Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = AI project management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
19 pages, 623 KiB  
Article
Food Waste Reduction AI Technologies in Restaurant Management: An MS-TORO Approach
by Roxanne Cejas
Processes 2025, 13(8), 2419; https://doi.org/10.3390/pr13082419 - 30 Jul 2025
Viewed by 191
Abstract
This study analyzes artificial intelligence (AI)-based technologies for food waste reduction in restaurant management, particularly in the case of the Philippines. Using the multiple-stakeholder target-oriented robust-optimization (MS-TORO) approach, AI solutions are ranked based on cost, feasibility, infrastructure requirements, and effectiveness. The key findings [...] Read more.
This study analyzes artificial intelligence (AI)-based technologies for food waste reduction in restaurant management, particularly in the case of the Philippines. Using the multiple-stakeholder target-oriented robust-optimization (MS-TORO) approach, AI solutions are ranked based on cost, feasibility, infrastructure requirements, and effectiveness. The key findings highlight that Too Good To Go is the most practical AI solution due to its affordability and focus on surplus food redistribution, making it ideal for resource-limited settings. The study emphasizes the need for government support, financial incentives, and public–private partnerships to facilitate AI adoption. Additionally, integrating AI-driven waste reduction with food security initiatives and sustainability projects can enhance their impact. Addressing economic and infrastructural challenges is crucial for maximizing AI’s potential in food waste management in developing economies. Full article
(This article belongs to the Special Issue Research and Optimization of Food Processing Technology)
Show Figures

Figure 1

19 pages, 338 KiB  
Article
Top Management Challenges in Using Artificial Intelligence for Sustainable Development Goals: An Exploratory Case Study of an Australian Agribusiness
by Amanda Balasooriya and Darshana Sedera
Sustainability 2025, 17(15), 6860; https://doi.org/10.3390/su17156860 - 28 Jul 2025
Viewed by 290
Abstract
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life [...] Read more.
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life on Land (SDG 15). However, such implementations are fraught with multifaceted challenges. This study explores the technological, organizational, and environmental challenges confronting top management in the agricultural sector utilizing the technological–organizational–environmental framework. As interest in AI-enabled sustainable initiatives continues to rise globally, this exploration is timely and relevant. The study employs an interpretive case study approach, drawing insights from a carbon sequestration project within the agricultural sector where AI technologies have been integrated to support sustainability goals. The findings reveal six key challenges: sustainable policy inconsistency, AI experts lacking farming knowledge, farmers’ resistance to change, limited knowledge and expertise to deploy AI, missing links in the existing system, and transition costs, which often hinder the achievement of long-term sustainability outcomes. This study emphasizes the importance of field realities and cross-disciplinary collaboration to optimize the role of AI in sustainability efforts. Full article
Show Figures

Figure 1

25 pages, 2183 KiB  
Article
Advancing Semantic Enrichment Compliance in BIM: An Ontology-Based Framework and IDS Evaluation
by Tomo Cerovšek and Mohamed Omar
Buildings 2025, 15(15), 2621; https://doi.org/10.3390/buildings15152621 - 24 Jul 2025
Viewed by 366
Abstract
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of [...] Read more.
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of the Information Delivery Specification (IDS) and its associated tools. The controlled vocabularies are important as they provide support to standardization, information retrieval, data-driven workflows, and AI integration. Information requirements are classified by input type and project interaction context (phase, origin, project role, and communication), as well as by applicability (data management function, model granularity, BIM usage, and checkability). The ontology comprises seven categories: identity, geometry, design/performance, fabrication/construction, operation/maintenance, cost, and regulatory category, each linked to verification principles such as uniqueness and consistency. This enables systematic implementation of validation checks aligned with company and project needs. We introduce three ICC workflows in relation to the BIM authoring tools (inside, outside, and hybrid) and suggest key criteria for the functional and non-functional evaluation of IDS tools. Empirical results from a real project using five IDS tools reveal implementation issues with the classification facet, regular expressions, and issue reporting. The proposed ontology and framework lay the foundation for a scalable, transparent ICC within openBIM. The results also provide ICC process guidance for practitioners, a SWOT analysis that can inform enhancements to the existing IDS schema, identify possible inputs for certification of IDS tools, and generate innovative ideas for research and development. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

34 pages, 1835 KiB  
Article
Advancing Neurodegenerative Disease Management: Technical, Ethical, and Regulatory Insights from the NeuroPredict Platform
by Marilena Ianculescu, Lidia Băjenaru, Ana-Mihaela Vasilevschi, Maria Gheorghe-Moisii and Cristina-Gabriela Gheorghe
Future Internet 2025, 17(7), 320; https://doi.org/10.3390/fi17070320 - 21 Jul 2025
Viewed by 223
Abstract
On a worldwide scale, neurodegenerative diseases, including multiple sclerosis, Parkinson’s, and Alzheimer’s, face considerable healthcare challenges demanding the development of novel approaches to early detection and efficient treatment. With its ability to provide real-time patient monitoring, customized medical care, and advanced predictive analytics, [...] Read more.
On a worldwide scale, neurodegenerative diseases, including multiple sclerosis, Parkinson’s, and Alzheimer’s, face considerable healthcare challenges demanding the development of novel approaches to early detection and efficient treatment. With its ability to provide real-time patient monitoring, customized medical care, and advanced predictive analytics, artificial intelligence (AI) is fundamentally transforming the way healthcare is provided. Through the integration of wearable physiological sensors, motion sensors, and neurological assessment tools, the NeuroPredict platform harnesses AI and smart sensor technologies to enhance the management of specific neurodegenerative diseases. Machine learning algorithms process these data flows to find patterns that point out disease evolution. This paper covers the design and architecture of the NeuroPredict platform, stressing the ethical and regulatory requirements that guide its development. Initial development of AI algorithms for disease monitoring, technical achievements, and constant enhancements driven by early user feedback are addressed in the discussion section. To ascertain the platform’s trustworthiness and data security, it also points towards risk analysis and mitigation approaches. The NeuroPredict platform’s capability for achieving AI-driven smart healthcare solutions is highlighted, even though it is currently in the development stage. Subsequent research is expected to focus on boosting data integration, expanding AI models, and providing regulatory compliance for clinical application. The current results are based on incremental laboratory tests using simulated user roles, with no clinical patient data involved so far. This study reports an experimental technology evaluation of modular components of the NeuroPredict platform, integrating multimodal sensors and machine learning pipelines in a laboratory-based setting, with future co-design and clinical validation foreseen for a later project phase. Full article
(This article belongs to the Special Issue Artificial Intelligence-Enabled Smart Healthcare)
Show Figures

Figure 1

27 pages, 839 KiB  
Article
AI-Powered Forecasting of Environmental Impacts and Construction Costs to Enhance Project Management in Highway Projects
by Joon-Soo Kim
Buildings 2025, 15(14), 2546; https://doi.org/10.3390/buildings15142546 - 19 Jul 2025
Viewed by 321
Abstract
The accurate early-stage estimation of environmental load (EL) and construction cost (CC) in road infrastructure projects remains a significant challenge, constrained by limited data and the complexity of construction activities. To address this, our study proposes a machine learning-based predictive framework utilizing artificial [...] Read more.
The accurate early-stage estimation of environmental load (EL) and construction cost (CC) in road infrastructure projects remains a significant challenge, constrained by limited data and the complexity of construction activities. To address this, our study proposes a machine learning-based predictive framework utilizing artificial neural networks (ANNs) and deep neural networks (DNNs), enhanced by autoencoder-driven feature selection. A structured dataset of 150 completed national road projects in South Korea was compiled, covering both planning and design phases. The database focused on 19 high-impact sub-work types to reduce noise and improve prediction precision. A hybrid imputation approach—combining mean substitution with random forest regression—was applied to handle 4.47% missing data in the design-phase inputs, reducing variance by up to 5% and improving data stability. Dimensionality reduction via autoencoder retained 16 core variables, preserving 97% of explanatory power while minimizing redundancy. ANN models benefited from cross-validation and hyperparameter tuning, achieving consistent performance across training and validation sets without overfitting (MSE = 0.06, RMSE = 0.24). The optimal ANN yielded average error rates of 29.8% for EL and 21.0% for CC at the design stage. DNN models, with their deeper architectures and dropout regularization, further improved performance—achieving 27.1% (EL) and 17.0% (CC) average error rates at the planning stage and 24.0% (EL) and 14.6% (CC) at the design stage. These results met all predefined accuracy thresholds, underscoring the DNN’s advantage in handling complex, high-variance data while the ANN excelled in structured cost prediction. Overall, the synergy between deep learning and autoencoder-based feature selection offers a scalable and data-informed approach for enhancing early-stage environmental and economic assessments in road infrastructure planning—supporting more sustainable and efficient project management. Full article
Show Figures

Figure 1

27 pages, 1666 KiB  
Article
Artificial Intelligence and Environmental Sustainability Playbook for Energy Sector Leaders
by Abdullah Abonamah, Salah Hassan and Tena Cale
Sustainability 2025, 17(14), 6529; https://doi.org/10.3390/su17146529 - 17 Jul 2025
Viewed by 552
Abstract
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies [...] Read more.
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies for sustainability management with approaches suitable for industrial needs. The playbook provides an industry-specific framework along with strategies and AI-based solutions to help organizations overcome their sustainability challenges. Predictive analytics combined with smart grid management implemented through AI applications produced 15% less energy waste and reduced carbon emissions by 20% according to industry pilot project data. AI has proven its transformative capabilities by optimizing energy consumption while detecting inefficiencies to create both operational improvements and cost savings. The real-time monitoring capabilities of AI systems help companies meet strict environmental regulations and international climate goals by optimizing resource use and waste reduction, supporting circular economy practices for sustainable operations and enduring profitability. Leaders can establish impactful technology-based sustainability initiatives through the playbook which addresses the energy sector requirements for corporate goals and regulatory standards. Full article
Show Figures

Figure 1

24 pages, 4383 KiB  
Article
Predicting Employee Attrition: XAI-Powered Models for Managerial Decision-Making
by İrem Tanyıldızı Baydili and Burak Tasci
Systems 2025, 13(7), 583; https://doi.org/10.3390/systems13070583 - 15 Jul 2025
Viewed by 493
Abstract
Background: Employee turnover poses a multi-faceted challenge to organizations by undermining productivity, morale, and financial stability while rendering recruitment, onboarding, and training investments wasteful. Traditional machine learning approaches often struggle with class imbalance and lack transparency, limiting actionable insights. This study introduces an [...] Read more.
Background: Employee turnover poses a multi-faceted challenge to organizations by undermining productivity, morale, and financial stability while rendering recruitment, onboarding, and training investments wasteful. Traditional machine learning approaches often struggle with class imbalance and lack transparency, limiting actionable insights. This study introduces an Explainable AI (XAI) framework to achieve both high predictive accuracy and interpretability in turnover forecasting. Methods: Two publicly available HR datasets (IBM HR Analytics, Kaggle HR Analytics) were preprocessed with label encoding and MinMax scaling. Class imbalance was addressed via GAN-based synthetic data generation. A three-layer Transformer encoder performed binary classification, and SHapley Additive exPlanations (SHAP) analysis provided both global and local feature attributions. Model performance was evaluated using accuracy, precision, recall, F1 score, and ROC AUC metrics. Results: On the IBM dataset, the Generative Adversarial Network (GAN) Transformer model achieved 92.00% accuracy, 96.67% precision, 87.00% recall, 91.58% F1, and 96.32% ROC AUC. On the Kaggle dataset, it reached 96.95% accuracy, 97.28% precision, 96.60% recall, 96.94% F1, and 99.15% ROC AUC, substantially outperforming classical resampling methods (ROS, SMOTE, ADASYN) and recent literature benchmarks. SHAP explanations highlighted JobSatisfaction, Age, and YearsWithCurrManager as top predictors in IBM and number project, satisfaction level, and time spend company in Kaggle. Conclusion: The proposed GAN Transformer SHAP pipeline delivers state-of-the-art turnover prediction while furnishing transparent, actionable insights for HR decision-makers. Future work should validate generalizability across diverse industries and develop lightweight, real-time implementations. Full article
Show Figures

Figure 1

24 pages, 911 KiB  
Article
Integrated Process-Oriented Approach for Digital Authentication of Honey in Food Quality and Safety Systems—A Case Study from a Research and Development Project
by Joanna Katarzyna Banach, Przemysław Rujna and Bartosz Lewandowski
Appl. Sci. 2025, 15(14), 7850; https://doi.org/10.3390/app15147850 - 14 Jul 2025
Viewed by 309
Abstract
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical [...] Read more.
The increasing scale of honey adulteration poses a significant challenge for modern food quality and safety management systems. Honey authenticity, defined as the conformity of products with their declared botanical and geographical origin, is challenging to verify solely through documentation and conventional physicochemical analyses. This study presents an integrated, process-oriented approach for digital honey authentication, building on initial findings from an interdisciplinary research and development project. The approach includes the creation of a comprehensive digital pollen database and the application of AI-driven image segmentation and classification methods. The developed system is designed to support decision-making processes in quality assessment and VACCP (Vulnerability Assessment and Critical Control Points) risk evaluation, enhancing the operational resilience of honey supply chains against fraudulent practices. This study aligns with current trends in the digitization of food quality management and the use of Industry 4.0 technologies in the agri-food sector, demonstrating the practical feasibility of integrating AI-supported palynological analysis into industrial workflows. The results indicate that the proposed approach can significantly improve the accuracy and efficiency of honey authenticity assessments, supporting the integrity and transparency of global honey markets. Full article
(This article belongs to the Special Issue Advances in Safety Detection and Quality Control of Food)
Show Figures

Figure 1

23 pages, 2709 KiB  
Review
Digital Technologies in Urban Regeneration: A Systematic Literature Review from the Perspectives of Stakeholders, Scales, and Stages
by Xiaer Xiahou, Xingyuan Ding, Peng Chen, Yuchong Qian and Hongyu Jin
Buildings 2025, 15(14), 2455; https://doi.org/10.3390/buildings15142455 - 12 Jul 2025
Viewed by 451
Abstract
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and [...] Read more.
Urban regeneration, as a key strategy for promoting sustainable development of urban areas, requires innovative digital technologies to address increasingly complex urban challenges in its implementation. With the fast advancement of digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and big data, these technologies have extensively penetrated various dimensions of urban regeneration, from planning and design to implementation and post-operation management, providing new possibilities for improving urban regeneration efficiency and quality. However, the existing literature lacks a systematic evaluation of technology application patterns across different project scales and phases, comprehensive analysis of stakeholder–technology interactions, and quantitative assessment of technology distribution throughout the urban regeneration lifecycle. This research gap limits the in-depth understanding of how digital technologies can better support urban regeneration practices. This study aims to identify and quantify digital technology application patterns across urban regeneration stages, scales, and stakeholder configurations through systematic analysis of 56 high-quality articles from the Scopus and Web of Science databases. Using a mixed-methods approach combining a systematic literature review, bibliometric analysis, and meta-analysis, we categorized seven major digital technology types and analyzed their distribution patterns. Key findings reveal distinct temporal patterns: GIS and BIM/CIM technologies dominate in the pre-urban regeneration (Pre-UR) stage (10% and 12% application proportions, respectively). GIS applications increase significantly to 14% in post-urban regeneration (Post-UR) stage, while AI technology remains underutilized across all phases (2% in Pre-UR, decreasing to 1% in Post-UR). Meta-analysis reveals scale-dependent technology adoption patterns, with different technologies showing varying effectiveness at building-level, district-level, and city-level implementations. Research challenges include stakeholder digital divides, scale-dependent adoption barriers, and phase-specific implementation gaps. This study constructs a multi-dimensional analytical framework for digital technology support in urban regeneration, providing quantitative evidence for optimizing technology selection strategies. The framework offers practical guidance for policymakers and practitioners in developing context-appropriate digital technology deployment strategies for urban regeneration projects. Full article
Show Figures

Figure 1

29 pages, 1606 KiB  
Article
BIM and AI Integration for Dynamic Schedule Management: A Practical Framework and Case Study
by Heap-Yih Chong, Xinyi Yang, Cheng Siew Goh and Yan Luo
Buildings 2025, 15(14), 2451; https://doi.org/10.3390/buildings15142451 - 12 Jul 2025
Viewed by 878
Abstract
Traditional project scheduling tools like Gantt charts struggle with dynamic adjustments and real-time optimization in complex construction projects, leading to inefficiencies and delays. This study addresses this challenge by proposing a dynamic optimization framework that integrates Building Information Modeling (BIM) and Artificial Intelligence [...] Read more.
Traditional project scheduling tools like Gantt charts struggle with dynamic adjustments and real-time optimization in complex construction projects, leading to inefficiencies and delays. This study addresses this challenge by proposing a dynamic optimization framework that integrates Building Information Modeling (BIM) and Artificial Intelligence (AI) to enhance schedule management. The framework comprises three layers: a data layer for collecting BIM and real-time site data, an analysis layer powered by AI algorithms for predictive analytics and optimization, and an application layer for visualizing progress and supporting decision-making. Through a case study on a large-scale water reservoir tunnel project in China, the framework demonstrated significant improvements in identifying schedule risks, optimizing resource allocation, and enabling real-time adjustments. Key innovations include a 4-in-1 Network Diagram Engine and a Blueprint Engine, which facilitate intuitive progress monitoring and automated task management. However, limitations in personnel skill matching, interface complexity, and mobile system performance were identified. This research advances the theoretical foundation of BIM-AI integration and provides practical insights for improving scheduling efficiency and project outcomes in the construction industry. Future work should focus on enhancing human resource management modules and refining system usability for broader adoption. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 2751 KiB  
Review
Artificial Intelligence in Construction Project Management: A Structured Literature Review of Its Evolution in Application and Future Trends
by Yetunde Adebayo, Paul Udoh, Xebiso Blessing Kamudyariwa and Oluyomi Abayomi Osobajo
Digital 2025, 5(3), 26; https://doi.org/10.3390/digital5030026 - 9 Jul 2025
Viewed by 1441
Abstract
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction [...] Read more.
The integration of Artificial Intelligence (AI) in construction project management is revolutionising the industry; offering innovative solutions to enhance efficiency, reduce costs, and improve decision making. This structured literature review explored the current applications, benefits, challenges, and future trends of AI in construction project management. This study synthesised findings from 135 peer-reviewed articles published between 1985 and 2024; representing Industry 3.0 (3IR), Industry 4.0 (4IR), and Industry 4.0 Post COVID-19 (4IR PC). Analysis showed that the Planning and Monitoring and Control phases of the project have the greatest application of AI, while decision making, prediction, optimisation, and performance improvement are the most common purposes of AI use in the construction industry. The drivers of AI adoption within the construction industry include technology availability, project outcome and performance improvement, a competitive advantage, and a focus on sustainability. Despite these advancements, the review revealed several barriers to AI adoption, including data integration issues, the high cost of AI implementation, resistance to change among stakeholders, and ethical concerns surrounding data privacy, amongst others. This review also identified future ongoing applications of AI in the construction industry, such as sustainability and energy efficiency, digital twins, advanced robotics and autonomous construction, and optimisation. By providing a comprehensive analysis of the evolution of practices and the future direction of AI application, this study serves as a resource for researchers, practitioners, and policymakers seeking to understand the evolving landscape of AI in construction project management. Full article
(This article belongs to the Special Issue AI-Driven Innovations in Ubiquitous Computing and Smart Environments)
Show Figures

Figure 1

24 pages, 4583 KiB  
Article
Enhancing Forensic Analysis of Construction Project Delays Through Digital Interventions
by Serife Ece Boyacioglu, David Greenwood, Kay Rogage and Andrew Parry
Buildings 2025, 15(14), 2391; https://doi.org/10.3390/buildings15142391 - 8 Jul 2025
Viewed by 462
Abstract
Project delays remain a persistent challenge in the construction industry, having significant financial implications and contributing to disputes between project participants. Forensic Delay Analysis (FDA) has emerged as a specialised function that identifies the root causes of such delays, quantifies their duration, and [...] Read more.
Project delays remain a persistent challenge in the construction industry, having significant financial implications and contributing to disputes between project participants. Forensic Delay Analysis (FDA) has emerged as a specialised function that identifies the root causes of such delays, quantifies their duration, and assigns responsibility to the appropriate parties. While FDA is a widely practised process, it has yet to fully exploit the potential of emerging technologies. This study explores the integration of both existing and emerging technologies for enhancing FDA processes. A Design Science Research (DSR) approach is adopted, with data collection methods that involve the use of the literature, archival materials, case studies and survey methods. The research demonstrates how the use of technologies, such as database management systems (DBMSs), building information modelling (BIM), artificial intelligence (AI) and games engines, can improve the analytical efficiency, data management, and presentation of findings through a case study. The study showcases the transformative potential of these interventions in streamlining FDA processes, ultimately leading to more accurate and efficient resolution of construction disputes. The proposed process is exemplified by the development of a prototype: the Forensic Information Modelling Visualiser (FIMViz). The FIMViz is a practical tool that has received positive evaluation by FDA experts. The prototype and the enhanced FDA process model that underpins it demonstrate significant advancement in FDA practices, promoting improved decision-making and collaboration between project participants. Further development is needed, but the results could ultimately streamline the FDA process and minimise the uncertainties in FDA outcomes, thus reducing the incidence of costly disputes to the wider economic benefit of the industry generally. Full article
Show Figures

Figure 1

15 pages, 755 KiB  
Article
Successful Management of Public Health Projects Driven by AI in a BANI Environment
by Sergiy Bushuyev, Natalia Bushuyeva, Ivan Nekrasov and Igor Chumachenko
Computation 2025, 13(7), 160; https://doi.org/10.3390/computation13070160 - 4 Jul 2025
Viewed by 376
Abstract
The management of public health projects in a BANI (brittle, anxious, non-linear, incomprehensible) environment, exemplified by the ongoing war in Ukraine, presents unprecedented challenges due to fragile systems, heightened uncertainty, and complex socio-political dynamics. This study proposes an AI-driven framework to enhance the [...] Read more.
The management of public health projects in a BANI (brittle, anxious, non-linear, incomprehensible) environment, exemplified by the ongoing war in Ukraine, presents unprecedented challenges due to fragile systems, heightened uncertainty, and complex socio-political dynamics. This study proposes an AI-driven framework to enhance the resilience and effectiveness of public health interventions under such conditions. By integrating a coupled SEIR–Infodemic–Panicdemic Model with war-specific factors, we simulate the interplay of infectious disease spread, misinformation dissemination, and panic dynamics over 1500 days in a Ukrainian city (Kharkiv). The model incorporates time-varying parameters to account for population displacement, healthcare disruptions, and periodic war events, reflecting the evolving conflict context. Sensitivity and risk–opportunity analyses reveal that disease transmission, misinformation, and infrastructure damage significantly exacerbate epidemic peaks, while AI-enabled interventions, such as fact-checking, mental health support, and infrastructure recovery, offer substantial mitigation potential. Qualitative assessments identify technical, organisational, ethical, regulatory, and military risks, alongside opportunities for predictive analytics, automation, and equitable healthcare access. Quantitative simulations demonstrate that risks, like increased displacement, can amplify infectious peaks by up to 28.3%, whereas opportunities, like enhanced fact-checking, can reduce misinformation by 18.2%. These findings provide a roadmap for leveraging AI to navigate BANI environments, offering actionable insights for public health practitioners in Ukraine and other crisis settings. The study underscores AI’s transformative role in fostering adaptive, data-driven strategies to achieve sustainable health outcomes amidst volatility and uncertainty. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Public Health: 2nd Edition)
Show Figures

Figure 1

30 pages, 3351 KiB  
Systematic Review
Applications of Building Information Modeling (BIM) and BIM-Related Technologies for Sustainable Risk and Disaster Management in Buildings: A Meta-Analysis (2014–2024)
by Jiao Wang, Yuchen Ma, Rui Li and Suxian Zhang
Buildings 2025, 15(13), 2289; https://doi.org/10.3390/buildings15132289 - 29 Jun 2025
Viewed by 690
Abstract
Sustainable risk and disaster management in the built environment has become a critical research focus amid escalating environmental challenges. Building Information Modeling (BIM) is recognized as a key digital tool for enhancing disaster resilience through simulation, data integration, and collaborative management. This study [...] Read more.
Sustainable risk and disaster management in the built environment has become a critical research focus amid escalating environmental challenges. Building Information Modeling (BIM) is recognized as a key digital tool for enhancing disaster resilience through simulation, data integration, and collaborative management. This study systematically reviews BIM applications in sustainable risk and disaster management from 2014 to 2024, employing the PRISMA framework, literature coding, and network analysis. Five primary research clusters are identified: (a) sustainable construction and life cycle assessment, (b) performance evaluation and implementation, (c) technology integration and digital innovation, (d) Historic Building Modeling (HBIM) and post-disaster reconstruction, and (e) project management and technology adoption. Despite increasing scholarly attention, the field remains dominated by conceptual studies, with limited empirical exploration of emerging technologies such as artificial intelligence (AI). Four key challenges are highlighted: weak foundational integration with structural risk research, technological bottlenecks in AI and digital applications, limited practical implementation, and insufficient linkage between sustainability and risk management. Future trends are expected to focus on achieving Industry 4.0 interoperability, advancing AI-driven intelligent disaster response, and adopting multi-objective optimization strategies balancing resilience, sustainability, and cost-effectiveness. This study provides a comprehensive overview of the field’s evolution and offers insights into strategic directions for future research and practical innovation. Full article
Show Figures

Figure 1

Back to TopTop