Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = AfriSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 17995 KB  
Article
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
by Chuanjun Wu, Jiali Hou, Peng Shen, Sai Wang, Gang Chen and Lu Zhang
Remote Sens. 2025, 17(13), 2140; https://doi.org/10.3390/rs17132140 - 22 Jun 2025
Viewed by 1009
Abstract
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for [...] Read more.
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for sub-canopy terrain estimation based on a one-dimensional lookup table (LUT) that links forest height to unpenetrated depth. The approach begins by applying an optimal normal matrix approximation to constrain the complex coherence measurements. Subsequently, the difference between the PolInSAR Digital Terrain Model (DTM) derived from the Random Volume over Ground (RVoG) model and the LiDAR DTM is defined as the unpenetrated depth. A nonlinear iterative optimization algorithm is then employed to estimate forest height, from which a fundamental mapping between forest height and unpenetrated depth is established. This mapping can be used to correct the bias in sub-canopy terrain estimation based on the PolInSAR RVoG model, even with only a small amount of sparse LiDAR DTM data. To validate the effectiveness of the method, experiments were conducted using fully polarimetric P-band airborne SAR data acquired by the European Space Agency (ESA) during the AfriSAR campaign over the Mabounie region in Gabon, Africa, in 2016. The experimental results demonstrate that the proposed method effectively mitigates terrain estimation errors caused by insufficient signal penetration or the limitation of single-interferometric geometry. Further analysis reveals that the availability of sufficient and precise forest height data significantly improves sub-canopy terrain accuracy. Compared with LiDAR-derived DTM, the proposed method achieves an average root mean square error (RMSE) of 5.90 m, representing an accuracy improvement of approximately 38.3% over traditional RVoG-derived InSAR DTM retrieval. These findings further confirm that there exist unpenetrated phenomena in single-baseline low-frequency PolInSAR-derived DTMs of tropical forested areas. Nevertheless, when sparse LiDAR topographic data is available, the integration of fully PolInSAR data with LUT-based compensation enables improved sub-canopy terrain retrieval. This provides a promising technical pathway with single-baseline configuration for spaceborne missions, such as ESA’s BIOMASS mission, to estimate sub-canopy terrain in tropical-rainforest regions. Full article
Show Figures

Graphical abstract

15 pages, 6660 KB  
Article
Forest Canopy Height Estimation Combining Dual-Polarization PolSAR and Spaceborne LiDAR Data
by Yao Tong, Zhiwei Liu, Haiqiang Fu, Jianjun Zhu, Rong Zhao, Yanzhou Xie, Huacan Hu, Nan Li and Shujuan Fu
Forests 2024, 15(9), 1654; https://doi.org/10.3390/f15091654 - 19 Sep 2024
Cited by 3 | Viewed by 2086
Abstract
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to [...] Read more.
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to estimate forest height by combining single-temporal polarimetric synthetic aperture radar (PolSAR) images with sparse spaceborne LiDAR (forest height) measurements. The core idea of our method is that volume scattering energy variations which are linked to forest canopy height occur during radar acquisition. Specifically, our methodology begins by employing a semi-empirical inversion model directly derived from the random volume over ground (RVoG) formulation to establish the relationship between forest canopy height, volume scattering energy and wave extinction. Subsequently, PolSAR decomposition techniques are used to extract canopy volume scattering energy. Additionally, machine learning is employed to generate a spatially continuous extinction coefficient product, utilizing sparse LiDAR samples for assistance. Finally, with the derived inversion model and the resulting model parameters (i.e., volume scattering power and extinction coefficient), forest canopy height can be estimated. The performance of the proposed forest height inversion method is illustrated with L-band NASA/JPL UAVSAR from AfriSAR data conducted over the Gabon Lope National Park and airborne LiDAR data. Compared to high-accuracy airborne LiDAR data, the obtained forest canopy height from the proposed approach exhibited higher accuracy (R2 = 0.92, RMSE = 6.09 m). The results demonstrate the potential and merit of the synergistic combination of PolSAR (volume scattering power) and sparse LiDAR (forest height) measurements for forest height estimation. Additionally, our approach achieves good performance in forest height estimation, with accuracy comparable to that of the multi-baseline PolInSAR-based inversion method (RMSE = 5.80 m), surpassing traditional PolSAR-based methods with an accuracy of 10.86 m. Given the simplicity and efficiency of the proposed method, it has the potential for large-scale forest height estimation applications when only single-temporal dual-polarization acquisitions are available. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 6626 KB  
Article
A Method for Forest Canopy Height Inversion Based on UAVSAR and Fourier–Legendre Polynomial—Performance in Different Forest Types
by Hongbin Luo, Cairong Yue, Hua Yuan, Ning Wang and Si Chen
Drones 2023, 7(3), 152; https://doi.org/10.3390/drones7030152 - 22 Feb 2023
Cited by 2 | Viewed by 3594
Abstract
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an [...] Read more.
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an important issue that needs to be addressed urgently. In this paper, we propose a novel four-stage forest height inversion method based on a Fourier–Legendre polynomial (FLP) with reference to the RVoG three-stage method, using the multi-baseline UAVSAR data from the AfriSAR project as the data source. The third-order FLP is used as the vertical structure function, and a small amount of ground phase and LiDAR canopy height is used as the input to solve and fix the FLP coefficients to replace the exponential function in the RVoG three-stage method. The performance of this method was tested in different forest types (mangrove and inland tropical forests). The results show that: (1) in mangroves with homogeneous forest structure, the accuracy based on the four-stage FLP method is better than that of the RVoG three-stage method. For the four-stage FLP method, R2 is 0.82, RMSE is 6.42 m and BIAS is 0.92 m, while the R2 of the RVoG three-stage method is 0.77, RMSE is 7.33 m, and bias is −3.49 m. In inland tropical forests with complex forest structure, the inversion accuracy based on the four-stage FLP method is lower than that of the RVoG three-stage method. The R2 is 0.50, RMSE is 11.54 m, and BIAS is 6.53 m for the four-stage FLP method; the R2 of the RVoG three-stage method is 0.72, RMSE is 8.68 m, and BIAS is 1.67 m. (2) Compared to the RVoG three-stage method, the efficiency of the four-stage FLP method is improved by about tenfold, with the reduction of model parameters. The inversion time of the FLP method in a mangrove forest is 3 min, and that of the RVoG three-stage method is 33 min. In an inland tropical forest, the inversion time of the FLP method is 2.25 min, and that of the RVoG three-stage method is 21 min. With the application of large regional scale data in the future, the method proposed in this study is more efficient when conditions allow. Full article
Show Figures

Figure 1

27 pages, 9086 KB  
Article
Correcting Underestimation and Overestimation in PolInSAR Forest Canopy Height Estimation Using Microwave Penetration Depth
by Hongbin Luo, Cairong Yue, Ning Wang, Guangfei Luo and Si Chen
Remote Sens. 2022, 14(23), 6145; https://doi.org/10.3390/rs14236145 - 4 Dec 2022
Cited by 4 | Viewed by 3346
Abstract
PolInSAR is an active remote sensing technique that is widely used for forest canopy height estimation, with the random volume over ground (RVoG) model being the most classic and effective forest canopy height inversion approach. However, penetration of microwave energy into the forest [...] Read more.
PolInSAR is an active remote sensing technique that is widely used for forest canopy height estimation, with the random volume over ground (RVoG) model being the most classic and effective forest canopy height inversion approach. However, penetration of microwave energy into the forest often leads to a downward shift of the canopy phase center, which leads to model underestimation of the forest canopy height. In addition, in the case of sparse and low forests, the canopy height is overestimated, owing to the large ground-to-volume amplitude ratio in the RVoG model and severe temporal decorrelation effects. To solve this problem, in this study, we conducted an experiment on forest canopy height estimation with the RVoG model using L-band multi-baseline fully polarized PolInSAR data obtained from the Lope and Pongara test areas of the AfriSAR project. We also propose various RVoG model error correction methods based on penetration depth by analyzing the model’s causes of underestimation and overestimation. The results show that: (1) In tall forest areas, there is a general underestimation of canopy height, and the value of this underestimation correlates strongly with the penetration depth, whereas in low forest areas, there is an overestimation of canopy height owing to severe temporal decorrelation; in this instance, overestimation can also be corrected by the penetration depth. (2) Based on the reference height RH100, we used training sample iterations to determine the correction thresholds to correct low canopy overestimation and tall canopy underestimation; by applying these thresholds, the inversion error of the RVoG model can be improved to some extent. The corrected R2 increased from 0.775 to 0.856, and the RMSE decreased from 7.748 m to 6.240 m in the Lope test area. (3) The results obtained using the infinite-depth volume condition p-value as the correction threshold were significantly better than the correction results for the reference height, with the corrected R2 value increasing from 0.775 to 0.914 and the RMSE decreasing from 7.748 m to 4.796 m. (4) Because p-values require a true height input, we extended the application scale of the method by predicting p-values as correction thresholds via machine learning methods and polarized interference features; accordingly, the corrected R2 increased from 0.775 to 0.845, and the RMSE decreased from 7.748 m to 6.422 m. The same pattern was obtained for the Pongara test area. Overall, the findings of this study strongly suggest that it is effective and feasible to use penetration depth to correct for RVoG model errors. Full article
(This article belongs to the Special Issue Advanced Earth Observations of Forest and Wetland Environment)
Show Figures

Figure 1

19 pages, 4294 KB  
Article
A Method for Forest Canopy Height Inversion Based on Machine Learning and Feature Mining Using UAVSAR
by Hongbin Luo, Cairong Yue, Fuming Xie, Bodong Zhu and Si Chen
Remote Sens. 2022, 14(22), 5849; https://doi.org/10.3390/rs14225849 - 18 Nov 2022
Cited by 6 | Viewed by 3932
Abstract
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization [...] Read more.
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization are often difficult to establish for practical applications, resulting in large forest height estimation errors. As an alternative, machine learning approaches offer the benefit of model simplicity, but these tools provide limited capabilities for interpretation and generalization. To explore the forest height estimation method combining the mechanism model and the empirical model, we utilized UAVSAR multi-baseline PolInSAR L-band data from the AfriSAR project and propose a solution of a mechanism model combined with machine learning. In this paper, two mechanism models were used as controls, the RVoG three-phase method and the RVoG phase-coherence amplitude method. The vertical structure parameters of the forest obtained from the mechanism model were used as the independent variables of the machine learning model. Random forest (RF) and partial least squares (PLS) regression models were used to invert the forest canopy height. Results show that the inversion accuracy of the machine learning method, combined with the mechanism model, is significantly better than that of the single-mechanism model method. The most influential independent variables were penetration depth, volume coherence phase center height, coherence separation, and baseline selection. With the precondition that the cumulative contribution of the independent variables was greater than 90%, the number of independent variables in the two study areas was reduced from 19 to 4, and the accuracy of the RF-RVoG-DEP model was higher than that of the PLS-RVoG-DEP model. For the Lope test area, the R2 of the RVoG phase coherence amplitude method is 0.723, the RMSE is 8.583 m, and the model bias is −2.431 m; the R2 of the RVoG three-stage method is 0.775, the RMSE is 7.748, and the bias is 1.120 m, the R2 of the PLS-RVoG-DEP model is 0.850, the RMSE is 6.320 m, and the bias is 0.002 m; and the R2 of the RF-RVoG-DEP model is 0.900, the RMSE is 5.154 m, and the bias is −0.061 m. The results for the Pongara test area are consistent with the pattern for the Lope test area. The combined “fusion model” offers a substantial improvement in forest height estimation from the traditional mechanism modeling method. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

16 pages, 6591 KB  
Article
Potential of P-Band SAR Tomography in Forest Type Classification
by Dinh Ho Tong Minh, Yen-Nhi Ngo and Thu Trang Lê
Remote Sens. 2021, 13(4), 696; https://doi.org/10.3390/rs13040696 - 14 Feb 2021
Cited by 12 | Viewed by 5270
Abstract
Forest type classification using spaceborne remote sensing is a challenge. Low-frequency Synthetic Aperture Radar (SAR) signals (i.e., P-band, ∼0.69 m wavelength) are needed to penetrate a thick vegetation layer. However, this measurement alone does not guarantee a good performance in forest classification tasks. [...] Read more.
Forest type classification using spaceborne remote sensing is a challenge. Low-frequency Synthetic Aperture Radar (SAR) signals (i.e., P-band, ∼0.69 m wavelength) are needed to penetrate a thick vegetation layer. However, this measurement alone does not guarantee a good performance in forest classification tasks. SAR tomography, a technique employing multiple acquisitions over the same areas to form a three-dimensional image, has been demonstrated to improve SAR’s capability in many applications. Our study shows the potential value of SAR tomography acquisitions to improve forest classification. By using P-band tomographic SAR data from the German Aerospace Center F-SAR sensor during the AfriSAR campaign in February 2016, the vertical profiles of five different forest types at a tropical forest site in Mondah, Gabon (South Africa) were analyzed and exploited for the classification task. We demonstrated that the high sensitivity of SAR tomography to forest vertical structure enables the improvement of classification performance by up to 33%. Interestingly, by using the standard Random Forest technique, we found that the ground (i.e., at 5–10 m) and volume layers (i.e., 20–40 m) play an important role in identifying the forest type. Together, these results suggested the promise of the TomoSAR technique for mapping forest types with high accuracy in tropical areas and could provide strong support for the next Earth Explorer BIOMASS spaceborne mission which will collect P-band tomographic SAR data. Full article
(This article belongs to the Special Issue SAR Tomography of Natural Media)
Show Figures

Figure 1

20 pages, 88964 KB  
Article
A Novel Four-Stage Method for Vegetation Height Estimation with Repeat-Pass PolInSAR Data via Temporal Decorrelation Adaptive Estimation and Distance Transformation
by Cheng Xing, Tao Zhang, Hongmiao Wang, Liang Zeng, Junjun Yin and Jian Yang
Remote Sens. 2021, 13(2), 213; https://doi.org/10.3390/rs13020213 - 9 Jan 2021
Cited by 11 | Viewed by 3571
Abstract
Vegetation height estimation plays a pivotal role in forest mapping, which significantly promotes the study of environment and climate. This paper develops a general forest structure model for vegetation height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR) data. In simple terms, the [...] Read more.
Vegetation height estimation plays a pivotal role in forest mapping, which significantly promotes the study of environment and climate. This paper develops a general forest structure model for vegetation height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR) data. In simple terms, the temporal decorrelation factor of the random volume over ground model with volumetric temporal decorrelation (RVoG-vtd) is first modeled by random motions of forest scatterers to solve the problem of ambiguity. Then, a novel four-stage algorithm is proposed to improve accuracy in forest height estimation. In particular, to compensate for the temporal decorrelation mainly caused by changes between multiple observations, one procedure of temporal decorrelation adaptive estimation via Expectation-Maximum (EM) algorithm is added into the novel method. On the other hand, to extract the features of amplitude and phase more effectively, in the proposed method, we also convert Euclidean distance to a generalized distance for the first time. Assessments of different algorithms are given based on the repeat-pass PolInSAR data of Gabon Lope Park acquired in AfriSAR campaign of German Aerospace Center (DLR). The experimental results show that the proposed method presents a significant improvement of vegetation height estimation accuracy with a root mean square error (RMSE) of 6.23 m and a bias of 1.28 m against LiDAR heights, compared to the results of the three-stage method (RMSE: 8.69 m, bias: 4.81 m) and the previous four-stage method (RMSE: 7.72 m, bias: −2.87 m). Full article
Show Figures

Graphical abstract

22 pages, 4630 KB  
Article
Regional Tropical Aboveground Biomass Mapping with L-Band Repeat-Pass Interferometric Radar, Sparse Lidar, and Multiscale Superpixels
by Charlie Marshak, Marc Simard, Laura Duncanson, Carlos Alberto Silva, Michael Denbina, Tien-Hao Liao, Lola Fatoyinbo, Ghislain Moussavou and John Armston
Remote Sens. 2020, 12(12), 2048; https://doi.org/10.3390/rs12122048 - 25 Jun 2020
Cited by 15 | Viewed by 5280
Abstract
We introduce a multiscale superpixel approach that leverages repeat-pass interferometric coherence and sparse AGB estimates from a simulated spaceborne lidar in order to extend the NISAR mission’s applicable range of aboveground biomass (AGB) in tropical forests. Airborne and spaceborne L-band radar and full-waveform [...] Read more.
We introduce a multiscale superpixel approach that leverages repeat-pass interferometric coherence and sparse AGB estimates from a simulated spaceborne lidar in order to extend the NISAR mission’s applicable range of aboveground biomass (AGB) in tropical forests. Airborne and spaceborne L-band radar and full-waveform airborne lidar data are used to simulate the NISAR and GEDI mission, respectively. In addition to UAVSAR data, we use spaceborne ALOS-2/PALSAR-2 imagery with 14-day temporal baseline, which is comparable to NISAR’s 12-day baseline. Our reference AGB maps are derived from the airborne LVIS data during the AfriSAR campaign for three sites (Mondah, Ogooue, and Lope). Each tropical site has mean AGB of at least 125 Mg/ha in addition to areas with AGB exceeding 700 Mg/ha. Spatially sampling from these LVIS-derived AGB reference maps, we approximate GEDI AGB estimates. To evaluate our methodology, we perform several different analyses. First, we partition each study site into low (≤100 Mg/ha) and high (>100 Mg/ha) AGB areas, in conformity with the NISAR mission requirement to provide AGB estimates for forests between 0 and 100 Mg/ha with a RMSE below 20 Mg/ha. In the low AGB areas, this RMSE requirement is satisfied in Lope and Mondah and it fell short of the requirement in Ogooue by less 3 Mg/ha with UAVSAR and 6 Mg/ha with PALSAR-2. We note that our maps have finer spatial resolution (50 m) than NISAR requires (1 hectare). In the high AGB areas, the normalized RMSE increases to 51% (i.e., <90 Mg/ha), but with negligible bias for all three sites. Second, we train a single model to estimate AGB across both high and low AGB regimes simultaneously and obtain a normalized RMSE that is <60% (or <100 Mg/ha). Lastly, we show the use of both (a) multiscale superpixels and (b) interferometric coherence significantly improves the accuracy of the AGB estimates. The InSAR coherence improved the RMSE by approximately 8% at Mondah with both sensors, lowering the RMSE from 59 Mg/ha to 47.4 Mg/h with UAVSAR and from 57.1 Mg/ha to 46 Mg/ha. This work illustrates one of the numerous synergistic relationships between the spaceborne lidars, such as GEDI, with L-band SAR, such as PALSAR-2 and NISAR, in order to produce robust regional AGB in high biomass tropical regions. Full article
(This article belongs to the Special Issue Estimation of Forest Biomass from SAR)
Show Figures

Figure 1

28 pages, 11109 KB  
Article
The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation
by Francesco Banda, Davide Giudici, Thuy Le Toan, Mauro Mariotti d’Alessandro, Kostas Papathanassiou, Shaun Quegan, Guido Riembauer, Klaus Scipal, Maciej Soja, Stefano Tebaldini, Lars Ulander and Ludovic Villard
Remote Sens. 2020, 12(6), 985; https://doi.org/10.3390/rs12060985 - 19 Mar 2020
Cited by 27 | Viewed by 7303
Abstract
BIOMASS is ESA’s seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass [...] Read more.
BIOMASS is ESA’s seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass (AGB), forest height (FH) and severe forest disturbance (FD) globally with a particular focus on tropical forests. This paper presents the algorithms developed to estimate these biophysical parameters from the BIOMASS level 1 SAR measurements and their implementation in the BIOMASS level 2 prototype processor with a focus on the AGB product. The AGB product retrieval uses a physically-based inversion model, using ground-canceled level 1 data as input. The FH product retrieval applies a classical PolInSAR inversion, based on the Random Volume over Ground Model (RVOG). The FD product will provide an indication of where significant changes occurred within the forest, based on the statistical properties of SAR data. We test the AGB retrieval using modified airborne P-Band data from the AfriSAR and TropiSAR campaigns together with reference data from LiDAR-based AGB maps and plot-based ground measurements. For AGB estimation based on data from a single heading, comparison with reference data yields relative Root Mean Square Difference (RMSD) values mostly between 20% and 30%. Combining different headings in the estimation process significantly improves the AGB retrieval to slightly less than 20%. The experimental results indicate that the implemented retrieval scheme provides robust results that are within mission requirements. Full article
(This article belongs to the Special Issue Estimation of Forest Biomass from SAR)
Show Figures

Graphical abstract

17 pages, 4687 KB  
Article
Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data
by Emanuele Santi, Simonetta Paloscia, Simone Pettinato, Giovanni Cuozzo, Antonio Padovano, Claudia Notarnicola and Clement Albinet
Remote Sens. 2020, 12(5), 804; https://doi.org/10.3390/rs12050804 - 2 Mar 2020
Cited by 17 | Viewed by 5795
Abstract
This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and [...] Read more.
This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images. Full article
Show Figures

Graphical abstract

18 pages, 9836 KB  
Article
Monitoring Tropical Forest Structure Using SAR Tomography at L- and P-Band
by Ibrahim El Moussawi, Dinh Ho Tong Minh, Nicolas Baghdadi, Chadi Abdallah, Jalal Jomaah, Olivier Strauss, Marco Lavalle and Yen-Nhi Ngo
Remote Sens. 2019, 11(16), 1934; https://doi.org/10.3390/rs11161934 - 19 Aug 2019
Cited by 27 | Viewed by 5699
Abstract
Our study aims to provide a comparison of the P- and L-band TomoSAR profiles, Land Vegetation and Ice Sensor (LVIS), and discrete return LiDAR to assess the ability for TomoSAR to monitor and estimate the tropical forest structure parameters for enhanced forest management [...] Read more.
Our study aims to provide a comparison of the P- and L-band TomoSAR profiles, Land Vegetation and Ice Sensor (LVIS), and discrete return LiDAR to assess the ability for TomoSAR to monitor and estimate the tropical forest structure parameters for enhanced forest management and to support biomass missions. The comparison relies on the unique UAVSAR Jet propulsion Laboratory (JPL)/NASA L-band data, P-band data acquired by ONERA airborne system (SETHI), Small Footprint LiDAR (SFL), and NASA Land, Vegetation and Ice Sensor (LVIS) LiDAR datasets acquired in 2015 and 2016 in the frame of the AfriSAR campaign. Prior to multi-baseline data processing, a phase residual correction methodology based on phase calibration via phase center double localization has been implemented to improve the phase measurements and compensate for the phase perturbations, and disturbances originated from uncertainties in allocating flight trajectories. First, the vertical structure was estimated from L- and P-band corrected Tomography SAR data measurements, then compared with the canopy height model from SFL data. After that, the SAR and LiDAR three-dimensional (3D) datasets are compared and discussed at a qualitative basis at the region of interest. The L- and P-band’s performance for canopy penetration was assessed to determine the underlying ground locations. Additionally, the 3D records for each configuration were compared with their ability to derive forest vertical structure. Finally, the vertical structure extracted from the 3D radar reflectivity from L- and P-band are compared with SFL data, resulting in a root mean square error of 3.02 m and 3.68 m, where the coefficient of determination shows a value of 0.95 and 0.93 for P- and L-band, respectively. The results demonstrate that TomoSAR holds promise for a scientific basis in forest management activities. Full article
Show Figures

Figure 1

17 pages, 9897 KB  
Article
L-Band UAVSAR Tomographic Imaging in Dense Forests: Gabon Forests
by Ibrahim El Moussawi, Dinh Ho Tong Minh, Nicolas Baghdadi, Chadi Abdallah, Jalal Jomaah, Olivier Strauss and Marco Lavalle
Remote Sens. 2019, 11(5), 475; https://doi.org/10.3390/rs11050475 - 26 Feb 2019
Cited by 18 | Viewed by 5927
Abstract
Developing and enhancing strategies to characterize actual forests structure is a timely challenge, particularly for tropical forests. P-band synthetic aperture radar (SAR) tomography (TomoSAR) has previously been demonstrated as a powerful tool for characterizing the 3-D vertical structure of tropical forests, and its [...] Read more.
Developing and enhancing strategies to characterize actual forests structure is a timely challenge, particularly for tropical forests. P-band synthetic aperture radar (SAR) tomography (TomoSAR) has previously been demonstrated as a powerful tool for characterizing the 3-D vertical structure of tropical forests, and its capability and potential to retrieve tropical forest structure has been discussed and assessed. On the other hand, the abilities of L-band TomoSAR are still in the early stages of development. Here, we aim to provide a better understanding of L-band TomoSAR capabilities for retrieving the 3-D structure of tropical forests and estimating the top height in dense forests. We carried out tomographic analysis using L-band UAVSAR data from the AfriSAR campaign conducted over Gabon Lopé Park in February 2016. First, it was found that L-band TomoSAR was able to penetrate into and through the canopy down to the ground, and thus the canopy and ground layers were detected correctly. The resulting TomoSAR vertical profiles were validated with a digital terrain model and canopy height model extracted from small-footprint Lidar (SFL) data. Second, there was a strong correlation between the L-band Capon beam forming profile in HH and HV polarizations with Land Vegetation Ice Sensor (LVIS) Level 1B waveform Lidar over different kinds of forest in Gabon Lopé National Park. Finally, forest top height from the L-band data was estimated and validated with SFL data, resulting in a root mean square error of 3 m and coefficient of determination of 0.92. The results demonstrate that L-band TomoSAR is capable of characterizing 3-D structure of tropical forests. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

Back to TopTop