Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (113)

Search Parameters:
Keywords = AI for cyber-physical systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3888 KB  
Review
AI-Driven Innovations in 3D Printing: Optimization, Automation, and Intelligent Control
by Fatih Altun, Abdulcelil Bayar, Abdulhammed K. Hamzat, Ramazan Asmatulu, Zaara Ali and Eylem Asmatulu
J. Manuf. Mater. Process. 2025, 9(10), 329; https://doi.org/10.3390/jmmp9100329 - 7 Oct 2025
Abstract
By greatly increasing automation, accuracy, and flexibility at every step of the additive manufacturing process, from design and production to quality assurance, artificial intelligence (AI) is revolutionizing the 3D printing industry. The integration of AI algorithms into 3D printing systems enables real-time optimization [...] Read more.
By greatly increasing automation, accuracy, and flexibility at every step of the additive manufacturing process, from design and production to quality assurance, artificial intelligence (AI) is revolutionizing the 3D printing industry. The integration of AI algorithms into 3D printing systems enables real-time optimization of print parameters, accurate prediction of material behavior, and early defect detection using computer vision and sensor data. Machine learning (ML) techniques further streamline the design-to-production pipeline by generating complex geometries, automating slicing processes, and enabling adaptive, self-correcting control during printing—functions that align directly with the principles of Industry 4.0/5.0, where cyber-physical integration, autonomous decision-making, and human–machine collaboration drive intelligent manufacturing systems. Along with improving operational effectiveness and product uniformity, this potent combination of AI and 3D printing also propels the creation of intelligent manufacturing systems that are capable of self-learning. This confluence has the potential to completely transform sectors including consumer products, healthcare, construction, and aerospace as it develops. This comprehensive review explores how AI enhances the capabilities of 3D printing, with a focus on process optimization, defect detection, and intelligent control mechanisms. Moreover, unresolved challenges are highlighted—including data scarcity, limited generalizability across printers and materials, certification barriers in safety-critical domains, computational costs, and the need for explainable AI. Full article
Show Figures

Figure 1

27 pages, 1588 KB  
Article
Toward the Theoretical Foundations of Industry 6.0: A Framework for AI-Driven Decentralized Manufacturing Control
by Andrés Fernández-Miguel, Susana Ortíz-Marcos, Mariano Jiménez-Calzado, Alfonso P. Fernández del Hoyo, Fernando E. García-Muiña and Davide Settembre-Blundo
Future Internet 2025, 17(10), 455; https://doi.org/10.3390/fi17100455 - 3 Oct 2025
Abstract
This study advances toward establishing the theoretical foundations of Industry 6.0 by developing a comprehensive framework that integrates artificial intelligence (AI), decentralized control systems, and cyber–physical production environments for intelligent, sustainable, and adaptive manufacturing. The research employs a tri-modal methodology (deductive, inductive, and [...] Read more.
This study advances toward establishing the theoretical foundations of Industry 6.0 by developing a comprehensive framework that integrates artificial intelligence (AI), decentralized control systems, and cyber–physical production environments for intelligent, sustainable, and adaptive manufacturing. The research employs a tri-modal methodology (deductive, inductive, and abductive reasoning) to construct a theoretical architecture grounded in five interdependent constructs: advanced technology integration, decentralized organizational structures, mass customization and sustainability strategies, cultural transformation, and innovation enhancement. Unlike prior conceptualizations of Industry 6.0, the proposed framework explicitly emphasizes the cyclical feedback between innovation and organizational design, as well as the role of cultural transformation as a binding element across technological, organizational, and strategic domains. The resulting framework demonstrates that AI-driven decentralized control systems constitute the cornerstone of Industry 6.0, enabling autonomous real-time decision-making, predictive zero-defect manufacturing, and strategic organizational agility through distributed intelligent control architectures. This work contributes foundational theory and actionable guidance for transitioning from centralized control paradigms to AI-driven distributed intelligent manufacturing control systems, establishing a conceptual foundation for the emerging Industry 6.0 paradigm. Full article
(This article belongs to the Special Issue Artificial Intelligence and Control Systems for Industry 4.0 and 5.0)
Show Figures

Figure 1

51 pages, 958 KB  
Systematic Review
AI-Enhanced Intrusion Detection for UAV Systems: A Taxonomy and Comparative Review
by MD Sakibul Islam, Ashraf Sharif Mahmoud and Tarek Rahil Sheltami
Drones 2025, 9(10), 682; https://doi.org/10.3390/drones9100682 - 1 Oct 2025
Abstract
The diverse usage of Unmanned Aerial Vehicles (UAVs) across commercial, military, and civil domains has significantly heightened the need for robust cybersecurity mechanisms. Given their reliance on wireless communications, real-time control systems, and sensor integration, UAVs are highly susceptible to cyber intrusions that [...] Read more.
The diverse usage of Unmanned Aerial Vehicles (UAVs) across commercial, military, and civil domains has significantly heightened the need for robust cybersecurity mechanisms. Given their reliance on wireless communications, real-time control systems, and sensor integration, UAVs are highly susceptible to cyber intrusions that can disrupt missions, compromise data integrity, or cause physical harm. This paper presents a comprehensive literature review of Intrusion Detection Systems (IDSs) that leverage artificial intelligence (AI) to enhance the security of UAV and UAV swarm environments. Through rigorous analysis of recent peer-reviewed publications, we have examined the studies in terms of AI model algorithm, dataset origin, deployment mode: centralized, distributed or federated. The classification also includes the detection strategy: online versus offline. Results show a dominant preference for centralized, supervised learning using standard datasets such as CICIDS2017, NSL-KDD, and KDDCup99, limiting applicability to real UAV operations. Deep learning (DL) methods, particularly Convolutional Neural Networks (CNNs), Long Short-term Memory (LSTM), and Autoencoders (AEs), demonstrate strong detection accuracy, but often under ideal conditions, lacking resilience to zero-day attacks and real-time constraints. Notably, emerging trends point to lightweight IDS models and federated learning frameworks for scalable, privacy-preserving solutions in UAV swarms. This review underscores key research gaps, including the scarcity of real UAV datasets, the absence of standardized benchmarks, and minimal exploration of lightweight detection schemes, offering a foundation for advancing secure UAV systems. Full article
16 pages, 623 KB  
Review
A Digital Twin Architecture for Forest Restoration: Integrating AI, IoT, and Blockchain for Smart Ecosystem Management
by Nophea Sasaki and Issei Abe
Future Internet 2025, 17(9), 421; https://doi.org/10.3390/fi17090421 - 15 Sep 2025
Viewed by 564
Abstract
Meeting global forest restoration targets by 2030 requires a transition from labor-intensive and opaque practices to scalable, intelligent, and verifiable systems. This paper introduces a cyber–physical digital twin architecture for forest restoration, structured across four layers: (i) a Physical Layer with drones and [...] Read more.
Meeting global forest restoration targets by 2030 requires a transition from labor-intensive and opaque practices to scalable, intelligent, and verifiable systems. This paper introduces a cyber–physical digital twin architecture for forest restoration, structured across four layers: (i) a Physical Layer with drones and IoT-enabled sensors for in situ environmental monitoring; (ii) a Data Layer for secure and structured transmission of spatiotemporal data; (iii) an Intelligence Layer applying AI-driven modeling, simulation, and predictive analytics to forecast biomass, biodiversity, and risk; and (iv) an Application Layer providing stakeholder dashboards, milestone-based smart contracts, and automated climate finance flows. Evidence from Dronecoria, Flash Forest, and AirSeed Technologies shows that digital twins can reduce per-tree planting costs from USD 2.00–3.75 to USD 0.11–1.08, while enhancing accuracy, scalability, and community participation. The paper further outlines policy directions for integrating digital MRV systems into the Enhanced Transparency Framework (ETF) and Article 5 of the Paris Agreement. By embedding simulation, automation, and participatory finance into a unified ecosystem, digital twins offer a resilient, interoperable, and climate-aligned pathway for next-generation forest restoration. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

4 pages, 158 KB  
Editorial
From Human–Machine Interaction to Human–Machine Cooperation: Status and Progress
by Tomislav Stipancic and Duska Rosenberg
Appl. Sci. 2025, 15(17), 9475; https://doi.org/10.3390/app15179475 - 29 Aug 2025
Viewed by 791
Abstract
Advances in artificial intelligence (AI) and cyber–physical systems are transforming human–machine interaction (HMI) into human–machine cooperation (HMC), where humans and machines collaborate, adapt, and share goals within virtual, augmented, or real environments [...] Full article
16 pages, 1492 KB  
Proceeding Paper
Hardware Challenges in AI Sensors and Innovative Approaches to Overcome Them
by Filip Tsvetanov
Eng. Proc. 2025, 104(1), 19; https://doi.org/10.3390/engproc2025104019 - 25 Aug 2025
Viewed by 1588
Abstract
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, [...] Read more.
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, and security, which limit their effectiveness. This article analyzes factors influencing the production and deployment of AI sensors. The key limitations are energy efficiency, computing power, scalability, and integration of AI sensors in real-time conditions. Among the main problems are the high requirements for data processing, the limitations of traditional microprocessors, and the balance between performance and energy consumption. To meet these challenges, the article presents several practical and innovative approaches, including the development of specialized microprocessors and optimized architectures for “edge computing,” which promise radical reductions in latency and power consumption. Through a synthesis of current research and practical examples, the article emphasizes the need for intermediate hardware–software solutions and standardization for mass deployment of AI sensors. Full article
Show Figures

Figure 1

26 pages, 1772 KB  
Article
Manufacturing Management Processes Integration Framework
by Miguel Ângelo Pereira, Gaspar Vieira, Leonilde Varela, Goran Putnik, Manuela Cruz-Cunha, André Santos, Teresa Dieguez, Filipe Pereira, Nuno Leal and José Machado
Appl. Sci. 2025, 15(16), 9165; https://doi.org/10.3390/app15169165 - 20 Aug 2025
Viewed by 563
Abstract
This paper proposes a novel and comprehensive framework for the integration of manufacturing management processes, spanning strategic and operational levels, within and across organizational boundaries. The framework combines a robust set of technologies—such as cyber-physical systems, digital twins, AI, and blockchain—designed to support [...] Read more.
This paper proposes a novel and comprehensive framework for the integration of manufacturing management processes, spanning strategic and operational levels, within and across organizational boundaries. The framework combines a robust set of technologies—such as cyber-physical systems, digital twins, AI, and blockchain—designed to support real-time decision-making, interoperability, and collaboration in Industry 4.0 and 5.0 contexts. Implemented and validated in a Portuguese manufacturing group comprising three interoperating factories, the framework demonstrated its ability to improve agility, coordination, and stakeholder integration through a multi-layered architecture and modular software platform. Quantitative and qualitative feedback from 32 participants confirmed enhanced decision support, operational responsiveness, and external collaboration. While tailored to a specific industrial setting, the results highlight the framework’s scalability and adaptability, positioning it as a meaningful contribution toward sustainable, human-centric digital transformation in manufacturing environments. Full article
Show Figures

Figure 1

29 pages, 3542 KB  
Review
Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges
by Md Sazol Ahmmed, Laraib Khan, Muhammad Arif Mahmood and Frank Liou
Machines 2025, 13(8), 691; https://doi.org/10.3390/machines13080691 - 6 Aug 2025
Cited by 1 | Viewed by 1673
Abstract
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their [...] Read more.
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their individual importance is increasing, a consistent understanding of how these technologies interact and collectively improve AM procedures is lacking. Focusing on the integration of digital twins (DTs), modular AI, and cybersecurity in AM, this review presents a comprehensive analysis of over 137 research publications from Scopus, Web of Science, Google Scholar, and ResearchGate. The publications are categorized into three thematic groups, followed by an analysis of key findings. Finally, the study identifies research gaps and proposes detailed recommendations along with a framework for future research. The study reveals that traditional AM processes have undergone significant transformations driven by digital threads, digital threads (DTs), and AI. However, this digitalization introduces vulnerabilities, leaving AM systems prone to cyber-physical attacks. Emerging advancements in AI, Machine Learning (ML), and Blockchain present promising solutions to mitigate these challenges. This paper is among the first to comprehensively summarize and evaluate the advancements in AM, emphasizing the integration of DTs, Modular AI, and cybersecurity strategies. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

42 pages, 1300 KB  
Article
A Hybrid Human-AI Model for Enhanced Automated Vulnerability Scoring in Modern Vehicle Sensor Systems
by Mohamed Sayed Farghaly, Heba Kamal Aslan and Islam Tharwat Abdel Halim
Future Internet 2025, 17(8), 339; https://doi.org/10.3390/fi17080339 - 28 Jul 2025
Viewed by 787
Abstract
Modern vehicles are rapidly transforming into interconnected cyber–physical systems that rely on advanced sensor technologies and pervasive connectivity to support autonomous functionality. Yet, despite this evolution, standardized methods for quantifying cybersecurity vulnerabilities across critical automotive components remain scarce. This paper introduces a novel [...] Read more.
Modern vehicles are rapidly transforming into interconnected cyber–physical systems that rely on advanced sensor technologies and pervasive connectivity to support autonomous functionality. Yet, despite this evolution, standardized methods for quantifying cybersecurity vulnerabilities across critical automotive components remain scarce. This paper introduces a novel hybrid model that integrates expert-driven insights with generative AI tools to adapt and extend the Common Vulnerability Scoring System (CVSS) specifically for autonomous vehicle sensor systems. Following a three-phase methodology, the study conducted a systematic review of 16 peer-reviewed sources (2018–2024), applied CVSS version 4.0 scoring to 15 representative attack types, and evaluated four free source generative AI models—ChatGPT, DeepSeek, Gemini, and Copilot—on a dataset of 117 annotated automotive-related vulnerabilities. Expert validation from 10 domain professionals reveals that Light Detection and Ranging (LiDAR) sensors are the most vulnerable (9 distinct attack types), followed by Radio Detection And Ranging (radar) (8) and ultrasonic (6). Network-based attacks dominate (104 of 117 cases), with 92.3% of the dataset exhibiting low attack complexity and 82.9% requiring no user interaction. The most severe attack vectors, as scored by experts using CVSS, include eavesdropping (7.19), Sybil attacks (6.76), and replay attacks (6.35). Evaluation of large language models (LLMs) showed that DeepSeek achieved an F1 score of 99.07% on network-based attacks, while all models struggled with minority classes such as high complexity (e.g., ChatGPT F1 = 0%, Gemini F1 = 15.38%). The findings highlight the potential of integrating expert insight with AI efficiency to deliver more scalable and accurate vulnerability assessments for modern vehicular systems.This study offers actionable insights for vehicle manufacturers and cybersecurity practitioners, aiming to inform strategic efforts to fortify sensor integrity, optimize network resilience, and ultimately enhance the cybersecurity posture of next-generation autonomous vehicles. Full article
Show Figures

Figure 1

51 pages, 5654 KB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Cited by 1 | Viewed by 1285
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

25 pages, 4186 KB  
Review
Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework
by Zineb Mouhib, Maryam Gallab, Safae Merzouk, Aziz Soulhi and Mario Di Nardo
Appl. Syst. Innov. 2025, 8(4), 98; https://doi.org/10.3390/asi8040098 - 21 Jul 2025
Viewed by 2544
Abstract
In the context of Industry 4.0, Total Productive Maintenance (TPM) is undergoing a major shift driven by digital technologies such as the IoT, AI, cloud computing, and Cyber–Physical systems. This study explores how these technologies reshape traditional TPM pillars and practices through a [...] Read more.
In the context of Industry 4.0, Total Productive Maintenance (TPM) is undergoing a major shift driven by digital technologies such as the IoT, AI, cloud computing, and Cyber–Physical systems. This study explores how these technologies reshape traditional TPM pillars and practices through a two-phase methodology: bibliometric analysis, which reveals global research trends, key contributors, and emerging themes, and a systematic review, which discusses how core TPM practices are being transformed by advanced technologies. It also identifies key challenges of this transition, including data aggregation, a lack of skills, and resistance. However, despite the growing body of research on digital TPM, a major gap persists: the lack of a standardized model applicable across industries. Existing approaches are often fragmented or too context-specific, limiting scalability. Addressing this gap requires a structured approach that aligns technological advancements with TPM’s foundational principles. Taking a cue from these findings, this article formulates a systematic and scalable framework for TPM 4.0 deployment. The framework is based on four pillars: modular technological architecture, phased deployment, workforce integration, and standardized performance indicators. The ultimate goal is to provide a basis for a universal digital TPM standard that enhances the efficiency, resilience, and efficacy of smart maintenance systems. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

27 pages, 2260 KB  
Article
Machine Learning for Industrial Optimization and Predictive Control: A Patent-Based Perspective with a Focus on Taiwan’s High-Tech Manufacturing
by Chien-Chih Wang and Chun-Hua Chien
Processes 2025, 13(7), 2256; https://doi.org/10.3390/pr13072256 - 15 Jul 2025
Viewed by 2425
Abstract
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, [...] Read more.
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, such as convolutional neural networks (CNNs), reinforcement learning (RL), and federated learning (FL), within Taiwan’s advanced manufacturing sectors, including semiconductor fabrication, smart assembly, and industrial energy optimization. The present study draws on patent data and industrial case studies from leading firms, such as TSMC, Foxconn, and Delta Electronics, to trace the evolution from classical optimization to hybrid, data-driven frameworks. A critical analysis of key challenges is provided, including data heterogeneity, limited model interpretability, and integration with legacy systems. A comprehensive framework is proposed to address these issues, incorporating data-centric learning, explainable artificial intelligence (XAI), and cyber–physical architectures. These components align with industrial standards, including the Reference Architecture Model Industrie 4.0 (RAMI 4.0) and the Industrial Internet Reference Architecture (IIRA). The paper concludes by outlining prospective research directions, with a focus on cross-factory learning, causal inference, and scalable industrial AI deployment. This work provides an in-depth examination of the potential of machine learning to transform manufacturing into a more transparent, resilient, and responsive ecosystem. Additionally, this review highlights Taiwan’s distinctive position in the global high-tech manufacturing landscape and provides an in-depth analysis of patent trends from 2015 to 2025. Notably, this study adopts a patent-centered perspective to capture practical innovation trends and technological maturity specific to Taiwan’s globally competitive high-tech sector. Full article
(This article belongs to the Special Issue Machine Learning for Industrial Optimization and Predictive Control)
Show Figures

Figure 1

26 pages, 891 KB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 676
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

25 pages, 1799 KB  
Systematic Review
Cyber-Physical Systems for Smart Farming: A Systematic Review
by Alexis Montalvo, Oscar Camacho and Danilo Chavez
Sustainability 2025, 17(14), 6393; https://doi.org/10.3390/su17146393 - 12 Jul 2025
Viewed by 1404
Abstract
In recent decades, climate change, increasing demand, and resource scarcity have transformed the agricultural sector into a critical field of research. Farmers have been compelled to adopt innovations and new technologies to enhance production efficiency and crop resilience. This study presents a systematic [...] Read more.
In recent decades, climate change, increasing demand, and resource scarcity have transformed the agricultural sector into a critical field of research. Farmers have been compelled to adopt innovations and new technologies to enhance production efficiency and crop resilience. This study presents a systematic literature review, supplemented by a bibliometric analysis of relevant documents, focusing on the key applications and combined techniques of artificial intelligence (AI), machine learning (ML), and digital twins (DT) in the development and implementation of cyber-physical systems (CPS) in smart agriculture and establishes whether CPS in agriculture is an attractive research topic. A total of 108 bibliographic records from the Scopus and Google Scholar databases were analyzed to construct the bibliometric study database. The findings reveal that CPS has evolved and emerged as a promising research area, largely due to its versatility and integration potential. The analysis offers researchers and practitioners a comprehensive overview of the existing literature and research trends on the dynamic relationship between CPS and its primary applications in the agricultural industry while encouraging further exploration in this field. Additionally, the main challenges associated with implementing CPS in the context of smart agriculture are discussed, contributing to a deeper understanding of this topic. Full article
Show Figures

Figure 1

25 pages, 2820 KB  
Article
Fault Detection of Cyber-Physical Systems Using a Transfer Learning Method Based on Pre-Trained Transformers
by Pooya Sajjadi, Fateme Dinmohammadi and Mahmood Shafiee
Sensors 2025, 25(13), 4164; https://doi.org/10.3390/s25134164 - 4 Jul 2025
Cited by 1 | Viewed by 911
Abstract
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods [...] Read more.
As industries become increasingly dependent on cyber-physical systems (CPSs), failures within these systems can cause significant operational disruptions, underscoring the critical need for effective Prognostics and Health Management (PHM). The large volume of data generated by CPSs has made deep learning (DL) methods an attractive solution; however, imbalanced datasets and the limited availability of fault-labeled data continue to hinder their effective deployment in real-world applications. To address these challenges, this paper proposes a transfer learning approach using a pre-trained transformer architecture to enhance fault detection performance in CPSs. A streamlined transformer model is first pre-trained on a large-scale source dataset and then fine-tuned end-to-end on a smaller dataset with a differing data distribution. This approach enables the transfer of diagnostic knowledge from controlled laboratory environments to real-world operational settings, effectively addressing the domain shift challenge commonly encountered in industrial CPSs. To evaluate the effectiveness of the proposed method, extensive experiments are conducted on publicly available datasets generated from a laboratory-scale replica of a modern industrial water purification facility. The results show that the model achieves an average F1-score of 93.38% under K-fold cross-validation, outperforming baseline models such as CNN and LSTM architectures, and demonstrating the practicality of applying transformer-based transfer learning in industrial settings with limited fault data. To enhance transparency and better understand the model’s decision process, SHAP is applied for explainable AI (XAI). Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

Back to TopTop