Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = ACK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 361 KiB  
Article
Identifying Cortical Molecular Biomarkers Potentially Associated with Learning in Mice Using Artificial Intelligence
by Xiyao Huang, Carson Gauthier, Derek Berger, Hao Cai and Jacob Levman
Int. J. Mol. Sci. 2025, 26(14), 6878; https://doi.org/10.3390/ijms26146878 - 17 Jul 2025
Viewed by 179
Abstract
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to [...] Read more.
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to a public domain dataset, in order to support reproducible findings. We developed technologies tasked with predicting whether a given mouse was shocked to learn, based on protein expression levels extracted from their cortices. Results indicate that it is possible to predict whether a mouse has been shocked to learn or not based only on the following cortical molecular biomarkers: brain-derived neurotrophic factor (BDNF), NR2A subunit of N-methyl-D-aspartate receptor, B-cell lymphoma 2 (BCL2), histone H3 acetylation at lysine 18 (H3AcK18), protein kinase R-like endoplasmic reticulum kinase (pERK), and superoxide dismutase 1 (SOD1). These results were obtained with a novel redundancy-aware feature selection method. Five out of six protein expression biomarkers (BDNF, NR2A, H3AcK18, pERK, SOD1) identified have previously been associated with aspects of learning in the literature. Three of the proteins (BDNF, NR2A, and BCL2) have previously been associated with pruning, and one has previously been associated with apoptosis (BCL2), implying a potential connection between learning and both cortical pruning and apoptosis. The results imply that these six protein expression profiles (BDNF, NR2A, BCL2, H3AcK18, pERK, SOD1) are highly predictive of whether or not a mouse has been shocked to learn. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Strain Rate Effect on Artificially Cemented Clay with Fully Developed and Developing Structure
by Qiang Li, Beatrice Anne Baudet and Xiaoyan Zhang
Appl. Sci. 2025, 15(11), 5839; https://doi.org/10.3390/app15115839 - 22 May 2025
Viewed by 371
Abstract
The rapid expansion of land reclamation necessitates a fundamental understanding of the strain rate effects on structured clays. While the rate effect has been widely studied in various soils, the interplay between bond structure and strain rate sensitivity remains unclear. This study investigates [...] Read more.
The rapid expansion of land reclamation necessitates a fundamental understanding of the strain rate effects on structured clays. While the rate effect has been widely studied in various soils, the interplay between bond structure and strain rate sensitivity remains unclear. This study investigates these mechanisms using artificially cemented kaolin (ACK) with controlled curing periods (2 and 30 days) to simulate naturally bonded clays. A series of undrained triaxial tests was conducted under low (100 kPa) and high (600 kPa) confining stresses, employing constant strain rates (0.01–5%/h) pre-peak and stepwise rate changes post-peak. The results reveal that the strain rate effects are governed by the bond structure maturity and drainage mechanisms. For the 30-day curing ACK, the pre-peak strength under low confining stress shows minimal rate sensitivity due to the rigid bond, while high confining stress induces a “negative” rate effect attributed to localised drainage along shear planes. The post-peak behaviour consistently exhibits a positive isotach-type rate effect (+3%/log-cycle) driven by viscous sliding. In contrast, the 2-day curing ACK displays negative rate effects pre-peak influenced by ongoing curing and post-peak strength reductions (−8%/log-cycle) linked to stick-slip dynamics. These findings establish a framework for predicting rate-dependent behaviour in structured clays, offering insights into land reclamation and subsequent construction work. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 9022 KiB  
Article
Activation of Persulfates Using Alkali-Modified Activated Coke to Promote Phenol Removal
by Yan Zhang, Shuang Shi, Jianxiong Wei, Qiang Ma, Xiaoxue Wang, Xingyu Zhang, Huarui Hao and Chen Yang
Nanomaterials 2025, 15(10), 744; https://doi.org/10.3390/nano15100744 - 15 May 2025
Cited by 1 | Viewed by 301
Abstract
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph [...] Read more.
Coke (AC) was modified and activated with sodium hydroxide (NaOH) and potassium hydroxide (KOH) to produce AC-Na and AC-K, respectively, and applied as a persulfate (PS) activator to promote phenol (Ph) removal in water. Under the given experimental conditions, compared to AC/PS (Ph removal effect was 77.09%), the Ph removal effects were 94.46% and 88.73% for AC-K/PS and AC-Na/PS, respectively. AC-K proved to be a more effective activator than AC-Na and was used for all the subsequent experiments. When PS/phenol molar ratio was 6.26:1:00, the initial system pH was 7 and the system temperature was 25 °C; the AC-K/PS system could effectively remove Ph (98.75%) from the simulated wastewater. After that, the stability of AC-K was verified. Electron paramagnetic resonance (EPR) and quenching analysis confirmed the hydroxyl free radical (•OH) to be predominant within this system. EPR combined with X-ray photoelectron spectroscopy (XPS), Fourier-transformed infrared (FTIR) spectroscopy, and Raman spectroscopy indicated that the sulfate radical (SO4•−) and •OH were generated due to the defects in AC-K, thereby enhancing the PS activation potency of AC-K. Additionally, the radical quenching experiments showed that the superoxide (O2) radical is a key intermediate product promoting SO4•− and •OH, which aided Ph removal. Both radical (SO4•− and •OH) and non-radical (1O2) pathways were found to co-exist during the removal process. The Ph removal rate of the AC-K/PS system could still reach 29.50%, even after four repeated cycles. These results demonstrate that the unique AC-K/PS system has a potential removal effect on organic pollutants in water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

24 pages, 1272 KiB  
Article
Leveraging Digital Twins and Intrusion Detection Systems for Enhanced Security in IoT-Based Smart City Infrastructures
by Mohammed El-Hajj
Electronics 2024, 13(19), 3941; https://doi.org/10.3390/electronics13193941 - 6 Oct 2024
Cited by 7 | Viewed by 3041
Abstract
In this research, we investigate the integration of an Intrusion Detection System (IDS) with a Digital Twin (DT) to enhance the cybersecurity of physical devices in cyber–physical systems. Using Eclipse Ditto as the DT platform and Snort as the IDS, we developed a [...] Read more.
In this research, we investigate the integration of an Intrusion Detection System (IDS) with a Digital Twin (DT) to enhance the cybersecurity of physical devices in cyber–physical systems. Using Eclipse Ditto as the DT platform and Snort as the IDS, we developed a near-realistic test environment that included a Raspberry Pi as the physical device and a Kali Linux virtual machine to perform common cyberattacks such as Hping3 flood attacks and NMAP reconnaissance scans. The results demonstrated that the IDS effectively detected Hping3-based flood attacks but showed limitations in identifying NMAP scans, suggesting areas for IDS configuration improvements. Furthermore, the study uncovered significant system resource impacts, including high Central Processing Unit (CPU) usage during SYN and ACK flood attacks and persistent memory usage after Network Mapper (NMAP) scans, highlighting the need for enhanced recovery mechanisms. This research presents a novel approach by coupling a Digital Twin with an IDS, enabling real-time monitoring and providing a dual perspective on both system performance and security. The integration offers a holistic method for identifying vulnerabilities and understanding resource impacts during cyberattacks. The work contributes new insights into the use of Digital Twins for cybersecurity and paves the way for further research into automated defense mechanisms, real-world validation of the proposed model, and the incorporation of additional attack scenarios. The results suggest that this combined approach holds significant promise for enhancing the security and resilience of IoT devices and other cyber–physical systems. Full article
Show Figures

Figure 1

13 pages, 3017 KiB  
Article
Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation
by Jaeyoon Kim, Jang Ho Joo, Juhyun Kim, Heena Rim, Jae young Shin, Yun-Ho Choi, Kyoungin Min, So Young Lee, Seung-Hyun Jun and Nae-Gyu Kang
Curr. Issues Mol. Biol. 2024, 46(10), 11207-11219; https://doi.org/10.3390/cimb46100665 - 5 Oct 2024
Cited by 3 | Viewed by 2548
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. [...] Read more.
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation. Full article
Show Figures

Figure 1

17 pages, 2794 KiB  
Article
Security Operations Centers: Use Case Best Practices, Coverage, and Gap Analysis Based on MITRE Adversarial Tactics, Techniques, and Common Knowledge
by Samir Achraf Chamkar, Yassine Maleh and Noreddine Gherabi
J. Cybersecur. Priv. 2024, 4(4), 777-793; https://doi.org/10.3390/jcp4040036 - 25 Sep 2024
Cited by 2 | Viewed by 6669
Abstract
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses [...] Read more.
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses the intricate process of setting up a SOC, emphasizing the need for careful planning, substantial resources, and a strategic approach. This study outlines the essential steps involved in defining the SOC’s objectives and scope, selecting appropriate technologies, recruiting skilled cybersecurity professionals, and developing processes throughout the SOC lifecycle. This paper aims to provide a comprehensive understanding of the SOC’s threat detection capabilities and use cases. It also highlights the importance of choosing technologies that integrate seamlessly with existing IT infrastructure to ensure broad coverage of SOC activities. Furthermore, this study offers actionable insights for organizations looking to enhance their SOC capabilities, including a technical overview of SOC use case coverage and a gap assessment of detection rules. This assessment is based on an alignment with the MITRE ATT&CK framework and an analysis of events generated by the company’s existing IT devices and products. The findings from this research elucidate the indispensable role that SOCs play in bolstering organizational cybersecurity and resilience. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Energy-Efficient Hybrid Wireless Power Transfer Technique for Relay-Based IIoT Applications
by Vikash Singh, Roshan Kumar, Byomakesh Mahapatra and Chrompet Ramesh Srinivasan
Designs 2024, 8(5), 84; https://doi.org/10.3390/designs8050084 - 26 Aug 2024
Viewed by 1570
Abstract
This paper introduces an innovative hybrid wireless power transfer (H-WPT) scheme tailored for IIoT networks employing multiple relay nodes. The scheme allows relay nodes to dynamically select their power source for energy harvesting based on real-time channel conditions. Our analysis evaluates outage probability [...] Read more.
This paper introduces an innovative hybrid wireless power transfer (H-WPT) scheme tailored for IIoT networks employing multiple relay nodes. The scheme allows relay nodes to dynamically select their power source for energy harvesting based on real-time channel conditions. Our analysis evaluates outage probability within decode-and-forward (DF) relaying and adaptive power splitting (APS) frameworks, while also considering the energy used by relay nodes for ACK signaling. A notable feature of the H-WPT scheme is its decentralized operation, enabling relay nodes to independently choose the optimal relay and power source using instantaneous channel gain. This approach conserves significant energy otherwise wasted in centralized control methods, where extensive information exchange is required. This conservation is particularly beneficial for energy-constrained sensor networks, significantly extending their operational lifetime. Numerical results demonstrate that the proposed hybrid approach significantly outperforms the traditional distance-based power source selection approach, without additional energy consumption or increased system complexity. The scheme’s efficient power management capabilities underscore its potential for practical applications in IIoT environments, where resource optimization is crucial. Full article
Show Figures

Figure 1

18 pages, 3645 KiB  
Article
Activated Carbons Derived from Different Parts of Corn Plant and Their Ability to Remove Phenoxyacetic Herbicides from Polluted Water
by Beata Doczekalska, Natalia Ziemińska, Krzysztof Kuśmierek and Andrzej Świątkowski
Sustainability 2024, 16(17), 7341; https://doi.org/10.3390/su16177341 - 26 Aug 2024
Cited by 4 | Viewed by 1190
Abstract
In this study, the adsorption of phenoxyacetic acid (PAA) and its chlorinated derivatives, including 4-chlorophenoxyacetic acid (4CPA) and 2,4-dichlorophenoxyacetic acid (2,4-D), on activated carbons (ACs) from corn kernels (AC-K), corn leaves (AC-L), and corn silk (AC-S) were investigated. The adsorption kinetics followed the [...] Read more.
In this study, the adsorption of phenoxyacetic acid (PAA) and its chlorinated derivatives, including 4-chlorophenoxyacetic acid (4CPA) and 2,4-dichlorophenoxyacetic acid (2,4-D), on activated carbons (ACs) from corn kernels (AC-K), corn leaves (AC-L), and corn silk (AC-S) were investigated. The adsorption kinetics followed the pseudo-second-order model, and the film diffusion was the rate-limiting step. The adsorption rate increased in the order PAA < 4CPA < 2,4-D and was correlated with the porous structure (mesopore volume) of these ACs. The Langmuir isotherm models best fit the experimental data; PAA was adsorbed least and 2,4-D most preferentially. The observed trend (PAA < 4CPA < 2,4-D) was positively correlated with the molecular weight of the adsorbates and their hydrophobicity while being inversely correlated with their solubility in water. The adsorption for 2,4-D, according to the Langmuir equation, is equal to 2.078, 2.135, and 2.467 mmol/g and SBET 1600, 1720, and 1965 m2/g, respectively. The results for other herbicides showed a similar correlation. The adsorption of phenoxy herbicides was strongly pH-dependent. The ACs produced from corn biomass can be an eco-friendly choice, offering sustainable products that could be used as efficient adsorbents for removing phenoxyacetic herbicides from water. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 495 KiB  
Article
Explore Utilizing Network Traffic Distribution to Detect Stepping-Stone Intrusion
by Jianhua Yang and Lixin Wang
Electronics 2024, 13(16), 3258; https://doi.org/10.3390/electronics13163258 - 16 Aug 2024
Viewed by 1015
Abstract
In the past three decades, stepping-stone intrusion has become a professional and primary way used by intruders to launch their attacks since they can be protected behind a long TCP connection chain. Many different algorithms have been proposed to detect stepping-stone intrusion since [...] Read more.
In the past three decades, stepping-stone intrusion has become a professional and primary way used by intruders to launch their attacks since they can be protected behind a long TCP connection chain. Many different algorithms have been proposed to detect stepping-stone intrusion since 1995. But most algorithms cannot resist intruders’ session manipulation. In this paper, we propose a novel approach using the distribution of round-trip time (RTT) of network traffic to detect stepping-stone intrusion. This approach can resist intruders’ chaff-perturbation since the round-trip time of network packets can fairly be affected by chaffed packets. The ratio between the standard deviation of the RTTs between Send and Echo packets and the standard deviation of the RTTs between Send and Ack packets can be used to predict if a stepping-stone intrusion exists. The closer to 0 the ratio, the more suspicious a stepping-stone intrusion. Full article
(This article belongs to the Special Issue Recent Advances in Information Security and Data Privacy)
Show Figures

Figure 1

34 pages, 3486 KiB  
Review
Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance
by Abdulaziz M. Eshaq, Thomas W. Flanagan, Sofie-Yasmin Hassan, Sara A. Al Asheikh, Waleed A. Al-Amoudi, Simeon Santourlidis, Sarah-Lilly Hassan, Maryam O. Alamodi, Marcelo L. Bendhack, Mohammed O. Alamodi, Youssef Haikel, Mossad Megahed and Mohamed Hassan
Cancers 2024, 16(15), 2754; https://doi.org/10.3390/cancers16152754 - 2 Aug 2024
Cited by 4 | Viewed by 2796
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues [...] Read more.
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an “on” or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Treatment Resistance)
Show Figures

Figure 1

19 pages, 1868 KiB  
Article
Constrained Flooding Based on Time Series Prediction and Lightweight GBN in BLE Mesh
by Junxiang Li, Mingxia Li and Li Wang
Sensors 2024, 24(14), 4752; https://doi.org/10.3390/s24144752 - 22 Jul 2024
Cited by 1 | Viewed by 998
Abstract
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a [...] Read more.
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a stop-and-wait way, where the tradeoff between energy and efficiency is a hard problem. Related works have reduced the energy consumption of LPNs mainly in the direction of changing the bearer layer, improving time synchronization and broadcast channel utilization. These algorithms improve communication efficiency; however, they cause energy loss, especially for the LPNs. In this paper, we propose a constrained flooding algorithm based on time series prediction and lightweight GBN (Go-Back-N). On the one hand, the wake-up cycle of the LPNs is determined by the time series prediction of the surrounding load. On the other, LPNs exchange messages through lightweight GBN, which improves the window and ACK mechanisms. Simulation results validate the effectiveness of the Time series Prediction and LlightWeight GBN (TP-LW) algorithm in energy consumption and throughput. Compared with the original algorithm of BLE Mesh, when fewer packets are transmitted, the throughput is increased by 214.71%, and the energy consumption is reduced by 65.14%. Full article
Show Figures

Figure 1

14 pages, 2537 KiB  
Review
Biosynthesis and Biotechnological Synthesis of Hydroxytyrosol
by Jiali Tang, Jiaying Wang, Pengfei Gong, Haijing Zhang, Mengyao Zhang, Chenchen Qi, Guohui Chen, Chengtao Wang and Wei Chen
Foods 2024, 13(11), 1694; https://doi.org/10.3390/foods13111694 - 28 May 2024
Cited by 6 | Viewed by 3848
Abstract
Hydroxytyrosol (HT), a plant-derived phenolic compound, is recognized for its potent antioxidant capabilities alongside a spectrum of pharmacological benefits, including anti-inflammatory, anti-cancer, anti-bacterial, and anti-viral properties. These attributes have propelled HT into the spotlight as a premier nutraceutical and food additive, heralding a [...] Read more.
Hydroxytyrosol (HT), a plant-derived phenolic compound, is recognized for its potent antioxidant capabilities alongside a spectrum of pharmacological benefits, including anti-inflammatory, anti-cancer, anti-bacterial, and anti-viral properties. These attributes have propelled HT into the spotlight as a premier nutraceutical and food additive, heralding a new era in health and wellness applications. Traditional methods for HT production, encompassing physico-chemical techniques and plant extraction, are increasingly being supplanted by biotechnological approaches. These modern methodologies offer several advantages, notably environmental sustainability, safety, and cost-effectiveness, which align with current demands for green and efficient production processes. This review delves into the biosynthetic pathways of HT, highlighting the enzymatic steps involved and the pivotal role of genetic and metabolic engineering in enhancing HT yield. It also surveys the latest progress in the biotechnological synthesis of HT, examining innovative strategies that leverage both genetically modified and non-modified organisms. Furthermore, this review explores the burgeoning potential of HT as a nutraceutical, underscoring its diverse applications and the implications for human health. Through a detailed examination of both the biosynthesis and biotechnological advances in HT production, this review contributes valuable insights to the field, charting a course towards the sustainable and scalable production of this multifaceted compound. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

14 pages, 3892 KiB  
Article
Decreased Ubiquitination and Acetylation of Histones 3 and 4 Are Associated with Obesity-Induced Disorders of Spermatogenesis in Mice
by Mahamadou Fofana, Zhenyang Li, Han Li, Wenqi Li, Lu Wu, Lu Lu and Qizhan Liu
Toxics 2024, 12(4), 296; https://doi.org/10.3390/toxics12040296 - 17 Apr 2024
Cited by 3 | Viewed by 2689
Abstract
Background: Obesity, a chronic metabolic disorder, is related to cardiovascular diseases, diabetes, cancer, and reproductive disorders. The relationship between obesity and male infertility is now well recognized, but the mechanisms involved are unclear. We aimed to observe the effect of obesity on spermatogenesis [...] Read more.
Background: Obesity, a chronic metabolic disorder, is related to cardiovascular diseases, diabetes, cancer, and reproductive disorders. The relationship between obesity and male infertility is now well recognized, but the mechanisms involved are unclear. We aimed to observe the effect of obesity on spermatogenesis and to investigate the role of histone ubiquitination and acetylation modifications in obesity-induced spermatogenesis disorders. Methods: Thirty male C57BL/6J mice were randomly divided into two groups. The control group was fed with a general maintenance diet (12% fat), while a high-fat diet (HFD) group was fed with 40% fat for 10 weeks; then, they were mated with normal females. The fertility of male mice was calculated, testicular and sperm morphology were observed, and the expression levels of key genes and the levels of histone acetylation and ubiquitination modification during spermatogenesis were detected. Results: The number of sperm was decreased, as well as the sperm motility, while the number of sperm with malformations was increased. In the testes, the mRNA and protein expression levels of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), chromosome region maintenance-1 protein (CRM1), high-mobility group B2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were decreased. Furthermore, obesity led to a decrease in ubiquitinated H2A (ubH2A) and reduced levels of histone H3 acetylation K18 (H3AcK18) and histone H4 acetylation K5, K8, K12, and K16 (H4tetraAck), which disrupted protamine 1 (Prm1) deposition in testis tissue. Conclusion: These results suggest that low levels of histone ubiquitination and acetylation are linked with obesity-induced disorders during spermatogenesis, contributing to a better understanding of obesity-induced damage to male reproduction. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Graphical abstract

13 pages, 2768 KiB  
Article
Differential Alterations of Expression of the Serotoninergic System Genes and Mood-Related Behavior by Consumption of Aspartame or Potassium Acesulfame in Rats
by José Jaime Martínez-Magaña, Alma Delia Genis-Mendoza, Ileana Gallegos-Silva, María Lilia López-Narváez, Isela Esther Juárez-Rojop, Juan C. Diaz-Zagoya, Carlos Alfonso Tovilla-Zárate, Thelma Beatriz González-Castro, Humberto Nicolini and Anayelly Solis-Medina
Nutrients 2024, 16(4), 490; https://doi.org/10.3390/nu16040490 - 8 Feb 2024
Cited by 3 | Viewed by 3426
Abstract
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the [...] Read more.
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the chronic consumption of ASP and ACK on mood-related behavior and the brain expression of serotonin genes in male Wistar rats. Mood-related behaviors were evaluated using the swim-forced test and defensive burying at two time points: 45 days (juvenile) and 95 days (adult) postweaning. Additionally, the mRNA expression of three serotoninergic genes (Slc6a4, Htr1a, and Htr2c) was measured in the brain areas (prefrontal cortex, hippocampus, and hypothalamus) involved in controlling mood-related behaviors. In terms of mood-related behaviors, rats consuming ACK exhibited anxiety-like behavior only during the juvenile stage. In contrast, rats consuming ASP showed a reduction in depressive-like behavior during the juvenile stage but an increase in the adult stage. The expression of Slc6a4 mRNA increased in the hippocampus of rats consuming artificial sweeteners during the juvenile stage. In the adult stage, there was an upregulation in the relative expression of Slc6a4 and Htr1a in the hypothalamus, while Htr2c expression decreased in the hippocampus of rats consuming ASP. Chronic consumption of ASP and ACK appears to have differential effects during neurodevelopmental stages in mood-related behavior, potentially mediated by alterations in serotoninergic gene expression. Full article
(This article belongs to the Special Issue Nutritional Intervention in Mental Health)
Show Figures

Graphical abstract

22 pages, 3244 KiB  
Article
SDN-Based Congestion Control and Bandwidth Allocation Scheme in 5G Networks
by Dong Yang and Wei-Tek Tsai
Sensors 2024, 24(3), 749; https://doi.org/10.3390/s24030749 - 24 Jan 2024
Cited by 3 | Viewed by 3180
Abstract
5G cellular networks are already more than six times faster than 4G networks, and their packet loss rate, especially in the Internet of Vehicles (IoV), can reach 0.5% in many cases, such as when there is high-speed movement or obstacles nearby. In such [...] Read more.
5G cellular networks are already more than six times faster than 4G networks, and their packet loss rate, especially in the Internet of Vehicles (IoV), can reach 0.5% in many cases, such as when there is high-speed movement or obstacles nearby. In such high bandwidth and high packet loss network environments, traditional congestion control algorithms, such as CUBIC and bottleneck bandwidth and round-trip propagation time (BBR), have been unable to balance flow fairness and high performance, and their flow rate often takes a long time to converge. We propose a congestion control algorithm based on bottleneck routing feedback using an in-network control mode called bottleneck routing feedback (BRF). We use SDN technology (OpenFlow protocol) to collect network bandwidth information, and BRF controls the data transmission rate of the sender. By adding the bandwidth information of the bottleneck in the option field in the ACK packet, considering the flow fairness and the flow convergence rate, a bandwidth allocation scheme compatible with multiple congestion control algorithms is proposed to ensure the fairness of all flows and make them converge faster. The performance of BRF is evaluated via Mininet. The experimental results show that BRF provides higher bandwidth utilization, faster convergence rate, and fairer bandwidth allocation than existing congestion control algorithms in 5G cellular networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop