Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,809)

Search Parameters:
Keywords = Al Alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12498 KB  
Article
Study on Surface Properties and Microstructural Evolution of LA103Z Mg-Li Alloy by Friction Stir Processing
by Jiqiang Zhai, Kai Hu, Zihan Kong and Xinzhen Fang
Metals 2026, 16(1), 108; https://doi.org/10.3390/met16010108 (registering DOI) - 18 Jan 2026
Abstract
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify [...] Read more.
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify its surface microstructure and mechanical properties. The effects of tool rotational speed and travelling speed on dynamic recrystallization behavior, grain refinement, and phase evolution in the stirred zone (SZ) and thermomechanically affected zone (TMAZ) were systematically investigated. FSP induced significant grain refinement accompanied by the precipitation of a reticular α-Mg phase along β-Li grain boundaries, as well as Li3Mg7 and Li2MgAl phases within the stirred zone, leading to pronounced strengthening. Under optimized processing conditions, substantial improvements in hardness and tensile properties were achieved compared with the base material. The optimal condition was obtained at 600 rpm and 100 mm/min, yielding an average hardness of 79.17 HV0.2, a tensile strength of 243.6 MPa, and an elongation of 17.9%, corresponding to increases of 47.5% in hardness and 53.3% in tensile strength. Quantitative relationships between heat input, grain size, and mechanical properties further demonstrate that heat input governs microstructural evolution and strengthening behavior during FSP of LA103Z alloy. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

17 pages, 3465 KB  
Article
Designing TiZrNbTa-Al Medium-Entropy Alloy for Next-Generation Hydrogen Storage
by Jakub Kubaško, Miloš Matvija, Katarína Nigutová, Lenka Oroszová, Zuzana Molčanová, Beáta Ballóková, Róbert Džunda, Gabriel Sučik, Ľuboš Popovič, Róbert Kočiško, Jens Möllmer, Marcus Lange and Karel Saksl
Materials 2026, 19(2), 379; https://doi.org/10.3390/ma19020379 (registering DOI) - 17 Jan 2026
Abstract
Medium-entropy alloys (MEAs) represent a promising class of materials for solid-state hydrogen storage due to their high hydrogen affinity, structural stability, and tunable properties. In this work, a compositional series of (TiZrNbTa){100−x}Alx (x = 0–10 at. %) MEAs were prepared [...] Read more.
Medium-entropy alloys (MEAs) represent a promising class of materials for solid-state hydrogen storage due to their high hydrogen affinity, structural stability, and tunable properties. In this work, a compositional series of (TiZrNbTa){100−x}Alx (x = 0–10 at. %) MEAs were prepared and systematically investigated to clarify the influence of aluminum addition on microstructure, mechanical response, and hydrogen sorption behavior. The alloys were synthesized by arc melting, homogenized by annealing, and characterized using microscopy, X-ray diffraction, density measurements, microhardness testing, nanoindentation, and hydrogen absorption/desorption experiments. Hydrogen sorption was evaluated by isobaric absorption measurements at 2 MPa H2 over two consecutive cycles, complemented by thermogravimetric desorption analysis of hydrogenated samples. The results show that aluminum addition significantly affects activation behavior, hydrogen uptake, and residual hydrogen retention, while simultaneously increasing hardness and elastic modulus in a non-linear manner. The alloy containing 5 at. % Al exhibits the most balanced performance, combining reduced activation temperature in the second absorption cycle, relatively high hydrogen capacity, and moderate mechanical stiffness. These findings demonstrate that controlled aluminum alloying is an effective strategy for tailoring hydrogen–metal interactions and optimizing the performance of TiZrNbTa-based MEAs for solid-state hydrogen storage applications. Full article
Show Figures

Figure 1

15 pages, 4752 KB  
Article
The Microstructure and Properties of Hard Anodic Oxide Coatings on 5754 Aluminium Alloy Modified with Al2O3, PTFE and CaCO3 Nanoparticles
by Anna Kozik, Marek Nowak, Kamila Limanówka and Anna Góral
Materials 2026, 19(2), 378; https://doi.org/10.3390/ma19020378 (registering DOI) - 17 Jan 2026
Abstract
Hard anodic oxide coatings on aluminium have long been used to enhance surface functionality. However, increasing industrial demands are driving the need for coatings with superior hardness, wear resistance, corrosion resistance and self-lubricating properties. Due to their porous structure, anodic oxide coatings can [...] Read more.
Hard anodic oxide coatings on aluminium have long been used to enhance surface functionality. However, increasing industrial demands are driving the need for coatings with superior hardness, wear resistance, corrosion resistance and self-lubricating properties. Due to their porous structure, anodic oxide coatings can be modified by incorporating various nanoparticles. The properties of the modified coatings depend on both the type of nanoparticles used and the method employed to incorporate them. In this study, anodic oxide coatings were produced using direct and duplex methods on a semi-industrial scale to enable process control and potential industrial implementation. The coatings were modified with hard (Al2O3) and soft (CaCO3, PTFE) nanoparticles in order to customise their functional properties. Their microstructure and chemical composition were characterised by SEM and TEM. Their microhardness, abrasion resistance and electrochemical behaviour were also evaluated. Among the tested production methods and methods for modifying nanoparticles, the duplex process incorporating Al2O3 particles proved to be the most promising. Its optimisation resulted in coatings with a microhardness of 430 HV0.05 and a mass loss of 9.4 mg after the Taber abrasion test, demonstrating the potential of this approach for industrial applications. Full article
(This article belongs to the Special Issue Advances in Electrodeposition of Thin Films and Alloys)
Show Figures

Graphical abstract

19 pages, 9647 KB  
Article
Recycling-Oriented Development and Microstructure–Property Evaluation of High-Recycled 6xxx Aluminum Alloys and CRM-Lean 6111 Alloy for Automotive Applications
by Zeynep Tutku Ozen, Necip Unlu, Irem Yaren Siyah, Sonia Boczkal, Gorkem Ozcelik and Salim Aslanlar
Materials 2026, 19(2), 377; https://doi.org/10.3390/ma19020377 (registering DOI) - 17 Jan 2026
Abstract
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of [...] Read more.
Recycling of 6xxx aluminum alloys, which are used extensively in the automotive industry, is important for ensuring a carbon-neutral future and the efficient use of resources on Earth. The sustainability of recycling in aluminum alloys is directly proportional to the correct classification of the scrap to be used. In this study, scrap stream from a novel scrap-sorting technology called MULTI-PICK has been used to validate. The 6063 and 6082 alloys produced with scrap stream, which are commonly used for structural parts in the automotive sector, are analyzed with hydrogen analysis and PREFIL. Cast billets are evaluated considering extrusion. After extrusion, microstructures of the profiles are investigated with scanning electron microscopy (SE), transmission electron microscopy (TE) and electron backscatter diffraction (EBSD). Their mechanical properties and anisotropic behaviors are investigated with tensile testing in different orientations. Additionally, an alternative alloy called 6111 has been studied to replace the target alloys with low critical raw material (CRM) content. According to the findings, highly recycled 6xxx alloys can be used in the automotive industry without losing their existing properties. Furthermore, using alternative feedstock and retrofitted systems can decrease carbon footprint below 4 kgCeq/kgAl. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Graphical abstract

27 pages, 5571 KB  
Article
Simulation Analysis of Thermal Deformation and Extruded Profile Formability of Al–10Mg–3Zn Aluminum Alloy
by Guanmei Niu, Wei Li, Kaidi Jiang, Yang Yang, Guojun Wang, Cheng Liu and Linzhong Zhuang
Materials 2026, 19(2), 375; https://doi.org/10.3390/ma19020375 (registering DOI) - 17 Jan 2026
Abstract
To investigate the hot deformation characteristics of the Al–10Mg–3Zn alloy, a series of hot compression tests was carried out using a Gleeble-3500 simulator. The experimental matrix covered temperatures of 300–450 °C and strain rates from 0.001 to 10 s−1. The true [...] Read more.
To investigate the hot deformation characteristics of the Al–10Mg–3Zn alloy, a series of hot compression tests was carried out using a Gleeble-3500 simulator. The experimental matrix covered temperatures of 300–450 °C and strain rates from 0.001 to 10 s−1. The true stress–strain curves were obtained and the hot processing map of the alloy was constructed based on the Dynamic Material Model principle. The multi-objective optimization of the extrusion process parameters was performed using the response surface method. The results showed that the flow stress of Al–10Mg–3Zn alloy increased with the increase in the strain rate and decreased with the increase in the deformation temperature, indicating that the alloy had a positive strain rate sensitivity. A strain-compensated Arrhenius constitutive model and a hot processing map of Al–10Mg–3Zn alloy were established based on the temperature-corrected data; here, the optimal temperature range and strain rate range for hot processing were specified. The optimal extrusion process parameters, determined by the response surface method, were as follows: billet temperature of 400 °C, extrusion speed of 0.20 mm/s, and ingot length of 350 mm. With this parameter combination, the simulation predicted an extrusion load of 73.29 MN, a velocity deviation of 24.96%, and a cross-sectional temperature difference of 9.48 °C for the profile. The predicted values from the response surface method were highly consistent with those from the finite element simulation. The optimized process parameters significantly reduced the extrusion load of the profile. Full article
Show Figures

Graphical abstract

16 pages, 3155 KB  
Article
Influences of Annealing Treatment on Soft Magnetic Properties, Mechanical Properties and Microstructure of Fe24.94Co24.94Ni24.94Al24.94Si0.24 High-Entropy Alloy
by Shiqi Zhang, Pin Jiang, Xuanbo Shi, Xiaohua Tan and Hui Xu
Entropy 2026, 28(1), 110; https://doi.org/10.3390/e28010110 (registering DOI) - 16 Jan 2026
Abstract
In order to meet the ever-growing demand in modern power electronics, the advanced soft magnetic materials (SMMs) are required to exhibit both excellent soft magnetic performance and mechanical properties. In this work, the effects of an annealing treatment on the soft magnetic properties, [...] Read more.
In order to meet the ever-growing demand in modern power electronics, the advanced soft magnetic materials (SMMs) are required to exhibit both excellent soft magnetic performance and mechanical properties. In this work, the effects of an annealing treatment on the soft magnetic properties, mechanical properties and microstructure of the Fe24.94Co24.94Ni24.94Al24.94Si0.24 high-entropy alloy (HEA) are investigated. The as-cast HEA consists of a body-centered cubic (BCC) matrix phase and spherical B2 nanoprecipitates with a diameter of approximately 5 nm, where a coherent relationship is established between the B2 phase and the BCC matrix. After annealing at 873 K, the alloy retains both the BCC and B2 phases, with their coherent relationship preserved; besides the spherical B2 nanoprecipitates, rod-shaped B2 nanoprecipitates are also observed. After the annealing treatment, the saturation magnetization (Ms) of the alloy varies slightly within the range of 103–113 Am2/kg, which may be induced by the precipitation of this rod-shaped nanoprecipitate phase in the alloy. The increase in the coercivity (Hc) of annealed HEA is due to the inhomogeneous grain distribution, increased lattice misfit and high dislocation density induced by the annealing. The nanoindentation result reveals that the hardness after annealing at 873 K exhibits a 25% improvement compared with the hardness of as-cast HEA, which is mainly due to dislocation strengthening and precipitation strengthening. This research finding can provide guidance for the development of novel ferromagnetic HEAs, so as to meet the demands for materials with excellent soft magnetic properties and superior mechanical properties in the field of sustainable electrical energy. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
15 pages, 1199 KB  
Article
Roller Joining of AA1050 and AA6061 Aluminum Foam Immediately After Heating Process
by Yoshihiko Hangai, Shingo Nagatake, Ryosuke Suzuki, Kenji Amagai and Nobuhiro Yoshikawa
Metals 2026, 16(1), 102; https://doi.org/10.3390/met16010102 - 16 Jan 2026
Abstract
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further [...] Read more.
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further enhance its functionality. In this study, we attempted to fabricate a three-layer aluminum foam composed of commercially pure aluminum AA1050 and Al-Mg-Si aluminum alloy AA6061 by heating and foaming a total of three pieces of AA1050 precursor and AA6061 precursor arranged alternately, followed by immediate roller joining. It was found that, by traversing a roller immediately after foaming the AA1050 and AA6061 precursors, the aluminum foam could be joined while forming it into a flat plate. In addition, X-ray CT images of the fabricated samples revealed that material flow induced by roller traversing ruptured the surface skin layer. Numerous pores were observed within the sample, indicating pores were maintained during the roller traversing and no significant differences in porosities were identified between AA1050 aluminum foam and AA6061 aluminum foam. Furthermore, from the four-point bending test and the observation of samples after bending test, although quantitative mechanical properties were not obtained due to the as-joined samples were used for the bending test, pores were observed at the fracture surfaces, confirming that roller joining achieved seamless joining. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
13 pages, 1980 KB  
Article
Plasma Arc Robot for Direct Wall High-Entropy Alloy Additive Manufacturing
by Wei Wu, Haoran Wang, Yani Hu, Yan Lu, Jietao She and Xianghui Ren
Materials 2026, 19(2), 354; https://doi.org/10.3390/ma19020354 - 15 Jan 2026
Abstract
Through the mechanical analysis of AlCoCrFeNi thin-walled high-entropy alloy materials fabricated by plasma arc additive manufacturing, this study examines the practical application prospects of plasma arc manufacturing technology for thin-walled high-entropy alloys and explores its future development directions. Using a plasma arc oscillation [...] Read more.
Through the mechanical analysis of AlCoCrFeNi thin-walled high-entropy alloy materials fabricated by plasma arc additive manufacturing, this study examines the practical application prospects of plasma arc manufacturing technology for thin-walled high-entropy alloys and explores its future development directions. Using a plasma arc oscillation process, a 50-layer fine additive experiment was conducted on AlCoCrFeNi high-entropy alloy materials employing both reciprocating and layer-by-layer accumulation methods. The samples were analyzed for overall appearance, microstructure, hardness, and tensile properties. The results indicate that the proportions of columnar and intergranular dendrites in the thin-walled high-entropy alloy specimens are similar, and the columnar dendrites exhibit a uniformly sized cross shape. The variation in Vickers microhardness along the horizontal direction shows lower strength at the edge positions, gradually increasing with horizontal distance. A comparison of the alloy’s transverse and longitudinal tensile specimens revealed that samples parallel to the deposition direction exhibit more regular structural arrangements, while specimens perpendicular to the deposition direction show unavoidable stress concentration at the deposition sites during tensile testing. With the increase in the height of the longitudinal specimens, the FCC structures in the alloy are significantly refined, the organizational arrangement becomes more regular, and the elongation increases. This study elucidates the plasma arc preparation technique for thin-walled high-entropy alloy materials, which is expected to achieve precise control over material composition, accurate observation of grain refinement, and uniform distribution of Vickers hardness, thereby enhancing the mechanical properties and thermal stability of the materials, with promising applications in aerospace, energy, and industrial fields. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 4040 KB  
Article
Non-Uniform Microstructural Evolution Rules and Mechanisms of Ti2AlNb-Based Alloy Stiffened Panels Subjected to Electrically Assisted Press Bending
by Xiao-Li Zhang, Si-Liang Yan, Zi-Long Liu, Yu-Hong Gong and Miao Meng
Metals 2026, 16(1), 97; https://doi.org/10.3390/met16010097 - 15 Jan 2026
Viewed by 34
Abstract
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors [...] Read more.
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors and microstructure evolution of Ti2AlNb-based alloy stiffened panels in different characteristic deformation regions during electrically assisted press bending (EAPB). The quantitative relationships between electro-thermal–mechanical routes, microstructural features, and mechanical properties of EAPBed stiffened panels were initially established, and the underlying mechanisms of electrically induced phase transformation and morphological transformation were unveiled. Results show that the temperature of the panel first increases then deceases with forming time in most regions, but it increases monotonically and reaches its peak value of 720.1 °C in the web region close to the central transverse rib. The higher accumulated strain and precipitation of the acicular O phase at mild temperature leads to strengthening of the longitudinal ribs at near blank holder regions, resulting in an ideal microstructure of 3~4% blocky α2 phase + a dual-scale O structure in a B2 matrix with a maximal hardness of 389.4 ± 7.2 HV0.3. While the dissolution of the α2 phase and the spheroidization and coarsening of the O phase bring about softening (up to 9.29%) of the lateral ribs and web near the center region, the differentiated evolution of microstructure and the mechanical property in EAPB results in better deformation coordination and resistance to wrinkling and thickness variation in the rib–web structure. The present work will provide valuable references for achieving shape-performance coordinated manufacturing of Ti2AlNb-based stiffened panels. Full article
(This article belongs to the Special Issue Thermomechanical Performance of Metallic Alloys)
Show Figures

Figure 1

19 pages, 3563 KB  
Article
Numerical and Experimental Study of Laser Surface Modification Using a High-Power Fiber CW Laser
by Evaggelos Kaselouris, Alexandros Gosta, Efstathios Kamposos, Dionysios Rouchotas, George Vernardos, Helen Papadaki, Alexandros Skoulakis, Yannis Orphanos, Makis Bakarezos, Ioannis Fitilis, Nektarios A. Papadogiannis, Michael Tatarakis and Vasilis Dimitriou
Materials 2026, 19(2), 343; https://doi.org/10.3390/ma19020343 - 15 Jan 2026
Viewed by 49
Abstract
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction [...] Read more.
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction processes, including laser-induced plastic deformation, laser etching, and engraving. Cases for both static single-shot and dynamic linear scanning laser beams are investigated. The developed numerical models incorporate a Gaussian heat source and the Johnson–Cook constitutive model to capture elastoplastic, damage, and thermal effects. The simulation results, which provide detailed insights into temperature gradients, displacement fields, and stress–strain evolution, are rigorously validated against experimental data. The experiments are conducted on an integrated setup comprising a 2 kW TRUMPF CW fiber laser hosted on a 3-axis CNC milling machine, with diagnostics including thermal imaging, thermocouples, white-light interferometry, and strain gauges. The strong agreement between simulations and measurements confirms the predictive capability of the developed FEM framework. Overall, this research establishes a reliable computational approach for optimizing laser parameters, such as power, dwell time, and scanning speed, to achieve precise control in metal surface treatment and modification applications. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Graphical abstract

17 pages, 6454 KB  
Article
High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy
by Jing Qu, Faqin Xie, Xiangqing Wu, Guangrui Gao and Dong Han
Coatings 2026, 16(1), 116; https://doi.org/10.3390/coatings16010116 - 15 Jan 2026
Viewed by 126
Abstract
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and [...] Read more.
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and oxidation time were obtained for the uncoated and the coated samples at 850 °C with rate exponents of 2.38 and 2.14, respectively. After oxidation at 850 °C for 200 h, a continuous and dense oxide layer primarily composed of α-Al2O3 with a low oxidation reaction rate was formed, and the mass gain of the coated sample was 1/9 times that of the uncoated sample. Additionally, the addition of Cr and Nb in the TiAlCrSiNbY coating can increase the activity of Al and promoted the formation of stable and dense Al2O3 oxide films, the presence of a strong high-temperature stability Ti5Si3 phase inhibited the affinity of Ti and O, which maintained structural integrity and enhanced high-temperature oxidation resistance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 7243 KB  
Article
Effect of Ultrasonic Frequency Pulse Current on the Microstructure and Mechanical Properties of Ti6Al4V TIG Welded Joints
by Wanghui Xu, Xiaoyu Cai, Yu Li, Jing Wei, Chunlin Dong, Li Liu and Huan He
Materials 2026, 19(2), 337; https://doi.org/10.3390/ma19020337 - 14 Jan 2026
Viewed by 143
Abstract
To enhance the performance of Ti6Al4V titanium alloy joints, ultrasonic frequency pulsed TIG welding was employed. The microstructure and mechanical properties of the joints were systematically investigated. Results show that the weld microstructure is predominantly composed of acicular α phase, lath α phase, [...] Read more.
To enhance the performance of Ti6Al4V titanium alloy joints, ultrasonic frequency pulsed TIG welding was employed. The microstructure and mechanical properties of the joints were systematically investigated. Results show that the weld microstructure is predominantly composed of acicular α phase, lath α phase, and a minor amount of β phase. Compared with conventional TIG welding, the application of ultrasonic frequency pulse current effectively refined the grains, achieving an average grain size of 0.54 μm. Concurrently, the proportion of high-angle grain boundaries increased from 96.1% to 97.6%. The average hardness of the fusion zone exceeded that of the base metal and was significantly increased by the ultrasonic frequency pulse current, reaching 350 HV compared to 330 HV for conventional welds. Furthermore, the ultrasonic frequency pulsed TIG joints exhibited higher yield strength and elongation than their conventional welds. These findings demonstrate that introducing ultrasonic frequency current during TIG welding effectively improves the properties of Ti6Al4V welded joints. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Figure 1

24 pages, 14631 KB  
Article
Influences of (Al, Si) Equi-Molar Co-Addition on Microstructure, Mechanical Properties and Corrosion Resistance of Co-Free Fe-Rich High Entropy Alloys
by Shufeng Xie, Ziming Chen, Chuanming Qiao, Wanwan Sun, Yanzhe Wang, Junyang Zheng, Xiaoyu Wu, Lingjie Chen, Bin Kong, Chen Chen, Kangwei Xu and Jiajia Tian
Metals 2026, 16(1), 92; https://doi.org/10.3390/met16010092 - 14 Jan 2026
Viewed by 59
Abstract
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs [...] Read more.
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs on microstructure, mechanical properties, and corrosion resistance were systematically investigated. It is found that equi-molar (Al, Si) co-addition could cause the phase formation from FCC to FCC + BCC, while the morphologies of the phases change from dendrite-type to sideplate-type. Moreover, trade-off between strength and plasticity occurs with the increase in (Al, Si) co-addition, and the production of ultimate tensile strength and plasticity reaches the highest value when x = 0.12, while there exists a narrow region for x values to realize excellent comprehensive mechanical properties. In addition, similar corrosion resistance in 3.5 wt.% NaCl solution higher than 316L stainless steel could be realized in the HEAs with x = 0.12 and 0.14, while the latter one is slightly lower in pitting corrosion and the width of passive region, which is possibly caused by the increase in the density of phase boundaries. This work provides a novel insight on designing high-performance cost-effective Fe-rich and (Al, Si)-containing (Fe-Cr-Ni)-based HEAs combining high mechanical properties and corrosion resistance. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

17 pages, 2730 KB  
Article
Effect of Artificial Aging Conditions on Mechanical Properties of EN AW 6056 Aluminum Alloy
by Gizem Ay, Mehmet Okan Görtan and Fatih Çağırankaya
Metals 2026, 16(1), 88; https://doi.org/10.3390/met16010088 - 13 Jan 2026
Viewed by 152
Abstract
The 6xxx series aluminum alloys are preferred in many industrial applications because they can achieve relatively high strength levels through heat treatment. It is known that, as in the case of the EN AW 6056 alloy, the addition of small amounts of copper [...] Read more.
The 6xxx series aluminum alloys are preferred in many industrial applications because they can achieve relatively high strength levels through heat treatment. It is known that, as in the case of the EN AW 6056 alloy, the addition of small amounts of copper to materials in this series can further enhance their mechanical properties. In the current study, the effect of artificial aging conditions on the mechanical properties of EN AW 6056 aluminum alloy has been investigated. The ratio of Mg to Si and Cu content of the alloy were 0.939 and 0.92, respectively. The aging process was conducted at temperatures of 170, 180, and 190 °C, with corresponding aging durations of 1, 2, 3, 4, 6, 8, 12, 15, 18, 21, and 24 h. The maximum hardness was obtained in samples aged at 170 °C for 12 h, corresponding to the transition to over-aging condition. In contrast, the highest tensile strength was achieved in samples aged at 190 °C for 4 h, representing the peak-aged condition. Transmission electron microscopy (TEM) analyses revealed distinct microstructural characteristics for the peak-aged and transition to over-aging conditions. In the peak-aged state, needle-shaped β″ precipitates, lath-like Q′ phases, and L phases with narrow rectangular cross-sections were observed. In contrast, lath-like L precipitates were absent in the transition to over-aging condition. Full article
(This article belongs to the Special Issue Processing, Microstructure and Properties of Aluminium Alloys)
Show Figures

Figure 1

16 pages, 9602 KB  
Article
Effect of In Situ Synthesized Al2O3 and TiC on the Microstructure and Properties of 6061 Aluminum Matrix Composites
by Wei Long, Jiaxin Zhou, Xinbin Hu, Sheng Liu and Wenming Jiang
Materials 2026, 19(2), 308; https://doi.org/10.3390/ma19020308 - 12 Jan 2026
Viewed by 130
Abstract
Al2O3-TiC/6061Al composites were fabricated via in situ powder metallurgy using 6061 Al, TiO2, and graphite powders as starting materials. The effects of sintering temperature and ceramic particle content on the microstructure and mechanical properties of the composites [...] Read more.
Al2O3-TiC/6061Al composites were fabricated via in situ powder metallurgy using 6061 Al, TiO2, and graphite powders as starting materials. The effects of sintering temperature and ceramic particle content on the microstructure and mechanical properties of the composites were investigated. The wear performance of composites sintered at 1200 °C with varying ceramic particle content was also examined. The results indicate that the microstructure of the composite varied with the sintering temperature. At 1000 °C and 1100 °C, the microstructure primarily consisted of Al3Ti, Al2O3, and TiC phases. At 1200 °C and 1250 °C, the microstructure was predominantly composed of Al2O3 and TiC phases. The 6061 Al-12% (TiO2 + C) composite sintered at 1200 °C exhibited a tensile strength of 246 MPa, an elongation of 12.7%, and a microhardness of 104.2 HV0.1. Regarding wear performance, the wear behavior of the composites under different loads at 1200 °C was studied. Under a 30 N load, the 6061 Al-12% (TiO2 + C) composite demonstrated the lowest friction coefficient and wear rate, measured at 0.253 and 0.396 mm3·N−1·m−1, respectively. Analysis of the worn surface morphology under a 30 N load indicates that the dominant wear mechanism for the 6061 aluminum alloy is delamination wear, whereas for the 6061 Al-12% (TiO2 + C) composite, it is primarily abrasive wear. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop