Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,799)

Search Parameters:
Keywords = Al stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8338 KB  
Article
Influence of Laser Power on Crack Evolution During Selective Laser Melting Manufacturing Process of Aluminum–Lithium Alloys
by Haibin Ji, Ke Lin, Yingjie Gao, Shuai Wei and Caiyun Shi
Coatings 2025, 15(10), 1212; https://doi.org/10.3390/coatings15101212 (registering DOI) - 14 Oct 2025
Abstract
Aluminum–lithium alloys, as promising next-generation aerospace materials, exhibit outstanding properties, such as high strength, low density, excellent cryogenic performance, and superior corrosion resistance. In this study, aluminum–lithium alloy powders were processed via selective laser melting to systematically investigate the effects of processing parameters [...] Read more.
Aluminum–lithium alloys, as promising next-generation aerospace materials, exhibit outstanding properties, such as high strength, low density, excellent cryogenic performance, and superior corrosion resistance. In this study, aluminum–lithium alloy powders were processed via selective laser melting to systematically investigate the effects of processing parameters on manufacturing quality, microstructure, microhardness, residual stress, and tensile properties, with a particular emphasis on crack initiation and evolution. The results demonstrate that increasing laser power significantly improves specimen densification and reduces surface roughness. Moreover, the number of cracks decreases while their average length increases with elevated laser power. The maximum microhardness of 106.8 HV was achieved at the highest laser power, which also corresponded to the optimal tensile performance. These findings provide valuable insights into the relationship between laser parameters, microstructural evolution, and mechanical behavior, offering practical guidance for optimizing process parameters in the SLM fabrication of Al-Li alloy components for aerospace applications. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

21 pages, 4398 KB  
Article
Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation
by Alexander Koshmin, Alexander Zinoviev, Anna Khakimova, Konstantin Lukashevich, Ruslan Barkov and Dmitriy Demin
J. Manuf. Mater. Process. 2025, 9(10), 336; https://doi.org/10.3390/jmmp9100336 - 14 Oct 2025
Abstract
This study investigates the double-sided hot cladding of an experimental Al–2%Cu–1.5%Mn–1%Zn–0.7%Mg–0.4%Fe–0.4%Si alloy with commercially pure aluminum A1050 under combined hot deformation. Finite element modeling was employed to analyze the evolution of shear strains, normal stresses, and flow stresses in the deformation zone during [...] Read more.
This study investigates the double-sided hot cladding of an experimental Al–2%Cu–1.5%Mn–1%Zn–0.7%Mg–0.4%Fe–0.4%Si alloy with commercially pure aluminum A1050 under combined hot deformation. Finite element modeling was employed to analyze the evolution of shear strains, normal stresses, and flow stresses in the deformation zone during cladding. The results indicate that increasing the degree of reduction significantly alters the distribution and direction of shear strains: at low reductions (20–30%), shear directions in the base and cladding layers coincide, while reductions above 40% induce opposing shear directions. Temperature was identified as the dominant factor affecting normal stress and flow stress differences between layers, whereas deformation magnitude primarily influenced peak stresses at the neutral section of the deformation zone. Experimental validation was conducted over a temperature range of 300–450 °C and relative reductions of 20–60%, demonstrating successful layer bonding in all cases except at low temperatures and reductions (300–375 °C, 20–30%). Based on combined modeling and experimental data, a predictive model for estimating peel strength during hot rolling cladding was developed, offering a robust tool for optimizing process parameters and ensuring reliable interlayer bonding in investigated aluminum alloys. Full article
Show Figures

Figure 1

13 pages, 5859 KB  
Article
Influences of SiO2 Additions on the Structures and Thermal Properties of AlTaO4 Ceramics as EBC Materials
by Bingyan Wu, Luyang Zhang, Lin Chen, Jiankun Wang, Zipeng Gao and Jing Feng
Coatings 2025, 15(10), 1204; https://doi.org/10.3390/coatings15101204 - 13 Oct 2025
Abstract
Ceramic matrix composites (CMCs) are extensively utilized in aero engines due to their high-temperature stability; however, they are prone to environmental corrosion at high temperatures, and environmental barrier coatings (EBCs) are necessary to resist oxidation and corrosion. Among various EBC materials, AlTaO4 [...] Read more.
Ceramic matrix composites (CMCs) are extensively utilized in aero engines due to their high-temperature stability; however, they are prone to environmental corrosion at high temperatures, and environmental barrier coatings (EBCs) are necessary to resist oxidation and corrosion. Among various EBC materials, AlTaO4 offers high cost-effectiveness and low thermal expansion coefficients (TECs), but its resistance to SiO2 erosion and high-temperature stability remain unclear. We investigated the influences of SiO2 additions on the structures and thermal properties of AlTaO4; and AlTaO4 mixtures containing 10 wt.% SiO2 were kept at 1400 °C for 30–120 h. AlTaO4 exhibited excellent high-temperature phase stability, and SiO2 dissolved into AlTaO4 to generate a solid solution. XRD Rietveld refinement was employed to confirm the position of Si in the lattices, while SEM and EDS characterizations demonstrated the homogeneous distribution of Si, Al, and Ta elements. At 1200 °C, the TECs of SiO2-AlTaO4 (4.65 × 10−6 K−1) were close to those of SiC (4.5–5.5 × 10−6 K−1). Additionally, the addition of SiO2 could reduce TECs of AlTaO4, a feature that helped alleviate the interface thermal stress between AlTaO4 and the Si bond coat in the EBC systems. At 900 °C, the thermal conductivity was reduced by 26.9% compared to that of AlTaO4, and the lowest value was 1.65 W·m−1·K−1. Accordingly, SiO2 will enter the lattices of AlTaO4 after heat treatments at 1400 °C, and SiO2 additions will reduce the thermal conductivity and TECs of AlTaO4, which is beneficial for its EBC applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

20 pages, 587 KB  
Article
Continuity and Quality in Pre-Service Teacher Preparation Across Modalities: Core Principles in a Crisis Leadership Framework
by Shlomit Hadad, Ina Blau, Orit Avidov-Ungar, Tamar Shamir-Inbal and Alisa Amir
Educ. Sci. 2025, 15(10), 1355; https://doi.org/10.3390/educsci15101355 - 12 Oct 2025
Abstract
Teacher preparation programmes must now ensure instructional continuity and quality across face-to-face, online, and hybrid modes, even amid health, climate, or security crises. This mixed-methods study examined which principles policymakers and teacher education directors deem essential for such resilience, and how those principles [...] Read more.
Teacher preparation programmes must now ensure instructional continuity and quality across face-to-face, online, and hybrid modes, even amid health, climate, or security crises. This mixed-methods study examined which principles policymakers and teacher education directors deem essential for such resilience, and how those principles align with prior research and leadership theory. Semi-structured elite interviews (N = 25) were analyzed inductively to surface field-driven themes and deductively through two models: the ten evidence-based training principles synthesized by Hadad et al. and the six capacities of Striepe and Cunningham’s Crises Leadership Framework (CLF). Results show strong consensus on theory–practice integration, university–school partnerships, and collaborative learning, mapping chiefly to the CLF capacities of adaptive roles and stakeholder collaboration. Directors added practice-oriented priorities—authentic field immersion, formative feedback, and inclusive pedagogy—extending the crisis care and contextual influence dimensions. By contrast, policymakers uniquely stressed policy–academic co-decision-making, reinforcing complex decision-making at the system level. Reflective thinking skills and digital pedagogy, though prominent in the literature, were under-represented, signalling implementation gaps. Overall, the integrated model offers a crisis-ready blueprint for curriculum design, partnership governance, and digital capacity-building that can sustain continuity and quality in pre-service teacher education. Full article
Show Figures

Figure 1

20 pages, 5763 KB  
Article
Layer Thickness Effects on Residual Stress, Microstructure, and Tensile Properties of Cu18150/Al1060/Cu18150 Multilayered Composites: An Integrated EBSD-KAM Approach
by Yuchao Zhao, Mahmoud Ebrahimi, Shokouh Attarilar, Qiang Lu, Haiyan Jiang and Qudong Wang
Materials 2025, 18(20), 4673; https://doi.org/10.3390/ma18204673 (registering DOI) - 11 Oct 2025
Viewed by 162
Abstract
This study examines the influence of layer thickness (0.9, 1.6, 2.4, and 4 mm) on the distribution of residual stress, microstructural evolution, and tensile properties of Cu18150/Al1060/Cu18150 multilayered composites fabricated via a combined cast-rolling and hot-rolling technique. The grain refinement, dislocation density, and [...] Read more.
This study examines the influence of layer thickness (0.9, 1.6, 2.4, and 4 mm) on the distribution of residual stress, microstructural evolution, and tensile properties of Cu18150/Al1060/Cu18150 multilayered composites fabricated via a combined cast-rolling and hot-rolling technique. The grain refinement, dislocation density, and residual stress gradients across the interfaces were characterized and analyzed using integrated electron backscatter diffraction and kernel average misorientation mapping. The results demonstrated that specimens with a lower layer thickness (0.9–1.6 mm) possess a significantly improved tensile strength of 351 MPa, which is mainly due to the significant grain refinement and the presence of compressive residual stresses at the region of the Al/Cu interfaces. However, tensile strength decreased to 261 MPa in specimens with thicker layers (4 mm), accompanied by improved ductility, e.g., elongation of 30%. This is associated with a reduction in the degrees of interfacial constraint and the formation of more homogeneous deformation structures that accommodate a larger strain. The intermediate layer thickness of 2.4 mm offers an optimal compromise, achieving a tensile strength of 317 MPa while maintaining balanced mechanical performance. These results emphasize the importance of layer thickness in controlling such stress profiles and optimizing the mechanical behavior of hybrid metal composites, providing useful guidance on the design and fabrication of superior structural-form materials. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Laminated Materials)
Show Figures

Figure 1

25 pages, 1540 KB  
Review
Beyond Antioxidants: The Emerging Role of Nrf2 Activation in Amyotrophic Lateral Sclerosis (ALS)
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Gioacchino Tedeschi, Alessandro Tessitore, Paolo Bergamo and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(20), 9872; https://doi.org/10.3390/ijms26209872 - 10 Oct 2025
Viewed by 174
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need for multi-target disease-modifying strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), classically regarded as a master regulator of redox homeostasis, has recently emerged as a central integrator of cellular stress responses relevant to ALS. Beyond its canonical antioxidant function, Nrf2 regulates critical pathways involved in mitochondrial quality control, proteostasis, nucleocytoplasmic transport, RNA surveillance, and glial reactivity. Experimental models demonstrate that astrocyte-specific Nrf2 activation enhances glutathione metabolism, suppresses neuroinflammation, promotes stress granule disassembly, and reduces RBP aggregation. In C9orf72-linked ALS, Nrf2 activation mitigates dipeptide repeat protein toxicity and restores RNA processing fidelity via modulation of nonsense-mediated decay and R-loop resolution. Recent advances in Nrf2-targeted interventions including Keap1–Nrf2 protein–protein interaction inhibitors, dual Nrf2/HSF1 activators, and cell-type-selective Adeno-associated virus 9 (AAV9) vectors show promise in preclinical ALS models. These multimodal approaches highlight Nrf2’s therapeutic versatility and potential to address the upstream convergence points of ALS pathogenesis. Taken together, positioning Nrf2 as a systems-level regulator offers a novel framework for developing precision-based therapies in ALS. Integrating Nrf2 activation with RNA- and glia-directed strategies may enable comprehensive modulation of disease progression at its molecular roots. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

31 pages, 5243 KB  
Article
Conserved Blood Transcriptome Patterns Highlight microRNA and Hub Gene Drivers of Neurodegeneration
by Jhyme Lou O. De La Cerna, Nicholas Dale D. Talubo, Brian Harvey Avanceña Villanueva, Po-Wei Tsai and Lemmuel L. Tayo
Genes 2025, 16(10), 1178; https://doi.org/10.3390/genes16101178 - 10 Oct 2025
Viewed by 351
Abstract
Background/Objectives: Neurodegenerative diseases (NDs) such as Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD), and Amyotrophic Lateral Sclerosis (ALS) are clinically distinct but share overlapping molecular mechanisms. Methods: To identify conserved systemic signatures, we analyzed blood RNA-Seq datasets using Weighted Gene Co-Expression Network Analysis [...] Read more.
Background/Objectives: Neurodegenerative diseases (NDs) such as Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD), and Amyotrophic Lateral Sclerosis (ALS) are clinically distinct but share overlapping molecular mechanisms. Methods: To identify conserved systemic signatures, we analyzed blood RNA-Seq datasets using Weighted Gene Co-Expression Network Analysis (WGCNA), differential expression, pathway enrichment, and miRNA–mRNA network mapping. Results: Two modules, the red and turquoise, showed strong preservation across diseases. The red module was enriched for cytoskeletal and metabolic regulation, while the turquoise module involved immune, stress-response, and proteostatic pathways. Discussion: Key hub genes, such as HMGCR, ACTR2, MYD88, PTEN, EP300, and regulatory miRNAs like miR-29, miR-132, and miR-146a, formed interconnected networks reflecting shared molecular vulnerabilities. The absence of classical heat shock proteins in preserved blood modules highlights tissue-specific expression differences between blood and neural systems. Several hub genes overlap with known pharmacological targets, suggesting potential in translational relevance. Conclusions: Together, these findings reveal conserved blood-based transcriptional modules that suggest parallel central neurodegenerative processes and may support future biomarker development and possible therapeutic exploration. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

12 pages, 1430 KB  
Article
Influence of LPCVD-Si3N4 Thickness on Polarization Coulomb Field Scattering in AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors
by Guangyuan Jiang, Weikang Li, Xin Luo, Yang Liu, Chen Fu, Qingying Zhang, Guangyuan Zhang, Zhaojun Lin and Peng Cui
Micromachines 2025, 16(10), 1147; https://doi.org/10.3390/mi16101147 - 10 Oct 2025
Viewed by 171
Abstract
The thickness of the LPCVD-Si3N4 gate dielectric layer significantly influences the electron transport properties of AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs), but the mechanism by which it affects polarization Coulomb field (PCF) scattering remains largely unexplored. In this study, AlGaN/GaN MIS-HEMTs [...] Read more.
The thickness of the LPCVD-Si3N4 gate dielectric layer significantly influences the electron transport properties of AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs), but the mechanism by which it affects polarization Coulomb field (PCF) scattering remains largely unexplored. In this study, AlGaN/GaN MIS-HEMTs with LPCVD-Si3N4 gate dielectric thicknesses of 0 nm, 5 nm, and 20 nm were fabricated, and the influence of LPCVD-Si3N4 thickness on PCF scattering was systematically investigated. Through electrical measurements and theoretical calculations, the relationship between LPCVD-Si3N4 gate dielectric layer thickness, additional polarization charge (∆ρ), two-dimensional electron gas (2DEG) density, and 2DEG mobility was analyzed. The results show that increasing the LPCVD-Si3N4 thickness reduces the vertical electric field in the AlGaN barrier, weakening the inverse piezoelectric effect (IPE) and reducing ∆ρ. Further analysis reveals that the ∆ρ exhibits a non-monotonic dependence on negative gate voltage, initially increasing and subsequently decreasing, due to the competition between strain accumulation and stress relaxation. Meanwhile, the 2DEG mobility limited by PCF (μPCF) decreases monotonically with increasing negative gate voltage, mainly due to the progressive weakening of the 2DEG screening effect. The research results reveal the physical mechanism by which LPCVD-Si3N4 thickness regulates PCF scattering, providing theoretical guidance for optimizing gate dielectric parameters and enhancing the performance of AlGaN/GaN MIS-HEMTs. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

17 pages, 3914 KB  
Article
Genomic and Functional Characterization of Acetolactate Synthase (ALS) Genes in Stress Adaptation of the Noxious Weed Amaranthus palmeri
by Jiao Ren, Mengyuan Song, Daniel Bimpong, Fulian Wang, Wang Chen, Dongfang Ma and Linfeng Du
Plants 2025, 14(19), 3088; https://doi.org/10.3390/plants14193088 - 7 Oct 2025
Viewed by 325
Abstract
Acetolactate synthase (ALS) is an important enzyme in plant branched-chain amino acid biosynthesis and the target of several major herbicide classes. Despite its agronomic importance, the role of ALS genes in stress adaptation in the invasive weed Amaranthus palmeri remains unstudied. In this [...] Read more.
Acetolactate synthase (ALS) is an important enzyme in plant branched-chain amino acid biosynthesis and the target of several major herbicide classes. Despite its agronomic importance, the role of ALS genes in stress adaptation in the invasive weed Amaranthus palmeri remains unstudied. In this study, four ApALS genes with high motif conservation were identified and analyzed in A. palmeri. Phylogenetic analysis classified ApALS and other plant ALS proteins into two distinct clades, and the ApALS proteins were predicted to localize to the chloroplast. Gene expression analysis demonstrated that ApALS genes are responsive to multiple stresses, including salt, heat, osmotic stress, glufosinate ammonium, and the ALS-inhibiting herbicide imazethapyr, suggesting roles in both early and late stress responses. Herbicide response analysis using an Arabidopsis thaliana ALS mutant (AT3G48560) revealed enhanced imazethapyr resistance, associated with higher chlorophyll retention. Furthermore, high sequence homology between AT3G48560 and ApALS1 suggests a conserved role in protecting photosynthetic function during herbicide stress. This study provides the first comprehensive analysis of the ALS gene family in A. palmeri and offers important insights into its contribution to stress resilience. These findings establish a vital foundation for developing novel strategies to control this pervasive agricultural weed and present potential genetic targets for engineering herbicide tolerance in crops. Full article
Show Figures

Figure 1

13 pages, 3860 KB  
Article
Mechanical Performance and Energy Absorption of Ti6Al4V I-WP Lattice Metamaterials Manufactured via Selective Laser Melting
by Le Yu, Xiong Xiao, Xianyong Zhu, Jiaan Liu, Guangzhi Sun, Yanheng Xu, Song Yang, Cheng Jiang and Dongni Geng
Materials 2025, 18(19), 4626; https://doi.org/10.3390/ma18194626 - 7 Oct 2025
Viewed by 363
Abstract
Metamaterial lattice structures based on a Triply Periodic Minimal Surface (TPMS) structure have attracted much attention due to their excellent mechanical properties and energy absorption capabilities. In this study, a novel TPMS lattice metamaterial structure (IWP-X) is designed to enhance the axial mechanical [...] Read more.
Metamaterial lattice structures based on a Triply Periodic Minimal Surface (TPMS) structure have attracted much attention due to their excellent mechanical properties and energy absorption capabilities. In this study, a novel TPMS lattice metamaterial structure (IWP-X) is designed to enhance the axial mechanical properties by fusing an X-shaped plate with an IWP surface structure. A selective laser melting (SLM) machine was utilized to print the designed lattice structures with Ti6Al4V powder. The thickness of the plate and the density of the IWP are varied to explore the responsivity of the mechanical and energy absorption properties with the volume ratio of IWP-X. The finite element simulation analysis is used to effectively predict the stress distribution and fracture site of each structure in the compression test. The results show that the IWP-X structure obtains the ultimate compressive strength of 122.06% improvement, and the energy absorption of 282.03% improvement. The specific energy absorption (SEA) reaches its maximum value in the plate-to-IWP volume ratio of 0.7 to 0.8. Full article
(This article belongs to the Special Issue Multiscale Mechanical Behaviors of Advanced Materials and Structures)
Show Figures

Figure 1

15 pages, 3325 KB  
Article
Impact of SiN Passivation on Dynamic-RON Degradation of 100 V p-GaN Gate AlGaN/GaN HEMTs
by Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Alessandro Chini, Antonino Parisi, Cristina Miccoli, Maria Eloisa Castagna, Aurore Constant and Ferdinando Iucolano
Electron. Mater. 2025, 6(4), 14; https://doi.org/10.3390/electronicmat6040014 - 7 Oct 2025
Viewed by 239
Abstract
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two [...] Read more.
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two different experimental setups are employed to investigate the RON-drift showing up during conventional switch mode operation by driving the DUTs under both (i) resistive load and (ii) soft-switching trajectory. This allows to discern the impact of hot carriers and off-state drain voltage stress on the RON parameter drift. Measurements performed with both switching loci shows similar dynamic-RON response, indicating that hot carriers are not involved in the degradation of tested devices. Nevertheless, a significant difference was observed between Sample A and Sample B, with the former showing an additional RON-degradation mechanism, not present on the latter. This additional drift is totally ascribed to the SiN passivation layer and is confirmed by the different leakage current measured across the two SiN types. The mechanism is explained by the injection of negative charges from the Source Field-Plate towards the AlGaN surface that are captured by surface/dielectric states and partially depletes the 2DEG underneath. Full article
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Design of Residual Stress-Balanced Transferable Encapsulation Platform Using Urethane-Based Polymer Superstrate for Reliable Wearable Electronics
by Sung-Hun Jo, Donghwan Kim, Chaewon Park and Eun Gyo Jeong
Polymers 2025, 17(19), 2688; https://doi.org/10.3390/polym17192688 - 4 Oct 2025
Viewed by 352
Abstract
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The [...] Read more.
Wearable and skin-mounted electronics demand encapsulation designs that simultaneously provide strong barrier performance, mechanical reliability, and transferability under ultrathin conditions. In this study, a residual stress-balanced transferable encapsulation platform was developed by integrating a urethane-based copolymer superstrate [p(IEM-co-HEMA)] with inorganic thin films. The polymer, deposited via initiated chemical vapor deposition (iCVD), offered over 90% optical transmittance, low RMS roughness (1–3 nm), and excellent solvent resistance, providing a stable base for inorganic barrier integration. An ALD Al2O3/ZnO nano-stratified barrier initially delivered effective moisture blocking, but tensile stress accumulation imposed a critical thickness of 30 nm, where the WVTR plateaued at ~2.5 × 10−4 g/m2/day. To overcome this limitation, a 40 nm e-beam SiO2 capping layer was added, introducing compressive stress via atomic peening and stabilizing Al2O3 interfaces through Si–O–Al bonding. This stress-balanced design doubled the critical thickness to 60 nm and reduced the WVTR to 3.75 × 10−5 g/m2/day, representing an order-of-magnitude improvement. OLEDs fabricated on this ultrathin platform preserved J–V–L characteristics and efficiency (~4.5–5.0 cd/A) after water-assisted transfer and on-skin deformation, while maintaining LT80 lifetimes of 140–190 h at 400 cd/m2 and stable emission for over 20 days in ambient storage. These results demonstrate that the stress-balanced encapsulation platform provides a practical route to meet the durability and reliability requirements of next-generation wearable optoelectronic devices. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Viewed by 259
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

13 pages, 3829 KB  
Article
Physiological Mechanisms of Drought-Induced Creasing in Citrus unshiu Marc: Roles of Antioxidant Dysregulation, Hormonal Imbalance, Cell Wall Degradation, and Mineral Redistribution
by Wei Hu, Woxing Fu, Dechun Liu, Zhonghua Xiong, Li Yang, Liuqing Kuang, Jie Song, Jingheng Xie and Yong Liu
Horticulturae 2025, 11(10), 1197; https://doi.org/10.3390/horticulturae11101197 - 3 Oct 2025
Viewed by 342
Abstract
Citrus creasing is a physiological rind disorder. Satsuma mandarin (Citrus unshiu Marc.) is the most widely cultivated mandarin variety worldwide and exhibits a high susceptibility to creasing. To investigate the physiological mechanisms underlying creasing, satsuma mandarin trees were treated with different drought [...] Read more.
Citrus creasing is a physiological rind disorder. Satsuma mandarin (Citrus unshiu Marc.) is the most widely cultivated mandarin variety worldwide and exhibits a high susceptibility to creasing. To investigate the physiological mechanisms underlying creasing, satsuma mandarin trees were treated with different drought stress during fruit expansion, then the relationship between the soil water content and creasing incidence was analyzed, while also examining the rind morphology, oil gland distribution in the flavedo, antioxidant enzyme activities, hormone concentrations, cell wall components, mineral content of creasing fruit, and the impact of creasing on fruit quality. Results showed that severe water stress (35% SRWC) increased the creasing incidence rate by 28% compared to well-irrigated treatments (80% SRWC). The creasing fruit oil gland diameter reduced by 35.7% and the density increased by 149.7% compared to healthy fruits. Simultaneously, the content of H2O2 and proline elevated by 47.1% and 8.3% respectively, and the activities of SOD, POD, and CAT of the creasing rind were enhanced significantly. Additionally, the content of IAA, ZR, and MeJA decreased by 17.2%, 7.8%, and 50.2%, respectively. Cell wall components such as cellulose, hemicellulose, and protopectin content reduced by 44.6%, 31.7%, and 33.1%, while soluble pectin increased by 36.3%. Significant alterations were observed in several minerals (Al, Fe, Na, Ni, V, Ga, Zn, Ba, Sn, Hg, Sc, Y, and La). However, fruit quality remained unaffected by creasing. These results demonstrate that drought is a key factor inducing creasing. Increased oil gland density, the degradation of cell wall components, elevated oxidative stress, reductions in phytohormones, and altered mineral element content work together to contribute to rind cells’ structural instability and lead to creasing in the satsuma mandarin. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

22 pages, 8922 KB  
Article
Stress Assessment of Abutment-Free and Three Implant–Abutment Connections Utilizing Various Abutment Materials: A 3D Finite Element Study of Static and Cyclic Static Loading Conditions
by Maryam H. Mugri, Nandalur Kulashekar Reddy, Mohammed E. Sayed, Khurshid Mattoo, Osama Mohammed Qomari, Mousa Mahmoud Alnaji, Waleed Abdu Mshari, Firas K. Alqarawi, Saad Saleh AlResayes and Raghdah M. Alshaibani
J. Funct. Biomater. 2025, 16(10), 372; https://doi.org/10.3390/jfb16100372 - 2 Oct 2025
Viewed by 682
Abstract
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical [...] Read more.
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical (FEA) study aims to evaluate the distribution of von Mises stress (VMS) in abutment-free and three additional implant abutment connections composed of various titanium alloys. Materials and methods: A three-dimensional implant-supported single-crown prosthesis model was digitally generated on the mandibular section using a combination of microcomputed tomography imaging (microCT), a computer-assisted designing (CAD) program (SolidWorks), Analysis of Systems (ANSYS), and a 3D digital scan (Visual Computing Lab). Four digital models [A (BioHorizons), B (Straumann AG), C abutment-free (Matrix), and D (TRI)] representing three different functional biomaterials [wrought Ti-6Al-4Va ELI, Roxolid (85% Ti, 15% Zr), and Ti-6Al-4V ELI] were subjected to simulated static/cyclic static loading in axial/oblique directions after being restored with highly translucent monolithic zirconia restoration. The stresses generated on the implant fixture, abutment, crown, screw, cortical, and cancellous bones were measured. Results: The highest VMSs were generated by the abutment-free (Model C, Matrix) implant system on the implant fixture [static (32.36 Mpa), cyclic static (83.34 Mpa)], screw [static (16.85 Mpa), cyclic static (30.33 Mpa), oblique (57.46 Mpa)], and cortical bone [static (26.55), cyclic static (108.99 Mpa), oblique (47.8 Mpa)]. The lowest VMSs in the implant fixture, abutment, screw, and crown were associated with the binary alloy Roxolid [83–87% Ti and 13–17% Zr]. Conclusions: Abutment-free implant systems generate twice the stress on cortical bone than other abutment implant systems while producing the highest stresses on the fixture and screw, therefore demanding further clinical investigations. Roxolid, a binary alloy of titanium and zirconia, showed the least overall stresses in different loadings and directions. Full article
(This article belongs to the Special Issue Biomaterials and Biomechanics Modelling in Dental Implantology)
Show Figures

Figure 1

Back to TopTop