Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (472)

Search Parameters:
Keywords = Acrylonitrile Butadiene Styrene (ABS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1758 KiB  
Case Report
3D Printing Today, AI Tomorrow: Rethinking Apert Syndrome Surgery in Low-Resource Settings
by Maria Bajwa, Mustafa Pasha and Zafar Bajwa
Healthcare 2025, 13(15), 1844; https://doi.org/10.3390/healthcare13151844 - 29 Jul 2025
Viewed by 239
Abstract
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D [...] Read more.
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D printing as a simulation tool for preoperative planning in low-resource environments and (2) identify opportunities for future AI-enhanced simulation models in craniofacial surgical planning. Methods: High-resolution CT data were segmented using InVesalius 3, with mesh refinement performed in ANSYS SpaceClaim (version 2021). The cranial model was fabricated using fused deposition modeling (FDM) on a Creality Ender-3 printer with Acrylonitrile Butadiene Styrene (ABS) filament. Results: The resulting 3D-printed simulated model enabled the surgical team to assess cranial anatomy, simulate incision placement, and rehearse osteotomies. These steps contributed to a reduction in operative time and fewer complications during surgery. Conclusions: This case demonstrates the value of accessible 3D printing as a simulation tool in surgical planning within low-resource settings. Building on this success, the study highlights potential points for AI integration, such as automated image segmentation and model reconstruction, to increase efficiency and scalability in future 3D-printed simulation models. Full article
Show Figures

Figure 1

33 pages, 3709 KiB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Viewed by 319
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Graphical abstract

15 pages, 2217 KiB  
Article
Energy-Based Approach for Fatigue Life Prediction of Additively Manufactured ABS/GNP Composites
by Soran Hassanifard and Kamran Behdinan
Polymers 2025, 17(15), 2032; https://doi.org/10.3390/polym17152032 - 25 Jul 2025
Viewed by 272
Abstract
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. [...] Read more.
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. The required stress and strain values for use in energy-based models were obtained by solving two sets of Neuber and Ramberg–Osgood equations, utilizing the available values of notch strength reduction factors at each load level and the average Young modulus for each composite material. Results revealed that none of the studied energy-based models could accurately predict the fatigue life of the samples across the entire high- and low-cycle fatigue regimes, with strong dependence on the stress ratio (R). Instead, a novel fatigue life prediction model was developed by combining two existing energy-based models, incorporating stress ratio dependence for cases with negative mean stress. This model was tested for R values roughly between −0.22 and 0. Results showed that, for all samples at each raster orientation, most of the predicted fatigue lives fell within the upper and lower bounds, with a factor of ±2 across the entire range of load levels. These findings highlight the reliability of the proposed model for a wide range of R values when mean stress is negative. Full article
Show Figures

Figure 1

23 pages, 1998 KiB  
Article
Hybrid Experimental–Machine Learning Study on the Mechanical Behavior of Polymer Composite Structures Fabricated via FDM
by Osman Ulkir and Sezgin Ersoy
Polymers 2025, 17(15), 2012; https://doi.org/10.3390/polym17152012 - 23 Jul 2025
Viewed by 300
Abstract
This study explores the mechanical behavior of polymer and composite specimens fabricated using fused deposition modeling (FDM), focusing on three material configurations: acrylonitrile butadiene styrene (ABS), carbon fiber-reinforced polyphthalamide (PPA/Cf), and a sandwich-structured composite. A systematic experimental plan was developed using the Box–Behnken [...] Read more.
This study explores the mechanical behavior of polymer and composite specimens fabricated using fused deposition modeling (FDM), focusing on three material configurations: acrylonitrile butadiene styrene (ABS), carbon fiber-reinforced polyphthalamide (PPA/Cf), and a sandwich-structured composite. A systematic experimental plan was developed using the Box–Behnken design (BBD) to investigate the effects of material type (MT), infill pattern (IP), and printing direction (PD) on tensile and flexural strength. Experimental results showed that the PPA/Cf material with a “Cross” IP printed “Flat” yielded the highest mechanical performance, achieving a tensile strength of 75.8 MPa and a flexural strength of 102.3 MPa. In contrast, the lowest values were observed in ABS parts with a “Grid” pattern and “Upright” orientation, recording 37.8 MPa tensile and 49.5 MPa flexural strength. Analysis of variance (ANOVA) results confirmed that all three factors significantly influenced both outputs (p < 0.001), with MT being the most dominant factor. Machine learning (ML) algorithms, Bayesian linear regression (BLR), and Gaussian process regression (GPR) were employed to predict mechanical performance. GPR achieved the best overall accuracy with R2 = 0.9935 and MAPE = 11.14% for tensile strength and R2 = 0.9925 and MAPE = 12.96% for flexural strength. Comparatively, the traditional BBD yielded slightly lower performance with MAPE = 13.02% and R2 = 0.9895 for tensile strength. Validation tests conducted on three unseen configurations clearly demonstrated the generalization capability of the models. Based on actual vs. predicted values, the GPR yielded the lowest average prediction errors, with MAPE values of 0.54% for tensile and 0.45% for flexural strength. In comparison, BLR achieved 0.79% and 0.60%, while BBD showed significantly higher errors at 1.76% and 1.32%, respectively. Full article
Show Figures

Figure 1

29 pages, 7403 KiB  
Article
Development of Topologically Optimized Mobile Robotic System with Machine Learning-Based Energy-Efficient Path Planning Structure
by Hilmi Saygin Sucuoglu
Machines 2025, 13(8), 638; https://doi.org/10.3390/machines13080638 - 22 Jul 2025
Viewed by 434
Abstract
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components [...] Read more.
This study presents the design and development of a structurally optimized mobile robotic system with a machine learning-based energy-efficient path planning framework. Topology optimization (TO) and finite element analysis (FEA) were applied to reduce structural weight while maintaining mechanical integrity. The optimized components were manufactured using Fused Deposition Modeling (FDM) with ABS (Acrylonitrile Butadiene Styrene) material. A custom power analysis tool was developed to compare energy consumption between the optimized and initial designs. Real-world current consumption data were collected under various terrain conditions, including inclined surfaces, vibration-inducing obstacles, gravel, and direction-altering barriers. Based on this dataset, a path planning model was developed using machine learning algorithms, capable of simultaneously optimizing both energy efficiency and path length to reach a predefined target. Unlike prior works that focus separately on structural optimization or learning-based navigation, this study integrates both domains within a single real-world robotic platform. Performance evaluations demonstrated superior results compared to traditional planning methods, which typically optimize distance or energy independently and lack real-time consumption feedback. The proposed framework reduces total energy consumption by 5.8%, cuts prototyping time by 56%, and extends mission duration by ~20%, highlighting the benefits of jointly applying TO and ML for sustainable and energy-aware robotic design. This integrated approach addresses a critical gap in the literature by demonstrating that mechanical light-weighting and intelligent path planning can be co-optimized in a deployable robotic system using empirical energy data. Full article
(This article belongs to the Special Issue Design and Manufacturing: An Industry 4.0 Perspective)
Show Figures

Figure 1

13 pages, 4275 KiB  
Article
Integrating Recycled Acrylonitrile–Butadiene–Styrene Plastics from Electronic Waste with Carbon Black for Sustainable Asphalt Production
by Sepehr Mohammadi, Dongzhao Jin and Zhanping You
Infrastructures 2025, 10(7), 181; https://doi.org/10.3390/infrastructures10070181 - 11 Jul 2025
Cited by 1 | Viewed by 335
Abstract
As the global demand for electronic equipment continues to grow, many devices are being replaced more frequently, resulting in a rapid rise in electronic waste (e-waste), now the fastest growing waste stream worldwide. Motivated by this, the objective of this study is to [...] Read more.
As the global demand for electronic equipment continues to grow, many devices are being replaced more frequently, resulting in a rapid rise in electronic waste (e-waste), now the fastest growing waste stream worldwide. Motivated by this, the objective of this study is to present an environmentally friendly method to recycle acrylonitrile–butadiene–styrene (ABS), one of the most common e-waste plastics, by using it for asphalt production. In contrast to earlier methods of plastic-modified asphalt production involving complex pretreatments or complimentary additives unsuitable for plant-scale use, this study aims to demonstrate a practical, low-cost solution through the use of carbon black. This approach included physically pretreating ABS plastics for size reduction and incorporating waste tire-derived carbon black to promote effective dispersion in asphalt during wet modification. The rheological properties of the e-waste-modified asphalt were subsequently assessed. The test results indicated that recycling ABS plastics with a blending content of 5% alongside 5% carbon black can enhance cold-weather cracking resistance and high-temperature anti-rutting performance of asphalt. The enhancement can be attributed to the proper preparation procedures of ABS plastics and the addition of carbon black, which can further improve the performance by promoting the proper dispersion of plastic particles in asphalt. The outcome of this study indicates that recycling e-waste plastics through asphalt production can lead to more green and sustainable asphalt construction, reduce total construction costs, and most importantly enhance performance. Full article
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
The Effect of Poly (Methyl Methacrylate) Content on Chemical, Thermomechanical, Mechanical, and Fatigue Life Characteristics of Ternary PC/ABS/PMMA Blends
by Hamdi Kuleyin and Recep Gümrük
Polymers 2025, 17(14), 1905; https://doi.org/10.3390/polym17141905 - 10 Jul 2025
Viewed by 520
Abstract
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as [...] Read more.
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as tensile, impact, and fatigue tests, were conducted. The results indicate that the viscoelastic modulus improves with increasing PMMA content in ternary blends. Furthermore, PC/ABS/PMMA blends exhibit an immiscible phase morphology. The elastic modulus, yield strength, and tensile strength increase with higher PMMA content, while the elongation at break and impact strength decrease. Fatigue strength and the fatigue strength exponent were found to vary nonlinearly with PMMA content. Compared to PC/ABS blends, PC/ABS/PMMA blends demonstrated improvements of approximately 12% to 58% and 26% to 117% in hysteresis energy and the dynamic elastic modulus, respectively. Additionally, fatigue life cycles improved by 5% to 11% at low stress amplitudes. This experimental study provides comprehensive insight into the complex interplay among the chemical, thermomechanical, mechanical, and fatigue properties of ternary PC/ABS/PMMA blends, highlighting their potential for applications requiring balanced or tailored structural and material characteristics. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

22 pages, 3012 KiB  
Article
Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
by İsmet Onur Ünal, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal and Nergizhan Anaç
Polymers 2025, 17(14), 1902; https://doi.org/10.3390/polym17141902 - 9 Jul 2025
Viewed by 471
Abstract
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics [...] Read more.
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics produced by 3D printing have gained prominence in applications traditionally dominated by conventional plastic materials. Therefore, producing marine-grade materials—such as acrylonitrile butadiene styrene (ABS), which has long been used in the maritime sector—through 3D printing, and understanding their long-term performance, has become increasingly important. In this study, the mechanical behavior, surface roughness, and color changes of ABS+ materials in three different colors (yellow, green, and blue) and with three different infill ratios (50%, 75%, and 100%) were investigated after a salt spray test. Following the salt spray exposure, tensile and bending tests, hardness measurements, surface roughness analyses, and color measurements were conducted and compared with reference samples. The results were evaluated based on filament color and infill ratio. This study underscores the importance of color selection—along with mechanical strength—when designing 3D-printed materials for long-term use in saltwater environments. Full article
(This article belongs to the Special Issue Polymer Processing: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

22 pages, 8872 KiB  
Article
Comprehensive Sliding Wear Analysis of 3D-Printed ABS, PLA, and HIPS: ANOVA, SEM Examination, and Wear Volume Measurements with Varying Layer Thickness
by Sinan Fidan, Satılmış Ürgün, Alp Eren Şahin, Mustafa Özgür Bora, Taner Yılmaz and Mehmet İskender Özsoy
Polymers 2025, 17(14), 1899; https://doi.org/10.3390/polym17141899 - 9 Jul 2025
Viewed by 436
Abstract
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at [...] Read more.
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at various thickness levels (0.1, 0.2, and 0.3 mm) and sliding distances. Lastly, SEM analysis was carried out to study the wear tracks and debris developed during the testing. Quantitatively, ABS maintained a mean wear volume below 0.15 mm3 across all test conditions (e.g., 0.05 ± 0.01 mm3 at 0.1 mm layer thickness and 150 m sliding distance), whereas PLA and HIPS recorded much higher averages of 1.5 mm3 and 3.0 mm3, respectively. With the increase in layer thickness, which caused an upward trend in the obtained results, the wear volume of the investigated materials also increased. ABS exhibited the smallest material loss of all three polymers; for example, at 0.1 mm layer thickness and a 150 m sliding distance, the mean wear volume was only 0.05 mm3, and even under the harshest condition tested (0.3 mm layer thickness, 300 m), the value remained below 0.15 mm3. PLA and HIPS showed higher wear volumes, while HIPS had the lowest resistance among the three materials. The multifunctional wear behavior difference contributed by material type was 59.76%, as shown through ANOVA, and that by layer thickness was 21.32%. Among the parameters investigated, material type had the largest control in wear behavior due to inherent variation in the structural characteristics of the material such as interlayer adhesion, toughness, and brittleness. For instance, the amorphous nature of ABS and its good layer adhesion provided significantly superior wear resistance compared to the brittle PLA and the poorly adhered HIPS. It is highlighted in this research that selecting appropriate material and layer thickness combinations can improve the durability of 3D-printed components. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 6286 KiB  
Article
Thermal Degradation and Flame Resistance Mechanism of Phosphorous-Based Flame Retardant of ABS Composites Used in 3D Printing Technology
by Rafał Oliwa, Katarzyna Bulanda and Mariusz Oleksy
Materials 2025, 18(13), 3202; https://doi.org/10.3390/ma18133202 - 7 Jul 2025
Viewed by 324
Abstract
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis [...] Read more.
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis (2,6-dimethylphenyl)-m-phenylenebisphosphate, commercially known as PX200. The effect of the presence and amount (5, 10, 15 and 20 wt.%) of the introduced additive on the rheological properties, structural properties, flammability (limiting oxygen index, LOI; UL94) and flame retardant properties (microcone calorimeter, MLC) of ABS-based composites was investigated. In addition, the mechanism of thermal degradation and flame resistance was investigated using thermogravimetric analysis, TGA and Fourier transform infrared spectroscopy, FT-IR of the residue after the MLC test. In the first part of the work, using the author’s technological line, filaments were obtained from unfilled ABS and its composites. Samples for testing were obtained by 3D printing in Fused Deposition Modeling (FDM) technology. In order to determine the quantitative and qualitative spread of fire and the effectiveness of the phosphorus flame retardant PX200 in the produced composites, the Maximum Average Rate of Heat Emission (MARHE); Fire Growth Rate Index (FIGRA); Fire Potential Index (FPI) and Flame Retardancy Index (FRI) were determined. Based on the obtained results, it was found that the aryl biphosphate used in this work exhibits activity in the gas phase, which was confirmed by quantitative assessment using data from a microcone calorimeter and non-residues after combustion and thermolysis at 700 °C. As a result, the flammability class did not change (HB40), and the LOI slightly increased to 20% for the composite with 20% flame retardant content. Moreover, this composite was characterized by the following flammability indices: pHRR = 482.9 kW/m2 (−40.3%), MARHE = 234 kW/m2 (−40.7%), FIGRA = 3.1 kW/m2·s (−56.3%), FPI = 0.061 m2·s/kW (+64.9%), FRI = 2.068 (+106.8%). Full article
(This article belongs to the Special Issue 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

23 pages, 2793 KiB  
Article
Doping Carbon Coating on Glass Fiber to Enhance Its Reinforcing Potential in a Polymer Matrix
by Siok Wei Tay, Inez Lau and Liang Hong
J. Compos. Sci. 2025, 9(7), 348; https://doi.org/10.3390/jcs9070348 - 6 Jul 2025
Viewed by 455
Abstract
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix [...] Read more.
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix to form the composite. The carbon coating was produced by pyrolyzing a lubricant oil (Lo) layer applied to the glass fiber strands. To promote the formation of graphite crystallites during carbonization, a small amount (x wt.% of Lo) of coronene (Cor) was added to Lo as a dopant. The resulting doped fibers, denoted GF@CLo-Cor(x%), were embedded in ABS at 70 wt.%, leading to significant improvements in mechanical properties. At the optimal doping level (x = 5), the composite achieved a Young’s modulus of 1.02 GPa and a tensile strength of 6.96 MPa, substantially higher than the 0.4 GPa and 3.81 MPa observed for the composite with the pristine GF. This enhancement is attributed to a distribution of graphite crystallites and their graphitization extent in the carbon coating, which improves interfacial bonding and increases chain entanglement. Additionally, GF@CLo-Cor(x%)–ABS composites (x = 0 and 5) exhibit significantly higher dielectric constant–temperature profiles than GF–ABS, attributed to the formation of diverse chain adsorption states on the C-coating. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 4087 KiB  
Article
Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
by I. S. ELDeeb, Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed and Mohamed Egiza
J. Manuf. Mater. Process. 2025, 9(7), 221; https://doi.org/10.3390/jmmp9070221 - 1 Jul 2025
Viewed by 689
Abstract
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene [...] Read more.
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA), aiming to determine optimal conditions for enhanced strength. ASTM D638-Type IV specimens were printed using nozzle diameters ranging from 0.05 to 0.25 mm and speeds from 15 to 80 mm/s. For ABS, tensile strength increased from 56.46 MPa to 60.74 MPa, representing a 7.6% enhancement, as nozzle diameter increased, with the best performance observed at 0.25 mm and 45 mm/s, attributed to improved melt flow and interlayer fusion. PLA exhibited a non-linear response, reaching a maximum strength of 89.59 MPa under the same conditions, marking a 22.3% enhancement over the minimum value. The superior performance of PLA was linked to optimal thermal management that enhanced crystallinity and interlayer bonding. Fractographic analysis revealed reduced porosity and smoother fracture surfaces under optimized conditions. Overall, PLA consistently outperformed ABS across all settings, with an average tensile strength advantage of 47.5%. The results underscore the need for material-specific parameter tuning in FFF and offer practical insights for optimizing mechanical performance in applications demanding high structural integrity, including biomedical, aerospace, and functional prototyping. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
The Effect of Injection Molding Processing Parameters on Chrome-Plated Acrylonitrile Butadiene Styrene-Based Automotive Parts: An Industrial Scale
by Yunus Emre Polat, Mustafa Oksuz, Aysun Ekinci, Murat Ates and Ismail Aydin
Polymers 2025, 17(13), 1787; https://doi.org/10.3390/polym17131787 - 27 Jun 2025
Viewed by 574
Abstract
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is [...] Read more.
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is generally preferred in the production of decorative plastic parts in the automotive industry. In this study, the effect of injection molding processing parameters on the metal–polymer adhesion of chrome-plated acrylonitrile butadiene styrene (ABS) was investigated. The ABS-based front grille frames are fabricated by means of using an industrial-scale injection molding machine. Then, the fabricated ABS-based front grille frame was plated with chrome by means of the electroplating method. The metal–polymer adhesion was investigated as a function of the injection molding processing parameters by means of a cross-cut test and scanning electron microscope (SEM). As a result, it was determined that the optimal injection process parameters, a cooling time of 18 s, a mold temperature of 70 °C, injection rates of 45-22-22-20-15-10 mm/s, and packing pressures of 110-100-100 bar, were effective in enhancing polymer–metal adhesion for the ABS-based front grille frame. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

23 pages, 4929 KiB  
Article
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits
by Liguan Li, Di Lan, Xu Han, Tinghung Liu, Julio Dewdney, Adnan Zaman, Ugur Guneroglu, Carlos Molina Martinez and Jing Wang
Micromachines 2025, 16(7), 755; https://doi.org/10.3390/mi16070755 - 26 Jun 2025
Cited by 1 | Viewed by 418
Abstract
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 [...] Read more.
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 2875 KiB  
Article
Potential Use of Residual Powder Generated in Cork Stopper Industry as Valuable Additive to Develop Biomass-Based Composites for Injection Molding
by Ismael Romero-Ocaña, Miriam Herrera, Natalia Fernández-Delgado and Sergio I. Molina
J. Compos. Sci. 2025, 9(7), 330; https://doi.org/10.3390/jcs9070330 - 26 Jun 2025
Viewed by 336
Abstract
This study presents the development of a sustainable composite material by incorporating by-products from the cork industry into acrylonitrile butadiene styrene (ABS), with the aim of reducing the environmental impact of plastic composites while maintaining their performance. ABS, a petroleum-based polymer, was used [...] Read more.
This study presents the development of a sustainable composite material by incorporating by-products from the cork industry into acrylonitrile butadiene styrene (ABS), with the aim of reducing the environmental impact of plastic composites while maintaining their performance. ABS, a petroleum-based polymer, was used as the matrix, and maleic anhydride (MAH) with dicumyl peroxide (DCP) served as a compatibilizing system to improve interfacial adhesion with cork microparticles. Composites were prepared with 10% w/w cork in various particle sizes and characterized via FTIR, X-ray computed tomography, SEM, mechanical testing, and thermal analysis. The best performing formulation (CPC-125) showed a reduction of only ~16% in tensile modulus and ~7% in tensile strength compared with ABS-g-MAH, with a more pronounced decrease in strain at break (3.23% vs. 17.47%) due to the cork’s inherent rigidity. Thermogravimetric and calorimetric analysis confirmed that thermal stability and processing temperatures remained largely unaffected. These results demonstrate the feasibility of incorporating cork microparticles as a bio-based reinforcing filler in ABS composites, offering a promising strategy to reduce the use of virgin plastics in applications compatible with conventional injection molding. Full article
Show Figures

Figure 1

Back to TopTop