Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (116)

Search Parameters:
Keywords = ACH2.0-based drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1380 KiB  
Review
Recent Advances in Donepezil Delivery Systems via the Nose-to-Brain Pathway
by Jiyoon Jon, Jieun Jeong, Joohee Jung, Hyosun Cho, Kyoung Song, Eun-Sook Kim, Sang Hyup Lee, Eunyoung Han, Woo-Hyun Chung, Aree Moon, Kyu-Tae Kang, Min-Soo Kim and Heejun Park
Pharmaceutics 2025, 17(8), 958; https://doi.org/10.3390/pharmaceutics17080958 (registering DOI) - 24 Jul 2025
Viewed by 291
Abstract
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, [...] Read more.
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, various dosage forms aimed at delivering DPZ have been explored. This discussion will focus on the nose-to-brain (N2B) delivery system, which represents the most promising approach for brain drug delivery. Intranasal (IN) drug delivery is a suitable system for directly delivering drugs to the brain, as it bypasses the BBB and avoids the first-pass effect, thereby targeting the central nervous system (CNS). Currently developed formulations include lipid-based, solid particle-based, solution-based, gel-based, and film-based types, and a systematic review of the N2B research related to these formulations has been conducted. According to the in vivo results, the brain drug concentration 15 min after IN administration was more than twice as high those from other routes of administration, and the direct delivery ratio of the N2B system improved to 80.32%. The research findings collectively suggest low toxicity and high therapeutic efficacy for AD. This review examines drug formulations and delivery methods optimized for the N2B delivery of DPZ, focusing on technologies that enhance mucosal residence time and bioavailability while discussing recent advancements in the field. Full article
(This article belongs to the Special Issue Nasal Nanotechnology: What Do We Know and What Is Yet to Come?)
Show Figures

Figure 1

21 pages, 3089 KiB  
Article
Design, Synthesis, and Evaluation of 1-Benzylpiperidine and 1-Benzoylpiperidine Derivatives as Dual-Target Inhibitors of Acetylcholinesterase and Serotonin Transporter for Alzheimer′s Disease
by Juan Pablo González-Gutiérrez, Damián Castillo-Ríos, Víctor Ríos-Campos, Ignacio Alejandro González-Gutiérrez, Dánae Flores Melivilu, Emilio Hormazábal Uribe, Felipe Moraga-Nicolás, Kerim Segura, Valentina Hernández, Amaury Farías-Cea, Hernán Armando Pessoa-Mahana, Miguel Iván Reyes-Parada and Patricio Iturriaga-Vásquez
Molecules 2025, 30(14), 3047; https://doi.org/10.3390/molecules30143047 - 21 Jul 2025
Viewed by 679
Abstract
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from [...] Read more.
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from depression, frequently treated with selective serotonin reuptake inhibitors (SSRIs). Due to the multisymptomatic nature of AD, there is a growing interest in developing multitargeted ligands that simultaneously enhance cholinergic and serotonergic tone. This study presents the synthesis of novel ligands based on functionalized piperidines, evaluated through radioligand binding assays at the serotonin transporter (SERT) and AChE and butyrylcholinesterase (BuChE) inhibition. The pharmacological results showed that some compounds exhibited moderate inhibitory activity against AChE, with one compound 19 standing out as the most potent, also displaying a moderate BuChE inhibitory activity, while showing low affinity for SERT. On the other hand, compound 21 displayed an interesting polypharmacological profile, with good and selective activity against BuChE and SERT. The results underscore the difficulty of designing promiscuous ligands for these targets and suggest that future structural modifications could optimize their therapeutic potential in AD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Graphical abstract

136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1329
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

12 pages, 3852 KiB  
Article
Screening and Isolating Acetylcholinesterase Inhibitors from Olea europaea L. Fruit Using Ultrafiltration–Liquid Chromatography Coupled with High-Speed Counter-Current Chromatography
by Xingcui Wang, Yingshan Zhang, Jules Muhire, Duolong Di, Xinyi Huang and Dong Pei
Separations 2025, 12(4), 96; https://doi.org/10.3390/separations12040096 - 12 Apr 2025
Viewed by 435
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition and one of the most prevalent types of dementia in older adults. Currently, the primary drugs used to treat AD are acetylcholinesterase (AChE) inhibitors. The development of natural substances has become a research hotspot due [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative condition and one of the most prevalent types of dementia in older adults. Currently, the primary drugs used to treat AD are acetylcholinesterase (AChE) inhibitors. The development of natural substances has become a research hotspot due to the high number of adverse effects of synthetic drugs. In this study, a new assay based on ultrafiltration–liquid chromatography–high-speed counter-current chromatography (UF-HPLC-HSCCC) was developed for the rapid screening and identification of AChE inhibitors from Olea europaea L. fruit. In this research, we screened and isolated two AChE inhibitors from O. europaea fruit extracts, identified by EI-MS and NMR as secologanoside and oleuroside-11-methyl ester. These compounds were identified for the first time from O. europaea and found to possess AChE inhibitory activity using an in vitro AChE inhibition assay and molecular docking. The IC50 values of the two compounds were 0.76 ± 0.04 mM and 1.08 ± 0.05 mM. The results demonstrated that secologanoside showed better AChE inhibition activity than oleuroside-11-methyl ester, suggesting that this compound is a promising AChE inhibitor. At the same time, the results showed that the combination of UF-HPLC- HSCCC provides a powerful tool for screening and isolating AChE inhibitors in complex samples. Full article
Show Figures

Figure 1

23 pages, 12983 KiB  
Article
Synthesis, Molecular Simulation, DFT, and Kinetic Study of Imidazotriazole-Based Thiazolidinone as Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase Enzymes
by Manal M. Khowdiary, Shoaib Khan, Tayyiaba Iqbal, Wajid Rehman, Muhammad Bilal Khan, Mujaddad Ur Rehman, Zanib Fiaz and Hakimullah
Pharmaceuticals 2025, 18(3), 415; https://doi.org/10.3390/ph18030415 - 15 Mar 2025
Viewed by 1114
Abstract
Background: Alzheimer’s disease is a complex and multifactorial brain disorder characterized by gradual memory impairment, cognitive disturbance, and severe dementia, and, ultimately, its progression leads to patient death. This research work presents the design, synthesis, and characterization of novel imidazotriazole-based thiazolidinone derivatives ( [...] Read more.
Background: Alzheimer’s disease is a complex and multifactorial brain disorder characterized by gradual memory impairment, cognitive disturbance, and severe dementia, and, ultimately, its progression leads to patient death. This research work presents the design, synthesis, and characterization of novel imidazotriazole-based thiazolidinone derivatives (114), displaying promising anti-Alzheimer’s activity. Methods: These derivatives were synthesized by using 1H-imidazole-2-thiol as a starting reagent. Structural characterization was accomplished by 13C-NMR and 1H-NMR, while the molecular weight was confirmed by HREI-MS. These compounds were investigated for their anti-Alzheimer’s potential under an in vitro analysis. Results: These compounds showed a significant to moderate biological potential against AChE and BChE in comparison to donepezil (IC50 = 8.50 µM and 8.90 µM against AChE and BuChE), used as a reference drug. Among these compounds, analog 10 with IC50 values of 6.70 µM and 7.10 µM against AChE and BuChE emerged as the lead compound of the series with promising biological efficacy against targeted enzymes. Molecular docking revealed the interactive nature of active ligands against target enzymes. These compounds were also assessed under dynamic conditions to examine the structural deviation and conformational changes in a protein complex structure. DFT calculations provided the relative stability and reactivity of the lead compounds. An ADMET analysis showed that these compounds have no toxicological profile. Conclusions: This research study paves the way for the further development and optimization of novel and selective imidazotriazole-based thiazolidinone inhibitors as potent anti-Alzheimer’s agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 4152 KiB  
Article
ConoGPT: Fine-Tuning a Protein Language Model by Incorporating Disulfide Bond Information for Conotoxin Sequence Generation
by Guohui Zhao, Cheng Ge, Wenzheng Han, Rilei Yu and Hao Liu
Toxins 2025, 17(2), 93; https://doi.org/10.3390/toxins17020093 - 17 Feb 2025
Viewed by 943
Abstract
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo [...] Read more.
Conotoxins are a class of peptide toxins secreted by marine mollusks of the Conus genus, characterized by their unique mechanism of action and significant biological activity, making them highly valuable for drug development. However, traditional methods of acquiring conotoxins, such as in vivo extraction or chemical synthesis, face challenges of high costs, long cycles, and limited exploration of sequence diversity. To address these issues, we propose the ConoGPT model, a conotoxin sequence generation model that fine-tunes the ProtGPT2 model by incorporating disulfide bond information. Experimental results demonstrate that sequences generated by ConoGPT exhibit high consistency with authentic conotoxins in physicochemical properties and show considerable potential for generating novel conotoxins. Furthermore, compared to models without disulfide bond information, ConoGPT outperforms in terms of generating sequences with ordered structures. The majority of the filtered sequences were shown to possess significant binding affinities to nicotinic acetylcholine receptor (nAChR) targets based on molecular docking. Molecular dynamics simulations of the selected sequences further confirmed the dynamic stability of the generated sequences in complex with their respective targets. This study not only provides a new technological approach for conotoxin design but also offers a novel strategy for generating functional peptides. Full article
(This article belongs to the Special Issue Conotoxins: Evolution, Classifications and Targets)
Show Figures

Figure 1

24 pages, 5952 KiB  
Article
Network Pharmacology, Molecular Dynamics and In Vitro Assessments of Indigenous Herbal Formulations for Alzheimer’s Therapy
by Oluwafemi Adeleke Ojo, Omolola Adenike Ajayi-Odoko, Gideon Ampoma Gyebi, Damilare IyinKristi Ayokunle, Akingbolabo Daniel Ogunlakin, Emmanuel Henry Ezenabor, Adesoji Alani Olanrewaju, Oluwatobi Deborah Agbeye, Emmanuel Tope Ogunwale, Damilare Emmanuel Rotimi, Dalia Fouad, Gaber El-Saber Batiha and Oluyomi Stephen Adeyemi
Life 2024, 14(10), 1222; https://doi.org/10.3390/life14101222 - 25 Sep 2024
Cited by 3 | Viewed by 2536
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative condition marked by amyloid plaques, synaptic dysfunction, and neuronal loss. Besides conventional medical care, herbal therapies, both raw and refined, have attracted researchers for their potential therapeutic effects. As a proof-of-concept, our study combined HPLC-DAD analysis [...] Read more.
Alzheimer’s disease (AD) is an age-associated neurodegenerative condition marked by amyloid plaques, synaptic dysfunction, and neuronal loss. Besides conventional medical care, herbal therapies, both raw and refined, have attracted researchers for their potential therapeutic effects. As a proof-of-concept, our study combined HPLC-DAD analysis of bioactive constituents, network pharmacology, molecular dynamics (MD), molecular docking, post-MD analysis, and experimental verification to investigate the mechanisms of crude drug formulations as a therapeutic strategy for AD. We identified nine bioactive compounds targeting 188 proteins and 1171 AD-associated genes. Using a Venn diagram, we found 47 overlapping targets, forming “herb-compound-target (HCT)” interaction networks and a protein‒protein interaction (PPI) network. Simulations analyzed binding interactions among the three core targets and their compounds. MD assessed the stability of the best-ranked poses and beneficial compounds for each protein. Among the top 22 hub genes, AChE, BChE, and MAO, ranked 10, 14, and 34, respectively, were selected for further analysis. Two tetraherbal formulations, Form A and Form B, showed notable activity against AChE. Form A exhibited significant (p < 0.0001) inhibitory activity (IC50 = 114.842 ± 2.084 µg/mL) compared to Form B (IC50 = 142.829 ± 4.258 µg/mL), though weaker than galantamine (IC50 = 27.950 ± 0.122 µg/mL). Form B had significant inhibitory effects on BChE (IC50 = 655.860 ± 32.812 µg/mL) compared to Form A (IC50 = 679.718 ± 20.656 µg/mL), but lower than galantamine (IC50 = 23.126 ± 0.683 µg/mL). Both forms protected against Fe2+-mediated brain injury by inhibiting MAO. Docking identified quercetin (−10.2 kcal/mol) and myricetin (−10.1 kcal/mol) for AChE; rutin (−10.6 kcal/mol) and quercetin (−9.7 kcal/mol) for BChE; and kaempferol (−9.1 kcal/mol) and quercetin (−8.9 kcal/mol) for MAO. These compounds were thermodynamically stable based on MD analysis. Collectively, the results offer a scientific rationale for the use of these specifically selected medicinal herbs as AD medications. Full article
Show Figures

Figure 1

16 pages, 2519 KiB  
Article
A Novel Tetrahydroacridine Derivative with Potent Acetylcholinesterase Inhibitory Properties and Dissociative Capability against Aβ42 Fibrils Confirmed by In Vitro Studies
by Ilona Mojzych, Anna Zawadzka, Kryspin Andrzejewski, Monika Jampolska, Zuzana Bednarikova, Miroslav Gancar, Zuzana Gazova, Maciej Mazur and Katarzyna Kaczyńska
Int. J. Mol. Sci. 2024, 25(18), 10072; https://doi.org/10.3390/ijms251810072 - 19 Sep 2024
Cited by 2 | Viewed by 1188
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia, accounting for more than 60% of all cases. It is a neurodegenerative disease in which symptoms such as a decline in memory, thinking, learning, and organizing skills develop gradually over many [...] Read more.
Alzheimer’s disease (AD) is one of the most common causes of dementia, accounting for more than 60% of all cases. It is a neurodegenerative disease in which symptoms such as a decline in memory, thinking, learning, and organizing skills develop gradually over many years and eventually become more severe. To date, there is no effective treatment for the cause of Alzheimer’s disease, and the existing pharmacological options primarily help manage symptoms. Treatment is mainly based on acetylcholinesterase (AChE) inhibitors such as donepezil, rivastigmine, and galantamine, which exhibit numerous adverse cardiovascular and gastrointestinal effects due to excessive stimulation of peripheral cholinergic activity involving muscarinic receptors. Therefore, in addition to the obvious drugs that act on the cause of the disease, new drugs based on AChE inhibition that show the fewest side effects are needed. One potential drug could be a new compound under study, tetrahydroacridine derivative (CHDA), which showed significant potential to inhibit the AChE enzyme in previous in vitro studies. The present study shows that while having very potent AChE inhibitory properties, CHDA is a compound with low toxicity to nerve cell culture and living organisms. In addition, it exhibits dissociative activity against amyloid β fibrils, which is extremely important for applications in Alzheimer’s disease therapy. Full article
Show Figures

Figure 1

14 pages, 915 KiB  
Review
Advances in Cholinesterase Inhibitor Research—An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes
by Monika C. Žužek
Int. J. Mol. Sci. 2024, 25(16), 9049; https://doi.org/10.3390/ijms25169049 - 21 Aug 2024
Cited by 2 | Viewed by 1849
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel [...] Read more.
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer’s disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases. Full article
(This article belongs to the Special Issue Advanced Science in Alzheimer’s Disease)
Show Figures

Figure 1

18 pages, 3485 KiB  
Article
Computational Insight of Oleracone L, Portulacatone B, and Portulacatal from Portulaca oleracea L. as Potential Anticholinesterase Inhibitors for Alzheimer’s
by Shifaa O. Alshammari
Processes 2024, 12(7), 1456; https://doi.org/10.3390/pr12071456 - 12 Jul 2024
Cited by 6 | Viewed by 1351
Abstract
Alzheimer’s disease, characterized by a decline in cognitive functions, is frequently associated with decreased levels of acetylcholine due to the overactivity of acetylcholinesterase (AChE). Inhibiting AChE has been a key therapeutic strategy in treating Alzheimer’s disease, yet the search for effective inhibitors, particularly [...] Read more.
Alzheimer’s disease, characterized by a decline in cognitive functions, is frequently associated with decreased levels of acetylcholine due to the overactivity of acetylcholinesterase (AChE). Inhibiting AChE has been a key therapeutic strategy in treating Alzheimer’s disease, yet the search for effective inhibitors, particularly from natural sources, continues due to their potential for fewer side effects. In this context, three new alkaloids—oleracone L, portulacatone B, and portulacatal—extracted from Portulaca oleracea L., have recently shown promising anticholinesterase activity in vitro. However, no experimental or computational studies have yet explored their binding potential. This study represents the first comprehensive in silico analysis of these compounds, employing ADME prediction, molecular docking, molecular dynamics simulations, and MM-PBSA calculations to assess their therapeutic potential. The drug-likeness was evaluated based on Lipinski, Pfizer, Golden Triangle, and GSK rules, with all three alkaloids meeting these criteria. The ADME profiles suggested that these alkaloids can effectively cross the blood–brain barrier, a critical requirement for Alzheimer’s treatment. Molecular docking studies revealed that oleracone L had the highest binding affinity (−10.75 kcal/mol) towards AChE, followed by portulacatal and portulacatone B, demonstrating significant interactions with crucial enzyme residues. Molecular dynamics simulations over 200 ns confirmed the stability of these interactions, with RMSD values below 2 Å for all complexes, indicating stable binding throughout the simulation period. RMSF and the radius of gyration analyses further corroborated the minimal impact of these alkaloids on the enzyme’s overall flexibility and compactness. Moreover, MM-PBSA calculations provided additional support for the binding efficacy, showing that oleracone L, with the most favorable binding energy, could be a superior inhibitor, potentially due to its stronger and more consistent hydrogen bonding and favorable electrostatic interactions compared to the other studied alkaloids. These computational findings highlight the binding efficiency and potential therapeutic viability of these alkaloids as AChE inhibitors, suggesting they could be promising candidates for Alzheimer’s disease treatment. The study underscores the importance of further validation through in vitro and in vivo experiments to confirm these predictions. Full article
Show Figures

Figure 1

23 pages, 14661 KiB  
Article
An In Silico Study Based on QSAR and Molecular Docking and Molecular Dynamics Simulation for the Discovery of Novel Potent Inhibitor against AChE
by Meriem Khedraoui, Oussama Abchir, Hassan Nour, Imane Yamari, Abdelkbir Errougui, Abdelouahid Samadi and Samir Chtita
Pharmaceuticals 2024, 17(7), 830; https://doi.org/10.3390/ph17070830 - 25 Jun 2024
Cited by 15 | Viewed by 2759
Abstract
Acetylcholinesterase (AChE) is one of the main drug targets for treating Alzheimer’s disease. This current study relies on multiple molecular modeling approaches to develop new potent inhibitors of AChE. We explored a 2D QSAR study using the statistical method of multiple linear regression [...] Read more.
Acetylcholinesterase (AChE) is one of the main drug targets for treating Alzheimer’s disease. This current study relies on multiple molecular modeling approaches to develop new potent inhibitors of AChE. We explored a 2D QSAR study using the statistical method of multiple linear regression based on a set of substituted 5-phenyl-1,3,4-oxadiazole and N-benzylpiperidine analogs, which were recently synthesized and proved their inhibitory activities against acetylcholinesterase (AChE). The molecular descriptors, polar surface area, dipole moment, and molecular weight are the key structural properties governing AChE inhibition activity. The MLR model was selected based on its statistical parameters: R2 = 0.701, R2test = 0.76, Q2CV = 0.638, and RMSE = 0.336, demonstrating its predictive reliability. Randomization tests, VIF tests, and applicability domain tests were adopted to verify the model’s robustness. As a result, 11 new molecules were designed with higher anti-Alzheimer’s activities than the model molecule. We demonstrated their improved pharmacokinetic properties through an in silico ADMET study. A molecular docking study was conducted to explore their AChE inhibition mechanisms and binding affinities in the active site. The binding scores of compounds M1, M2, and M6 were (−12.6 kcal/mol), (−13 kcal/mol), and (−12.4 kcal/mol), respectively, which are higher than the standard inhibitor Donepezil with a binding score of (−10.8 kcal/mol). Molecular dynamics simulations over 100 ns were used to validate the molecular docking results, indicating that compounds M1 and M2 remain stable in the active site, confirming their potential as promising anti-AChE inhibitors. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Figure 1

37 pages, 9291 KiB  
Article
New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics
by Milena Mlakić, Tena Čadež, Goran Šinko, Irena Škorić and Zrinka Kovarik
Biomolecules 2024, 14(6), 679; https://doi.org/10.3390/biom14060679 - 11 Jun 2024
Viewed by 2004
Abstract
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite [...] Read more.
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain–blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents–sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Full article
Show Figures

Figure 1

16 pages, 2285 KiB  
Article
New Pyridyl and Dihydroisoquinoline Alkaloids Isolated from the Chevron Nemertean Amphiporus angulatus
by William R. Kem, Ferenc Soti, James R. Rocca and Jodie V. Johnson
Mar. Drugs 2024, 22(4), 141; https://doi.org/10.3390/md22040141 - 22 Mar 2024
Cited by 1 | Viewed by 2188
Abstract
Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be [...] Read more.
Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

50 pages, 5600 KiB  
Perspective
On the Inadequacy of the Current Transgenic Animal Models of Alzheimer’s Disease: The Path Forward
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2024, 25(5), 2981; https://doi.org/10.3390/ijms25052981 - 4 Mar 2024
Cited by 5 | Viewed by 1897
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer’s disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of [...] Read more.
For at least two reasons, the current transgenic animal models of Alzheimer’s disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD—the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer’s disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer’s disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction. Full article
Show Figures

Figure 1

12 pages, 3141 KiB  
Article
Rational Design of Potent α-Conotoxin PeIA Analogues with Non-Natural Amino Acids for the Inhibition of Human α9α10 Nicotinic Acetylcholine Receptors
by Tianmiao Li, Han-Shen Tae, Jiazhen Liang, Zixuan Zhang, Xiao Li, Tao Jiang, David J. Adams and Rilei Yu
Mar. Drugs 2024, 22(3), 110; https://doi.org/10.3390/md22030110 - 27 Feb 2024
Cited by 1 | Viewed by 2357
Abstract
α-Conotoxins (α-CTxs) are structurally related peptides that antagonize nicotinic acetylcholine receptors (nAChRs), which may serve as new alternatives to opioid-based treatment for pain-related conditions. The non-natural amino acid analogues of α-CTxs have been demonstrated with improved potency compared to the native peptide. In [...] Read more.
α-Conotoxins (α-CTxs) are structurally related peptides that antagonize nicotinic acetylcholine receptors (nAChRs), which may serve as new alternatives to opioid-based treatment for pain-related conditions. The non-natural amino acid analogues of α-CTxs have been demonstrated with improved potency compared to the native peptide. In this study, we chemically synthesized Dab/Dap-substituted analogues of α-CTx PeIA and evaluated their activity at heterologously expressed human α9α10 nAChRs. PeIA[S4Dap, S9Dap] had the most potent half-maximal inhibitory concentration (IC50) of 0.93 nM. Molecular dynamic simulations suggested that the side chain amino group of Dap4 formed additional hydrogen bonds with S168 and D169 of the receptor and Dap9 formed an extra hydrogen bond interaction with Q34, which is distinctive to PeIA. Overall, our findings provide new insights into further development of more potent analogues of α-CTxs, and PeIA[S4Dap, S9Dap] has potential as a drug candidate for the treatment of chronic neuropathic pain. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

Back to TopTop