgupta, A.; Melen, R.L. Halogenated triarylboranes: Synthesis, properties and applications in catalysis. Chem. Soc. Rev. 2020, 49, 1706–1725. [Google Scholar] [CrossRef] [PubMed]
- Carden, J. Enabling Technologies to Access New Materials Using Frustrated Lewis Pairs. Ph.D. Thesis, Cardiff University (United Kingdom), Ann Arbor, MI, USA, 2021. [Google Scholar]
- Sivaev, I.B.; Bregadze, V.I. Lewis acidity of boron compounds. Coord. Chem. Rev. 2014, 270-271, 75–88. [Google Scholar] [CrossRef]
- Lawson, J.R.; Melen, R.L. Tris(pentafluorophenyl)borane and Beyond: Modern Advances in Borylation Chemistry. Inorg. Chem. 2017, 56, 8627–8643. [Google Scholar] [CrossRef] [Green Version]
- Melen, R.L. Applications of pentafluorophenyl boron reagents in the synthesis of heterocyclic and aromatic compounds. Chem. Commun. 2014, 50, 1161–1174. [Google Scholar] [CrossRef]
- Oestreich, M.; Hermeke, J.; Mohr, J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev. 2015, 44, 2202–2220. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Shimada, S.; Sato, K. Sequence-Controlled Catalytic One-Pot Synthesis of Siloxane Oligomers. Chem. A Eur. J. 2019, 25, 920–928. [Google Scholar] [CrossRef]
- Piers, W.E.; Chivers, T. Pentafluorophenylboranes: From obscurity to applications. Chem. Soc. Rev. 1997, 26, 345–354. [Google Scholar] [CrossRef]
- García, J.I.; Mayoral, J.A.; Salvatella, L. Do Secondary Orbital Interactions Really Exist? Acc. Chem. Res. 2000, 33, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Wannere, C.S.; Paul, A.; Herges, R.; Houk, K.N.; Schaefer, H.F., III; Von Ragué Schleyer, P. The existence of secondary orbital interactions. J. Comput. Chem. 2007, 28, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels–Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [Google Scholar] [CrossRef]
- Corey, E.J. Catalytic Enantioselective Diels–Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications. Angew. Chem. Int. Ed. 2002, 41, 1650–1667. [Google Scholar] [CrossRef]
- Hatano, M.; Mizuno, T.; Izumiseki, A.; Usami, R.; Asai, T.; Akakura, M.; Ishihara, K. Enantioselective Diels-Alder reactions with anomalous endo/exo selectivities using conformationally flexible chiral supramolecular catalysts. Angew. Chem. Int. Ed. 2011, 50, 12189–12192. [Google Scholar] [CrossRef]
- Ishihara, K.; Hatano, M.; Hayashi, K.; Sakamoto, T.; Makino, Y. Enantioselective Diels–Alder Reaction Induced by Chiral Supramolecular Lewis Acid Catalysts Based on CN···B and PO···B Coordination Bonds. Synlett 2016, 27, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Kondo, S.; Kurihara, H.; Yamamoto, H.; Ohashi, S.; Inagaki, S. First Enantioselective Catalytic Diels−Alder Reaction of Dienes and Acetylenic Aldehydes: Experimental and Theoretical Evidence for the Predominance of Exo-Transition Structure. J. Org. Chem. 1997, 62, 3026–3027. [Google Scholar] [CrossRef]
- Hatano, M.; Sakamoto, T.; Mizuno, T.; Goto, Y.; Ishihara, K. Chiral Supramolecular U-Shaped Catalysts Induce the Multiselective Diels-Alder Reaction of Propargyl Aldehyde. J. Am. Chem. Soc. 2018, 140, 16253–16263. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Hatano, M.; Ishihara, H.; Goto, Y. Remote Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acid Catalysts for the Enantioselective Diels–Alder Reaction. Synlett 2015, 27, 564–570. [Google Scholar] [CrossRef]
- Liu, L.; Leutzsch, M.; Zheng, Y.; Alachraf, M.W.; Thiel, W.; List, B. Confined Acid-Catalyzed Asymmetric Carbonyl–Ene Cyclization. J. Am. Chem. Soc. 2015, 137, 13268–13271. [Google Scholar] [CrossRef] [Green Version]
- Hatano, M.; Goto, Y.; Izumiseki, A.; Akakura, M.; Ishihara, K. Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels–Alder Reaction of 1,2-Dihydropyridines. J. Am. Chem. Soc. 2015, 137, 13472–13475. [Google Scholar] [CrossRef] [PubMed]
- Hatano, M.; Sakamoto, T.; Mochizuki, T.; Ishihara, K. Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acid Catalysts for Enantioselective Inverse-Electron-Demand Hetero-Diels-Alder Reaction of α,β-Substituted Acroleins. Asian J. Org. Chem. 2019, 8, 1061–1066. [Google Scholar] [CrossRef]
- Ishihara, H.; Huang, J.; Mochizuki, T.; Hatano, M.; Ishihara, K. Enantio- and Diastereoselective Carbonyl-Ene Cyclization–Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids. ACS Catal. 2021, 11, 6121–6127. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Feng, X.; Yang, J.; Du, H. Asymmetric Transfer Hydrogenation of N-Unprotected Indoles with Ammonia Borane. Org. Lett. 2020, 22, 5850–5854. [Google Scholar] [CrossRef]
- Han, C.; Meng, W.; Feng, X.; Du, H. Asymmetric Intramolecular Hydroalkoxylation of 2-Vinylbenzyl Alcohols with Chiral Boro-Phosphates. Angew. Chem. Int. Ed. 2022, 61, e202200100. [Google Scholar]
- Gao, B.; Feng, X.; Meng, W.; Du, H. Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2020, 59, 4498–4504. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.J.; Liu, N.; Liu, Q.F.; Sun, W.; Wang, X.C. Borane-Catalyzed Direct Asymmetric Vinylogous Mannich Reactions of Acyclic alpha,beta-Unsaturated Ketones. J. Am. Chem. Soc. 2021, 143, 3054–3059. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.C. Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. Angew. Chem. Int. Ed. 2021, 60, 17185–17190. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.S.; Zeng, N.N.; Li, R.Y.; Zhao, Y.Q.; Xie, D.Z.; Peng, Q.; Wang, X.C. C2-Symmetric Bicyclic Bisborane Catalysts: Kinetic or Thermodynamic Products of a Reversible Hydroboration of Dienes. Angew. Chem. Int. Ed. 2018, 57, 15096–15100. [Google Scholar] [CrossRef]
- Tian, J.J.; Yang, Z.Y.; Liang, X.S.; Liu, N.; Hu, C.Y.; Tu, X.S.; Li, X.; Wang, X.C. Borane-Catalyzed Chemoselective and Enantioselective Reduction of 2-Vinyl-Substituted Pyridines. Angew. Chem. Int. Ed. 2020, 59, 18452–18456. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.J.; Liu, N.; Tu, X.S.; Zeng, N.N.; Wang, X.C. Spiro-Bicyclic Bisborane Catalysts for Metal-Free Chemoselective and Enantioselective Hydrogenation of Quinolines. Angew. Chem. Int. Ed. 2019, 58, 4664–4668. [Google Scholar] [CrossRef]
- Shang, M.; Wang, X.; Koo, S.M.; Youn, J.; Chan, J.Z.; Yao, W.; Hastings, B.T.; Wasa, M. Frustrated Lewis Acid/Bronsted Base Catalysts for Direct Enantioselective alpha-Amination of Carbonyl Compounds. J. Am. Chem. Soc. 2017, 139, 95–98. [Google Scholar] [CrossRef]
- Klose, I.; Di Mauro, G.; Kaldre, D.; Maulide, N. Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat. Chem. 2022, 14, 1306–1310. [Google Scholar] [CrossRef]
- Chang, Y.; Cao, M.; Chan, J.Z.; Zhao, C.; Wang, Y.; Yang, R.; Wasa, M. Enantioselective Synthesis of N-Alkylamines through beta-Amino C-H Functionalization Promoted by Cooperative Actions of B(C6F5)3 and a Chiral Lewis Acid Co-Catalyst. J. Am. Chem. Soc. 2021, 143, 2441–2455. [Google Scholar] [CrossRef]
- Shang, M.; Chan, J.Z.; Cao, M.; Chang, Y.; Wang, Q.; Cook, B.; Torker, S.; Wasa, M. C-H Functionalization of Amines via Alkene-Derived Nucleophiles through Cooperative Action of Chiral and Achiral Lewis Acid Catalysts: Applications in Enantioselective Synthesis. J. Am. Chem. Soc. 2018, 140, 10593–10601. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yesilcimen, A.; Wasa, M. Enantioselective Conia-Ene-Type Cyclizations of Alkynyl Ketones through Cooperative Action of B(C6F5)3, N-Alkylamine and a Zn-Based Catalyst. J. Am. Chem. Soc. 2019, 141, 4199–4203. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Z.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang, B.; Wasa, M. Direct Conversion of N-Alkylamines to N-Propargylamines through C-H Activation Promoted by Lewis Acid/Organocopper Catalysis: Application to Late-Stage Functionalization of Bioactive Molecules. J. Am. Chem. Soc. 2020, 142, 16493–16505. [Google Scholar] [CrossRef]
- Shi, L.; Bao, R.L.-Y.; Zheng, L.; Zhao, R. B(C6F5)3-Catalyzed Reduction of Cyclic N-Sulfonyl Ketimines. Eur. J. Org. Chem. 2019, 2019, 6550–6556. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, Y.; Zhao, R.; Jiang, Y.; Bao, R.L.; Lin, K.; Shi, L. B(C6F5)3-Promoted hydrogenations of N-heterocycles with ammonia borane. Chem. Commun. 2017, 53, 9262–9264. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Z.; Yan, J.; Yu, Z.; Shi, L. Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3. Molecules 2023, 28, 642. https://doi.org/10.3390/molecules28020642
Zhan Z, Yan J, Yu Z, Shi L. Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3. Molecules. 2023; 28(2):642. https://doi.org/10.3390/molecules28020642
Chicago/Turabian StyleZhan, Ziye, Jiale Yan, Zhiyou Yu, and Lei Shi. 2023. "Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3" Molecules 28, no. 2: 642. https://doi.org/10.3390/molecules28020642
APA StyleZhan, Z., Yan, J., Yu, Z., & Shi, L. (2023). Recent Advances in Asymmetric Catalysis Associated with B(C6F5)3. Molecules, 28(2), 642. https://doi.org/10.3390/molecules28020642