Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (240)

Search Parameters:
Keywords = Al-Li alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 588
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

25 pages, 26766 KiB  
Article
The Role of Friction Stir Processing Travel Speed on the Microstructure Evolution and Mechanical Performance of As-Cast Hypoeutectic Al-5Si Alloy
by Basma El-Eraki, Mahmoud F. Y. Shalaby, Ahmed El-Sissy, Abeer Eisa, Sabbah Ataya and Mohamed M. El-Sayed Seleman
Crystals 2025, 15(6), 546; https://doi.org/10.3390/cryst15060546 - 6 Jun 2025
Viewed by 1361
Abstract
This study’s novelty lies in providing first-time insights into the isolated role of Friction Stir Processing (FSP) travel speed on microstructure evolution and mechanical performance (micro-hardness, tensile properties, impact energy, and wear behavior) specifically in hypoeutectic as-cast Al-5 wt.% Si alloys, addressing a [...] Read more.
This study’s novelty lies in providing first-time insights into the isolated role of Friction Stir Processing (FSP) travel speed on microstructure evolution and mechanical performance (micro-hardness, tensile properties, impact energy, and wear behavior) specifically in hypoeutectic as-cast Al-5 wt.% Si alloys, addressing a critical unaddressed gap in previous works (typically on near-eutectic compositions of Si > 6.5 wt.%). FSP, a solid-state technique, is highly effective for enhancing the properties of cast materials. The FSP was conducted at a fixed rotational speed of 1330 rpm and various travel speeds (26, 33, 42, and 52 mm/min). The FSP improves the mechanical properties of as-cast Al-5Si alloy by refining its grain structure. This leads to higher hardness, ultimate tensile strength (UTS), yield strength (YS), and strain at fracture and toughness compared to the as-cast condition. The specimen processed at 26 mm/min achieved the highest values of YS, UTS, toughness, and wear resistance. The fracture surfaces of the tensile and impact test specimens were examined using scanning electron microscopy (SEM) and discussed. Results indicated that the fracture surfaces revealed a transition from predominantly brittle fracture in the as-cast alloy to ductile fracture at 26 mm/min, changing to a mixed fracture mode at 52 mm/min. These findings underscore the critical importance of optimizing FSP travel speed to significantly tailor and enhance the mechanical performance of as-cast hypoeutectic Al-5Si alloys for industrial applications. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

27 pages, 6380 KiB  
Article
Effects of Alloy Composition, Hardness, and Milling Parameters on the Cutting Forces of Al-Li-Based Alloys
by Lida Radan, Victor Songmene, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(12), 2683; https://doi.org/10.3390/ma18122683 - 6 Jun 2025
Viewed by 403
Abstract
This article explores how alloy composition, hardness, and machining parameters can affect the cutting forces encountered in aluminum–lithium (Al-Li)-based alloys. By analyzing Cu and Cu with Sc additions to Al-Li alloys and exposing them to various heat treatments to modify their hardness, this [...] Read more.
This article explores how alloy composition, hardness, and machining parameters can affect the cutting forces encountered in aluminum–lithium (Al-Li)-based alloys. By analyzing Cu and Cu with Sc additions to Al-Li alloys and exposing them to various heat treatments to modify their hardness, this research was designed to evaluate milling performance under various feed rates, cutting speeds, and cooling conditions. The findings indicate that increased hardness leads to higher cutting forces, with Al-Li-Cu-Sc exhibiting the greatest resistance due to scandium’s grain-refining effect and the formation of stable precipitates. Statistical analyses identify the feed rate as the main parameter controlling cutting force, along with hardness and cooling conditions. Notably, wet machining consistently reduces cutting forces, especially in Al-Li-Cu-Sc alloys, enhancing machinability when using high cutting speeds. This work underscores the significance of selecting optimal machining parameters tailored to specific alloy compositions. These findings contribute to improved process efficiency, reduced tool wear, and enhanced productivity. Given the attractive characteristics of these alloys, i.e., their low weight and high strength, the insights from this study are particularly beneficial for aerospace applications where machining performance directly impacts component quality, cost, and overall operational efficiency. Full article
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 474
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

17 pages, 3655 KiB  
Article
Potential Function-Based Molecular Dynamics Simulation of Al-Cu-Li Alloys and Comparison with Experiments
by Fei Chen, Han Wang, Yu Liu, Liangtao Qi and Quanqing Zeng
Materials 2025, 18(11), 2420; https://doi.org/10.3390/ma18112420 - 22 May 2025
Viewed by 448
Abstract
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating [...] Read more.
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating the relationship between the microstructure and performance of ternary alloys under intricate heat treatment conditions remains scarce. This study investigates the microstructural evolution of Al-Cu-Li alloys during multi-stage low-high-low temperature CA experiments, combined with molecular dynamics (MD) simulations based on the neuroevolutionary machine learning potential (NEP) function. The simulation results indicate that the segregation state of lithium atoms at low temperatures is unstable and cannot persist at elevated temperatures. As the aging temperature in the second stage increases, the segregation of lithium atoms gradually diminishes. However, the low-temperature aging in the third stage facilitates continued atomic segregation, although the recovery is somewhat limited. Additionally, it was observed that high-temperature aging in the second stage reduces the material’s performance, while the low-temperature aging in the third stage contributes to the recovery of its properties. The experimental results indicate that the degree of precipitation phase enrichment decreases with the increase in temperature during the second stage but slightly increases with the low-temperature aging in the third stage. The excellent agreement between the experimental and simulation results validates the reliability of the MD simulations, providing a valuable reference for the performance enhancement and microstructural optimization of Al-Cu-Li alloys. Full article
Show Figures

Figure 1

19 pages, 8938 KiB  
Article
Stress–Strain State Investigation and Ultimate Load on Femoral Implants Based on S-Type Ti6Al4V Titanium Alloy
by Ivan Panfilov, Ilya Vilkovyskiy, Evgeniy Sadyrin, Sergei Aizikovich, Alexey N. Beskopylny and Besarion Meskhi
J. Funct. Biomater. 2025, 16(5), 187; https://doi.org/10.3390/jfb16050187 - 19 May 2025
Viewed by 1239
Abstract
Hip replacement is a widespread surgical procedure that eliminates pain and restores motor functions of the pathologically altered hip joint. The issue lies in the lack of pre-operative strength calculations for implant shapes. So, they tend to break after surgery or damage the [...] Read more.
Hip replacement is a widespread surgical procedure that eliminates pain and restores motor functions of the pathologically altered hip joint. The issue lies in the lack of pre-operative strength calculations for implant shapes. So, they tend to break after surgery or damage the bone due to the complex stress–strain state. In the present paper, we studied the stress–strain state and ultimate load of S-type canine femoral implants based on titanium alloy Ti6Al4V using finite element analysis for static and cyclic loads. X-ray computed micro tomography data were used to construct the models. Re-engineering and restoration of the 3D geometry of the product were conducted. Strength analysis was performed in the finite element analysis software package Ansys Mechanical was used for various types of implant support. Locations with stress concentrators were identified, and ultimate loads on the implant were obtained. The influence of the rigidity of the support on the prosthesis stem was also studied. For the case of rigid support, the stress–strain state of the prosthesis was studied and the ultimate load was found to be 30.1 kg. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

20 pages, 20484 KiB  
Article
Effect of Cu/Li Ratio on Mechanical Properties and Corrosion Behavior of Sc-Containing Al-Cu-Li Alloys
by Changlin Li, Xiwu Li, Yongan Zhang, Kai Wen, Lizhen Yan, Ying Li, Yanan Li, Mingyang Yu, Guanjun Gao, Hongwei Yan, Zhihui Li and Baiqing Xiong
Materials 2025, 18(10), 2254; https://doi.org/10.3390/ma18102254 - 13 May 2025
Cited by 1 | Viewed by 354
Abstract
In this work, the effects of the Cu/Li ratio on the mechanical properties and corrosion behavior of Sc-containing Al-Cu-Li alloys were systematically investigated by utilizing age-hardening behavior, tensile property, corrosion behavior, and electrochemical behavior, complemented by microstructural characterization through EBSD and TEM. The [...] Read more.
In this work, the effects of the Cu/Li ratio on the mechanical properties and corrosion behavior of Sc-containing Al-Cu-Li alloys were systematically investigated by utilizing age-hardening behavior, tensile property, corrosion behavior, and electrochemical behavior, complemented by microstructural characterization through EBSD and TEM. The results show that the peak aging strength of the alloys remained relatively consistent but slightly decreased with the decrease in Cu/Li ratio, and the yield strengths were 585 MPa, 578 MPa, and 573 MPa, respectively. The changes in the Cu/Li ratio caused different matching patterns of precipitates in the peak aging alloys. The cumulative precipitation strengthening by T1, θ′, δ′, and S′ phases are equal within the alloys with different Cu/Li ratios. However, the strength contribution of the T1 phase decreases from 81% to 66% with the decrease in the Cu/Li ratio. Concurrently, the precipitates of LAGBs gradually increase in number and are continuously distributed, and the precipitates of HAGBs become larger in size with lower Cu content as the Cu/Li ratio decreases, all of which leads to a weakening of the intergranular corrosion (IGC) resistance within the low Cu/Li ratio alloy. Full article
Show Figures

Graphical abstract

17 pages, 7302 KiB  
Article
Influence of Cu Content on Precipitation Behavior and Mechanical Properties Under Aging Treatment of Al-Cu-Li Alloys
by Pengcheng Chen, Xiwu Li, Haitao Lin, Kai Wen, Ying Li, Shuyan Wang, Chenyang Xun, Changlin Li, Lizhen Yan, Yongan Zhang and Baiqing Xiong
Materials 2025, 18(10), 2172; https://doi.org/10.3390/ma18102172 - 8 May 2025
Viewed by 547
Abstract
The influence of Cu content (3.10, 3.50, and 3.80 wt.%) on the precipitation behavior and mechanical properties of Al-Cu-Li alloys under two aging conditions (direct aging at 175 °C vs. 3.5% pre-stretching followed by aging at 155 °C) was systematically investigated. The alloys [...] Read more.
The influence of Cu content (3.10, 3.50, and 3.80 wt.%) on the precipitation behavior and mechanical properties of Al-Cu-Li alloys under two aging conditions (direct aging at 175 °C vs. 3.5% pre-stretching followed by aging at 155 °C) was systematically investigated. The alloys were characterized using hardness testing, tensile property evaluation, and transmission electron microscopy (TEM) to correlate microstructural evolution with performance. The results revealed that increased Cu content accelerated early-stage hardening kinetics and elevated peak hardness and strength. Aging at 175 °C/36 h produced T1 phase-dominated microstructures with θ′ phases. With the increase of Cu content, the enhancement effect on the precipitation of T1 and θ′ phases becomes more pronounced, gradually overshadowing the initial promotion effect on precipitate growth. Pre-deformation prior to 155 °C/36 h aging induced significant T1 phase refinement and proliferation, with increasing Cu content continuously reducing T1 phase sizes while moderately enlarging θ′ precipitates. Precipitation-strengthening analysis revealed a transition in T1 strengthening from bypass to shearing dominance under 155 °C/36 h aging after pre-deformation, enhanced by Cu-promoted T1 refinement, which collectively drove superior strength in high-Cu alloys. These findings provide valuable insights for the composition design and mechanical property optimization of Al-Cu-Li alloys. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 17834 KiB  
Article
Study on Thermal Deformation Behavior and Thermal Processing Map of a New Al-Li Alloy
by Daoqi Chen, Xinyang Han, Yinggan Zhang, Yan Liu and Junfeng Chen
Crystals 2025, 15(5), 431; https://doi.org/10.3390/cryst15050431 - 30 Apr 2025
Viewed by 376
Abstract
As a representative third-generation Al-Li alloy, 2A97 alloy has attracted significant attention for applications in aeronautics and astronautics, but its poor hot workability and complex thermal deformation behavior, which make for difficult optimization, significantly limit its widespread industrial utilization. In this study, the [...] Read more.
As a representative third-generation Al-Li alloy, 2A97 alloy has attracted significant attention for applications in aeronautics and astronautics, but its poor hot workability and complex thermal deformation behavior, which make for difficult optimization, significantly limit its widespread industrial utilization. In this study, the thermal deformation behavior of 2A97 Al-Li alloy was systematically investigated via thermal compression tests conducted over a temperature range of 260–460 °C and strain rates ranging from 0.001 s−1 to 1 s−1. The effects of deformation parameters on the alloy’s microstructural evolution were examined using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Based on the dynamic materials model, a constitutive equation was established by analyzing the stress–strain data under various thermal deformation conditions. Furthermore, a thermal processing map was compiled to analyze the effects of the temperature and strain rate on the power dissipation efficiency and flow instability factor. The thermal deformation mechanisms were identified through combined analysis of the thermal processing map and microstructural features. Results indicate that the fraction of low-angle grain boundaries increases with a rising lnZ value (Zener–Hollomon parameter) during the thermal compression process. Dynamic recrystallization is the main deformation mechanism of 2A97 Al-Li alloy in the stable region, whereas the alloy exhibits flow localization in the unstable region. According to the thermal processing map, the optimal hot working windows for the 2A97 Al-Li alloy were determined to be (1) 360–460 °C at strain rates of 0.05 s−1–1 s−1, and (2) 340–420 °C at strain rates of 0.001 s−1–0.005 s−1. These conditions offer favorable combinations of microstructure and deformation stability, providing critical guidance for the thermo-mechanical processing of 2A97 alloy. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

23 pages, 13540 KiB  
Article
Degradation Susceptibility of Al-2.18Mg-1.92Li Alloy in Severe Environmental Conditions
by Franjo Kozina, Zdenka Zovko Brodarac, Mitja Petrič and Barbara Šetina Batič
Materials 2025, 18(9), 1938; https://doi.org/10.3390/ma18091938 - 24 Apr 2025
Viewed by 372
Abstract
Due to the specific application of aluminum–magnesium–lithium (Al-Mg-Li) alloys in the transportation industry, it is necessary to consider the influence of microstructure development on material degradation under severe environmental conditions. This degradation was simulated according to the standard test method ASTM G34-01 (2018) [...] Read more.
Due to the specific application of aluminum–magnesium–lithium (Al-Mg-Li) alloys in the transportation industry, it is necessary to consider the influence of microstructure development on material degradation under severe environmental conditions. This degradation was simulated according to the standard test method ASTM G34-01 (2018) on a newly designed and synthesized Al-2.1Mg-1.92Li alloy in the as-cast condition. The degradation susceptibility of the alloy was estimated by measuring the changes in the sample mass and microhardness, and the pH and chemical composition of the environment with respect to the exposure time. The influence of the microstructure constituents on the degradation of the alloy was determined using metallographic analysis of the exposed surface and cross-section of the samples after testing. During the degradation, dealloying of the αAl matrix through Li, Mg and Al component dissolution resulted in a decrease in the mass of the samples, an increase in the pH of the environment and changes in its chemical composition. This observation was also confirmed by the results of the metallographic analysis. The degradation involved the formation of cavities around the Al8Mg5 (β) and Al2LiMg (T) intermetallic phases through an anodic dissolution mechanism. The increase in microhardness values after exposure indicated an increase in the stress around the degradation front due to the wedge effect of the degradation products. The results of the investigation support the potential application of the synthesized Al-2.1Mg-1.92Li alloy under the severe environmental conditions defined by the ASTM G34-01 (2018) standard. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Passivating Metals and Alloys)
Show Figures

Graphical abstract

28 pages, 16513 KiB  
Article
Effect of Multi-Directional Forging on Microstructure and Mechanical Properties of Dual-Phase Mg-8Li-3Al-0.3Si Alloy
by Pengcheng Tian, Cuiju Wang, Kaibo Nie, Yaniu Li and Kunkun Deng
Materials 2025, 18(8), 1829; https://doi.org/10.3390/ma18081829 - 16 Apr 2025
Viewed by 481
Abstract
The Mg-8Li-3Al-0.3Si dual-phase alloy (LA83-0.3Si) was subjected to six multi-directional forging (MDF) passes in the present work, then its microstructure, mechanical properties, and work hardening and work softening effects were examined and analyzed. The results indicate that the continuous dynamic recrystallization (CDRX) mechanism [...] Read more.
The Mg-8Li-3Al-0.3Si dual-phase alloy (LA83-0.3Si) was subjected to six multi-directional forging (MDF) passes in the present work, then its microstructure, mechanical properties, and work hardening and work softening effects were examined and analyzed. The results indicate that the continuous dynamic recrystallization (CDRX) mechanism of the LA83-0.3Si dual-phase alloy gradually transitioned to a discontinuous dynamic recrystallization (DDRX) mechanism as the temperature increased after MDF. This temperature change induced a transition in the basal texture from bimodal to multimodal, significantly reducing the texture intensity and weakening the alloy’s anisotropy. At 310 °C, the AlLi phase nucleated into coated particles to stabilize the structure. Additionally, the increase in the forging temperature weakened the synergistic deformation capability of the α/β phases, while the hardening behavior of the β-Li phase provided a nucleation pathway for dynamic recrystallization (DRX). MDF significantly enhanced the strength and ductility of the LA83-0.3Si alloy. The alloy’s strength continued to rise, while elongation decreased as the forging temperature increased. The ultimate tensile strength (UTS) and elongation (EL) reached 267.8 MPa and 11.9%, respectively. The work hardening effect increased with the forging temperature, whereas the work softening effect continuously diminished, attributed to the enhanced hardening behavior of the β phase and the reduced ability to transfer dislocations. Full article
Show Figures

Figure 1

22 pages, 7759 KiB  
Article
Numerical Analysis of Thermal and Flow Behaviors with Weld Microstructures During Laser Welding with Filler Wire for 2195 Al-Li Alloys
by Dejun Liu, Qihang Xv, Gan Tian, Ling Zhao, Xinzhi Yang and Maochuan Li
Metals 2025, 15(4), 348; https://doi.org/10.3390/met15040348 - 23 Mar 2025
Viewed by 449
Abstract
This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with [...] Read more.
This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with varying welding parameters. Numerical simulation of the heat transfer and flow in the molten pool was carried out using the CFD method, and the moving filler wire was introduced from the computational boundary by secondary development. Simulation results indicated that reducing welding speed and increasing wire feeding rate enhanced the cooling rate of the weld. Additionally, energy absorbed by the filler wire contributed between 6% and 16% of the total energy input during the liquid bridge transition. Comparing experimental and simulation data revealed that the cooling rate significantly affected the weld’s micro-structure and hardness. Notably, the formation of the equiaxed grain zone (EQZ) was crucial for weld performance. Excessive cooling rates hindered EQZ formation, reducing flow in this critical region. These findings offer valuable insights for optimizing welding parameters to enhance weld quality and performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

14 pages, 7676 KiB  
Article
Effect of Solution and Aging Treatment on the Microstructure and Properties of LAZ931 Mg-Li Alloy by Friction Stir Processing
by Zhe Fang, Shuaiwei Xu, Zhixin Wang and Yufeng Sun
Metals 2025, 15(3), 314; https://doi.org/10.3390/met15030314 - 13 Mar 2025
Cited by 19 | Viewed by 829
Abstract
Heat treatment processes play a pivotal role in optimizing the microstructure and mechanical properties of Mg-Li alloys, thereby enhancing their performance and expanding their potential applications in structural and lightweight engineering fields. In this study, the influence of solution and aging treatments on [...] Read more.
Heat treatment processes play a pivotal role in optimizing the microstructure and mechanical properties of Mg-Li alloys, thereby enhancing their performance and expanding their potential applications in structural and lightweight engineering fields. In this study, the influence of solution and aging treatments on the microstructure, phase transformation, and microhardness of friction-stir-processed (FSPed) LAZ931 Mg-Li alloy was investigated to obtain the optimal solution treatment temperature and time. An optimal solution treatment at 460 °C for 0.5 h under an Ar gas atmosphere facilitated complete α-phase dissolution with subsequent aging at 125 °C, triggering precipitation-mediated hardening. An X-ray diffraction (XRD) analysis identified a new MgLi2Al phase in the stirring zone (SZ) in addition to the α, β, and AlLi phases. Aging kinetics at 125 °C showed that SZ hardness increased to 110.5 HV after solution treatment, which was 5.3% higher than the base metal (BM). After 3 h of aging, microhardness peaked at 86.5 HV before decreasing due to the decomposition of the metastable MgLi2Al phase into the stable AlLi phase. The microhardness stabilized at around 78 HV, which was 16.2% higher than that of the original SZ. These experimental results provide a fundamental understanding of property structure for meeting the growing demand for lightweight materials and improving material properties. Full article
(This article belongs to the Special Issue Advances in Welding Processes of Metallic Materials)
Show Figures

Figure 1

15 pages, 8614 KiB  
Article
Microstructural Modification by Large Pre-Deformation and Post-Aging to Improve Properties in Al-Mg-Li Alloy
by Zeyu Zheng, Peipei Ma, Longhui Chen and Chunhui Liu
Metals 2025, 15(3), 290; https://doi.org/10.3390/met15030290 - 6 Mar 2025
Cited by 1 | Viewed by 901
Abstract
Al-Mg-Li alloy is an ideal lightweight structural material for aerospace applications due to its low density, high specific strength, and excellent low-temperature performance. This study examines the mechanical properties and microstructural evolution of Al-Mg-Li alloy subjected to cryogenic and room temperature cold rolling, [...] Read more.
Al-Mg-Li alloy is an ideal lightweight structural material for aerospace applications due to its low density, high specific strength, and excellent low-temperature performance. This study examines the mechanical properties and microstructural evolution of Al-Mg-Li alloy subjected to cryogenic and room temperature cold rolling, which induces large plastic deformation. Compared with room temperature rolling, cryogenic rolling significantly reduces surface cavity formation, thereby enhancing the alloy’s rolling surface quality. After cryogenic rolling by 80% and subsequent natural aging, the yield strength of artificially aged Al-Mg-Li alloy reaches 560 MPa, delivering a 60% increase compared to the traditional T6 state with a slight reduction in elongation from 6.5% to 4.6%. The specific strength achieves 2.23 × 105 N·m/kg, outperforming conventional Al-Cu-Li and 7xxx-series Al alloys. The depth of intergranular corrosion decreases from 100 µm to 10 µm, demonstrating excellent corrosion resistance enabled by the new method. Transmission electron microscopy reveals that finely distributed δ′ (Al3Li) is the primary strengthening phase, with high-density dislocations further enhancing strength. However, coarsening of δ′ (from ~2.9 nm to >6 nm) induced by ensuing artificial aging results in coplanar slip and reduced elongation. Lowering the post-aging temperature inhibits δ′ coarsening, thereby improving both strength and elongation. Our results provide valuable insights into optimizing the properties of Al-Mg-Li alloys for advanced lightweight applications. Full article
Show Figures

Figure 1

15 pages, 2902 KiB  
Article
Development of a Concept for Closing the Water Cycle in the Surface Treatment of Ferrous and Non-Ferrous Metals
by Jolanta Janiszewska and Paulina Rajewska
Sustainability 2025, 17(5), 2212; https://doi.org/10.3390/su17052212 - 4 Mar 2025
Viewed by 665
Abstract
This study examines the treatment of industrial wastewater generated during vibro-abrasive steel and Zn-Al alloy parts machining in a Polish metal-processing plant. The machining process uses grinding fluids, which are sent for disposal after becoming saturated with contaminants, incurring high costs. A two-stage [...] Read more.
This study examines the treatment of industrial wastewater generated during vibro-abrasive steel and Zn-Al alloy parts machining in a Polish metal-processing plant. The machining process uses grinding fluids, which are sent for disposal after becoming saturated with contaminants, incurring high costs. A two-stage filtration process was investigated: an initial bag filtration (pore size 5 µm) followed by a low-pressure (4 bar) ultrafiltration with polyacrylonitrile membranes (30 kDa cut-off). The studies were carried out on a laboratory scale in a cross-flow system using a batch configuration. The initial filtrate flux was 0.116 mL min−1 cm−2 and 0.050 mL min−1 cm−2 for Zn-Al alloy and the steel wastewater, respectively. Key physicochemical parameters, including turbidity, COD, and TOC, were analysed for raw wastewater, feed, retentate, and permeate. Significant reductions in contaminant concentrations were achieved, with comparable total efficiencies for both the wastewaters tested. The reductions in turbidity, COD, TOC, anionic surfactants, total phosphorus and non-ionic surfactants ranged from 80% to almost 100%. A complete removal of total suspended solids was achieved. The novelty of this research lies in applying polyacrylonitrile flat-sheet membranes to treat wastewater from vibratory machining of ferrous and non-ferrous materials and recycle reclaimed water, which has not been systematically explored in previous studies. The study demonstrates the potential of low-pressure membrane filtration for wastewater recycling, offering insights into environmentally friendly and energy-efficient management of industrial wastewater. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop