Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation
Abstract
1. Introduction
2. Methods and Materials
2.1. Material Characterization
2.2. Simulation Procedure
2.3. Experimental Procedure
3. Results
3.1. Simulation Results
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kammer, C. Aluminum and Aluminum Alloys. In Springer Handbook of Materials Data; Springer: Cham, Switzerland, 2018; pp. 161–197. [Google Scholar] [CrossRef]
- Sanders, R.; Staley, J.T. History of Wrought Aluminum Alloys and Applications. In Properties and Selection of Aluminum Alloys; Anderson, K., Weritz, J., Kaufman, J.G., Eds.; ASM International: Novelty, OH, USA, 2019. [Google Scholar] [CrossRef]
- Kermanidis, A.T. Aircraft Aluminum Alloys: Applications and Future Trends. In Revolutionizing Aircraft Materials and Processes; Pantelakis, S., Tserpes, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 21–55. [Google Scholar] [CrossRef]
- Khangholi, S.N.; Javidani, M.; Maltais, A.; Chen, X.G. Review on recent progress in Al–Mg–Si 6xxx conductor alloys. J. Mater. Res. 2022, 37, 670–691. [Google Scholar] [CrossRef]
- Kumar, N.S.; Pramod, G.; Samrat, P.; Sadashiva, M. A Critical Review on Heat Treatment of Aluminium Alloys. Mater. Today Proc. 2022, 58, 71–79. [Google Scholar] [CrossRef]
- Zhu, H.; Li, J. Advancements in Corrosion Protection for Aerospace Aluminum Alloys through Surface Treatment. Int. J. Electrochem. Sci. 2024, 19, 100487. [Google Scholar] [CrossRef]
- Bhat, K.U.; Panemangalore, D.B.; Kuruveri, S.B.; John, M.; Menezes, P.L. Surface Modification of 6xxx Series Aluminum Alloys. Coatings 2022, 12, 180. [Google Scholar] [CrossRef]
- Bolton, W.; Higgins, R.A. Materials for Engineers and Technicians, 5th ed.; Elsevier: Oxford, UK, 2010; ISBN 978-1856177696. [Google Scholar] [CrossRef]
- Ragazin, A.A.; Yashin, V.V.; Latushkin, I.A.; Aryshesnkii, E.V.; Grechnikov, F.V. Homogenization Modes Effect on Mechanical Properties and Corrosive Characteristics of the Rolled Products from Al-Mg (1570) Aluminum Alloy with Addition of Scandium and Zirconium. Mater. Sci. Forum 2022, 1049, 102–107. [Google Scholar] [CrossRef]
- Szabó, G.; Mertinger, V.; Zupkó, I.; Mikó, T. Technological Investigation of Clad Sheet Bonding by Hot Rolling. Key Eng. Mater. 2015, 651, 243–247. [Google Scholar] [CrossRef]
- Zinong, T.; Bing, Z.; Jun, J.; Zhiqiang, L.; Jianguo, L. A Study on the Hot Roll Bonding of Aluminum Alloys. Procedia Manuf. 2020, 50, 56–62. [Google Scholar] [CrossRef]
- Xu, W.; Xia, C.; Ni, C. Numerical Simulation and Experimental Verification of Hot Roll Bonding of 7000 Series Aluminum Alloy Laminated Materials. Metals 2024, 14, 551. [Google Scholar] [CrossRef]
- Carta, M.; Buonadonna, P.; Reggiani, B.; Donati, L.; Aymerich, F.; EIMehtedi, M. Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. Metals 2024, 14, 920. [Google Scholar] [CrossRef]
- Khan, H.A.; Asim, K.; Akram, F.; Hameed, A.; Khan, A.; Mansoor, B. Roll Bonding Processes: State-of-the-Art and Future Perspectives. Metals 2021, 11, 1344. [Google Scholar] [CrossRef]
- Li, Z.; Rezaei, S.; Wang, T.; Han, J.; Shu, X.; Pater, Z.; Huang, Q. Recent advances and trends in roll bonding process and bonding model: A review. Chin. J. Aeronaut. 2023, 36, 36–37. [Google Scholar] [CrossRef]
- Liu, Z.; Krämer, A.; Lohmar, J.; Aretz, H.; Karhausen, K.; Bailly, D.; Hirt, G.; Teller, M. The adaption, evaluation and application of a semi-empirical bond strength model for the simulations of multi-pass hot roll bonding of aluminium alloys. Int. J. Mater. Form. 2023, 16, 71. [Google Scholar] [CrossRef]
- Kovalev, S.I.; Koryagin, N.I.; Shirkov, I.V. Stresses and Strains in Flat Rolling; Metallurgiya: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Kobelev, A.G.; Lysak, V.I.; Chernyshev, V.N.; Kuznetsov, E.V. Materials Science and Technology of Composite Materials; Intermet Engineering: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Kolpashnikov, A.I. Rolling of Light Alloy Sheets; Metallurgiya: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Zinoviev, A.V.; Kolpashnikov, A.I.; Polukhin, P.I. Technology of Forming of Non-Ferrous Metals and Alloys: Textbook for Universities; Metallurgiya: Moscow, Russia, 1992. (In Russian) [Google Scholar]
- Shatalov, R.L.; Kulikov, M.A. Influence of outer parts of a strip on the deformation and force parameters of thin-sheet rolling. Metallurgist 2020, 64, 687–698. [Google Scholar] [CrossRef]
- Shatalov, R.L.; Maksimov, E.A. Development and Application of the Theory of Rigid Ends in Thin-Sheet Rolling. Metallurgist 2021, 64, 1035–1042. [Google Scholar] [CrossRef]
- Saevarsdottir, G.; Magnusson, T.; Kvande, H. Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems. J. Sustain. Metall. 2021, 7, 848–857. [Google Scholar] [CrossRef]
- Shen, A.; Zhang, J. Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review. Renew. Sustain. Energy Rev. 2024, 189, 113965. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, W.W.; Yang, C.; Zhang, D.T.; Wang, Z. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al-Cu-Mn-Fe alloys. J. Mater. Res. 2018, 33, 898–911. [Google Scholar] [CrossRef]
- Belov, N.A.; Akopyan, T.K.; Korotkova, N.O.; Cherkasov, S.O.; Yakovleva, A.O. Effect of Fe and Si on the Phase Composition and Microstructure Evolution in Al-2 wt.% Cu-2 wt.% Mn Alloy During Solidification, Cold Rolling and Annealing. JOM 2021, 73, 3827–3837. [Google Scholar] [CrossRef]
- Belov, N.A.; Alabin, A.N.; Matveeva, I.A. Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching. J. Alloys Compd. 2014, 583, 206–213. [Google Scholar] [CrossRef]
- Belov, N.A.; Cherkasov, S.O.; Korotkova, N.O.; Yakovleva, A.O.; Tsydenov, K.A. Effect of Iron and Silicon on the Phase Composition and Microstructure of the Al–2% Cu–2% Mn (wt%) Cold Rolled Alloy. Phys. Met. Metallogr. 2021, 122, 1095–1102. [Google Scholar] [CrossRef]
- Akopyan, T.K.; Letyagin, N.V.; Belov, N.A.; Fortuna, A.S.; Nguen, X.D. The role of Sn trace addition in the precipitation behavior and strengthening of the wrought Al–Cu–Mn-based alloy. J. Mater. Sci. 2023, 58, 8210–8229. [Google Scholar] [CrossRef]
- Belov, N.A.; Shurkin, P.K.; Korotkova, N.O.; Cherkasov, S.O. The effect of heat treatment on the structure and mechanical properties of cold-rolled sheets made of Al-Cu-Mn alloys with varying copper to manganese ratios. Tsetnye Met. 2021, 9, 80–86. [Google Scholar] [CrossRef]
- Belov, N.; Akopyan, T.; Tsydenov, K.; Cherkasov, S.; Avxentieva, N. Effect of Fe-Bearing Phases on the Mechanical Properties and Fracture Mechanism of Al–2wt.%Cu–1.5wt.%Mn (Mg,Zn) Non-Heat Treatable Sheet Alloy. Metals 2023, 13, 1911. [Google Scholar] [CrossRef]
- Belov, N.A.; Akopyan, T.K.; Tsydenov, K.A.; Letyagin, N.V.; Fortuna, A.S. Structure evolution and mechanical properties of sheet alloy Al–2Cu–1.5Mn–1Mg–1Zn (wt.%) designed for Al20Cu2Mn3 dispersoids. Metals 2023, 13, 1442. [Google Scholar] [CrossRef]
- Tsydenov, K.A.; Belov, N.A. Phase Composition and Structure of Al–Cu–Mn–Mg–Zn–Fe–Si Alloys Containing 2% Cu and 1.5% Mn. Phys. Met. Metallogr. 2024, 125, 709–720. [Google Scholar] [CrossRef]
- Belov, N.A.; Tsydenov, K.A.; Drits, A.M. Method of Producing Cold-Rolled Sheets from Secondary Aluminium Alloy. RU Patent 2 826 055 C1, 3 September 2024. [Google Scholar]
- Danilin, V.N.; Aleshchenko, A.S.; Danilin, A.V.; Koshmin, A.N. Simulation of taper heating and variable pressing rate to improve extrusion performance for high-strength aluminum alloys. Model. Simul. Mater. Sci. Eng. 2024, 32, 065006. [Google Scholar] [CrossRef]
- Polukhin, P.I.; Gun, G.Y.; Galkin, A.M. Soprotivlenie Plasticheskoi Deformatsii Metallov i Splavov (Plastic Strain Resistance of Metals and Alloys); Metallurgiya: Moscow, Russia, 1983; p. 352. (In Russian) [Google Scholar]
- QForm. Available online: https://qform3d.com/ (accessed on 12 August 2025).
- Klepov, D.N.; Yashin, V.V.; Latushkin, I.A.; Aryshenskii, E.V.; Erisov, Y.A. Determination of Conditions for the Occurrence of Delamination, a Surface Defect Occurring during Hot Rolling of Aluminum Alloy Strips. Russ. Metall. 2024, 2024, 1694–1699. [Google Scholar] [CrossRef]
- ASTM D1876-08(2015)e1; Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Arkulis, G.E. Joint Plastic Deformation of Dissimilar Metals; Metallurgiya: Moscow, Russia, 1964. (In Russian) [Google Scholar]
- Koshmin, A.; Zinoviev, A.; Cherkasov, S.; Mahmoud Alhaj Ali, A.; Tsydenov, K.; Churyumov, A. Finite Element Modeling and Experimental Verification of a New Aluminum Al-2%Cu-2%Mn Alloy Hot Cladding by Flat Rolling. Metals 2024, 14, 852. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, D.-T.; Zang, Y.; Guan, B. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate. Adv. Mech. Eng. 2015, 7, 1–13. [Google Scholar] [CrossRef]
- He, Z.; Chu, Z.; Shuang, Y.; Gou, Y. The bonding mechanism and experimental verification of pilger hot rolling clad tube. Adv. Mater. Sci. Eng. 2020, 2020, 2689370. [Google Scholar] [CrossRef]
- Yong, J.; Dashu, P.; Dong, L.; Luoxing, L. Analysis of Clad Sheet Bonding by Cold Rolling. J. Mater. Process. Technol. 2000, 105, 32–37. [Google Scholar] [CrossRef]
- Pan, S.C.; Huang, M.N.; Tzou, G.Y.; Syu, S.W. Analysis of Asymmetrical Cold and Hot Bond Rolling of Unbounded Clad Sheet under Constant Shear Friction. J. Mater. Process. Technol. 2006, 177, 114–120. [Google Scholar] [CrossRef]
- Zhang, X.P.; Yang, T.H.; Castagne, S.; Gu, C.F.; Wang, J.T. Proposal of bond criterion for hot roll bonding and its application. Mater. Des. 2011, 32, 2239–2245. [Google Scholar] [CrossRef]
- Salikhyanov, D.R. Investigation of the stress-strain state at the boundary between materials during rolling of a layered composite. Chernye Met. 2023, 9, 34–39. [Google Scholar] [CrossRef]
Alloy | Cu | Mn | Zn | Mg | Fe | Si | Al |
---|---|---|---|---|---|---|---|
1050A | — | — | — | — | 0.40 ± 0.01 | 0.20 ± 0.01 | Rest |
CMZM-FS | 2.14 ± 0.02 | 1.45 ± 0.02 | 1.14 ± 0.03 | 0.72 ± 0.01 | 0.47 ± 0.01 | 0.33 ± 0.01 | Rest |
Alloy | A | m | n1 | n2 | l |
---|---|---|---|---|---|
CMZM-FS | 6.9673 | 0.1105 | 0.0044 | −0.0058 | −0.1739 |
1050A | 4.9577 | 0.1475 | 0.1607 | −0.0035 | −0.0174 |
№ | Thickness, mm | ε, % | εt | |||||
---|---|---|---|---|---|---|---|---|
1 | 3.75 | 0.63 | 5.00 | 3.00 | 0.50 | 4.00 | 20 | 0.22 |
2 | 4.28 | 0.71 | 5.70 | 30 | 0.35 | |||
3 | 5.03 | 0.84 | 6.70 | 40 | 0.52 | |||
4 | 6.00 | 1.00 | 8.00 | 50 | 0.69 | |||
5 | 7.50 | 1.25 | 10.00 | 60 | 0.92 |
Parameters | Tools | Workpieces |
---|---|---|
Material | 41Cr4 | 1050A/CMZM-FS/1050A |
Temperature, °C | 25 | 300-375-450 |
Environment | Air, 20 °C | |
Heat capacity, J/(kg·K) | 615 | 930/838/930 |
Thermal conductivity, W/(m·K) | 37.5 | 226/192-208-223/226 |
Heat transfer coefficient, W/(m2·K) | 50,000 | |
Density, kg/m3 | 7850 | 2640/2770/2640 |
Number of mesh elements at the start of simulation, thousands | 99.6 | 13.4/39.1/13.4 |
Number of mesh elements at the end of simulation, thousands | 99.6 | 450/460/450 |
Mesh adaptation factor | 2.5 | 2.5–3.5 |
Average mesh element size, mm3 | 10.1 | 0.005/0.032/0.005 |
Average calculation time step, ms | 0.35 | |
Average number of iterations per step, pcs. | 15 | |
Friction factor | 0.60 | 0.99 |
Solution algorithm | Explicit | |
Velocity/Stress norm | 0.03/0.3 |
Reduction, % | ||||||
---|---|---|---|---|---|---|
20 | 30 | 40 | 50 | 60 | ||
Temperature | 300 °C | — | — | ✓ | ✓ | ✓ |
375 °C | — | ✓/— | ✓ | ✓ | ✓ | |
450 °C | ✓ | ✓ | ✓ | ✓ | ✓ |
Variable Names | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Temperature | 1 | 0.041585 | 0.041585 | 1.59711 | 0.26203 |
Ratio of normal pressure to the difference in flow stresses of the layers in the DC | 1 | 0.624997 | 0.624997 | 24.00345 | 0.00448 |
Reduction | 1 | 0.220179 | 0.220179 | 8.456131 | 0.03348 |
Strain rate at the neutral section of the DC | 1 | 0.030668 | 0.030668 | 1.177842 | 0.32733 |
Product of temperature and the ratio of normal pressure to the difference in flow stresses of the layers in the DC | 1 | 0.565928 | 0.565928 | 21.734882 | 0.00552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshmin, A.; Zinoviev, A.; Khakimova, A.; Lukashevich, K.; Barkov, R.; Demin, D. Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation. J. Manuf. Mater. Process. 2025, 9, 336. https://doi.org/10.3390/jmmp9100336
Koshmin A, Zinoviev A, Khakimova A, Lukashevich K, Barkov R, Demin D. Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation. Journal of Manufacturing and Materials Processing. 2025; 9(10):336. https://doi.org/10.3390/jmmp9100336
Chicago/Turabian StyleKoshmin, Alexander, Alexander Zinoviev, Anna Khakimova, Konstantin Lukashevich, Ruslan Barkov, and Dmitriy Demin. 2025. "Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation" Journal of Manufacturing and Materials Processing 9, no. 10: 336. https://doi.org/10.3390/jmmp9100336
APA StyleKoshmin, A., Zinoviev, A., Khakimova, A., Lukashevich, K., Barkov, R., & Demin, D. (2025). Hot Cladding of Al–Cu–Mn-Based Secondary Alloy Sheets: A Computational–Experimental Investigation. Journal of Manufacturing and Materials Processing, 9(10), 336. https://doi.org/10.3390/jmmp9100336