Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = AC breakdown voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4038 KiB  
Article
Return on Investment and Sustainability of HVDC Links: Role of Diagnostics, Condition Monitoring, and Material Innovations
by Gian Carlo Montanari and Sukesh Babu Myneni
Sustainability 2025, 17(7), 3079; https://doi.org/10.3390/su17073079 - 31 Mar 2025
Viewed by 425
Abstract
HVDC cable systems are becoming an upscaled technical option, compared to AC, because of various factors, including easier interconnections, lower losses, and longer transmission distances. In addition, renewables providing direct DC energy, electrified transportation, and aerospace where DC can be favored because of [...] Read more.
HVDC cable systems are becoming an upscaled technical option, compared to AC, because of various factors, including easier interconnections, lower losses, and longer transmission distances. In addition, renewables providing direct DC energy, electrified transportation, and aerospace where DC can be favored because of higher carried specific power all point in the direction of broad future usage of HV and MV DC links. However, contrary to AC, there is little return from on-field installation as regards long-term cable reliability and aging processes. This gap must be covered by intensive research, and contributing to this research is the purpose of this paper. The focus is on key points for HVDC (and MVDC) cable reliability and sustainability, from design modeling able to account for voltage transients and extrinsic aging (such as that caused by partial discharges) to the impact of aging on insulation conductivity (which rules the electric field distribution, thus aging rate). Also, recyclable and nanostructured materials, as well as health conditions, are considered. It is shown how cable design can account for accelerated aging due to voltage transients, as well as for aging-time dependence of conductivity, and how design can be free of extrinsic aging caused by PDs. Algorithms for health condition evaluations, which have additional value in a relatively new technology such as HVDC polymeric cables, are applied to insulation system aging under partial discharges, showing how they can provide an indication of insulation degradation globally or locally (weak spots) and of possible maintenance times. All of this can effectively contribute to reducing the risk of major cable breakdown and damage under operation, which would significantly affect the return on investment (ROI). Full article
Show Figures

Figure 1

21 pages, 3656 KiB  
Article
Fault Location in H-Type AC Filters Based on Characteristics of Sudden Current Changes
by Wenhai Zhang, Wen Xiao, Shu Zhang and Yuzhe Li
Energies 2025, 18(6), 1403; https://doi.org/10.3390/en18061403 - 12 Mar 2025
Viewed by 477
Abstract
The timely detection and accurate location of capacitor element breakdown faults (CEBFs) are crucial in optimizing the performance of alternating current (AC) filters and ensuring the safety and stable operation of high-voltage direct current transmission systems. In this paper, by analyzing the physical [...] Read more.
The timely detection and accurate location of capacitor element breakdown faults (CEBFs) are crucial in optimizing the performance of alternating current (AC) filters and ensuring the safety and stable operation of high-voltage direct current transmission systems. In this paper, by analyzing the physical process of CEBFs and the transient fault characteristics, a mapping relationship is established between the initial phase angle of the fault, the direction of sudden changes in unbalanced current, and the current difference on the low-voltage side for CEBFs occurring in different bridge arms. A fault arm localization method is developed for CEBFs in H-type AC filters based on the direction of sudden current changes. This technique is shown to enhance both the location accuracy and reliability compared with previous methods. The feasibility and accuracy of the proposed method are validated through simulations and experimental data. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

14 pages, 6091 KiB  
Article
Insulation Aging Evaluation Method of High Voltage Cable Based on Dielectric Loss Characteristics
by Tao Han, Wenhao Li, Zeping Zheng, Yanqing Li, Jia Chu and Chunlin Hao
Energies 2025, 18(5), 1267; https://doi.org/10.3390/en18051267 - 5 Mar 2025
Cited by 1 | Viewed by 943
Abstract
Health assessments of high-voltage power cables are important for stable operations of power grids; however, most current health assessment model parameters lack whole cable test data, making them unable to effectively characterize the insulation aging state of whole cables. In this paper, a [...] Read more.
Health assessments of high-voltage power cables are important for stable operations of power grids; however, most current health assessment model parameters lack whole cable test data, making them unable to effectively characterize the insulation aging state of whole cables. In this paper, a dielectric loss measurement device for high-voltage cables is developed. Using a high-voltage amplifier and high-precision dielectric loss measurement algorithm, the dielectric loss values of whole cables at different aging stages are measured, and the physicochemical and electrical characteristics of XLPE slice samples at each aging stage are analyzed. Through the analysis of high-voltage dielectric loss, crystallinity, carbonyl index, AC breakdown field strength, and elongation at break, aging correlation parameters are determined. The characteristic high voltage frequency domain dielectric response and delamination degree are proposed to characterize the aging state of cable insulation. The correlation between the high voltage frequency domain dielectric characteristics and cable insulation aging state is established. Finally, an assessment method of the insulation aging state of high-voltage cable is developed, providing a reference for the diagnosis and assessment of the insulation state of high-voltage XLPE cable on site. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

21 pages, 7048 KiB  
Article
Statistical Analysis of AC Breakdown Performance of Epoxy/Al2O3 Micro-Composites for High-Voltage Applications
by Changyeong Cheon, Dongmin Seo and Myungchin Kim
Appl. Sci. 2024, 14(22), 10506; https://doi.org/10.3390/app142210506 - 14 Nov 2024
Cited by 3 | Viewed by 1344
Abstract
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of [...] Read more.
Thanks to the performance improvement introduced by micro sized functional fillers, application of epoxy composites for electrical insulation purposes has become popular. This paper investigates the dielectric properties of epoxy micro-composites filled with alumina (Al2O3). In particular, measurements of relative permittivity, dissipation factor, and electrical breakdown are performed, and a comprehensive statistical analysis on dielectric properties was conducted. AC breakdown strength (AC-BDS) was analyzed for normal distribution using four methods (Anderson–Darling, Shapiro–Wilk, Ryan–Joiner, and Kolmogorov–Smirnov). In addition, the AC-BDS was analyzed at risk probabilities of 1%, 5%, 10%, and 50% using Weibull distribution functions. Both normal and Weibull distributions were evaluated using the Anderson–Darling (A-D) statistic and p-value. Additionally, the log-normal, gamma, and exponential distributions of AC-BDS were examined by A-D goodness-of-fit test. The hypothesis test results of AC-BDS were fit by normal and Weibull distributions, and the compliance was evaluated by p-value and each method statistics. In addition, the experimental results of AC-BDS were fit by log-normal and gamma distributions, and the goodness-of-fit was evaluated by p-value and A-D testing. On the other hand, exponential distribution was not suitable for p-value and A-D testing. The results showed that the distributions of AC-BDS were the best using log-normal distribution. Meanwhile, statistical analysis results verified the apparent effect of temperature on dielectric properties using a paired t-test. The analysis results of this paper not only contribute to better characterization of epoxy/Al2O3 micro-composites but also introduce a comprehensive approach for performing statistical analysis for electrical insulation materials. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

11 pages, 6643 KiB  
Article
Assessment of Cooling Conditions of Thermoplastic Insulation and Uniformity of Breakdown Strength for Medium-Voltage Direct Current Extruded Cable Insulation
by Keon-Hee Park, Seung-Won Lee, Hae-Jong Kim and Jang-Seob Lim
Energies 2024, 17(20), 5167; https://doi.org/10.3390/en17205167 - 17 Oct 2024
Viewed by 977
Abstract
Research has been conducted on medium-voltage direct current (MVDC) to address the limited transmission capacity of existing AC power transmission lines and to achieve efficient integration of renewable energy sources. Another method to increase the transmission capacity is to raise the maximum allowable [...] Read more.
Research has been conducted on medium-voltage direct current (MVDC) to address the limited transmission capacity of existing AC power transmission lines and to achieve efficient integration of renewable energy sources. Another method to increase the transmission capacity is to raise the maximum allowable temperature of the power cable. The maximum allowable temperature for cross-linked polyethylene (XLPE) in commercial power cables is 90 °C. Polypropylene (PP) is considered as an alternative material. PP has a maximum allowable temperature of 110 °C and possesses thermoplastic properties, making it environmentally friendly. However, PP may not ensure uniformity of the insulation layer depending on the extrusion process, including cooling conditions. This study aimed to determine the applicability of MVDC cables by assessing the uniformity of the insulation layer of extruded cables, considering the cooling conditions of PP in specimens. For the cooling conditions, ambient air, cooling press, and water cooling were evaluated for DC breakdown strength. Furthermore, the uniformity of the breakdown strength of the insulation layer, which was divided into sections such as conductor and sheath, was evaluated for commercial PP, XLPE, and the developed PP cables. This study aims to provide a comprehensive analysis of the DC BD strength of PP under various cooling conditions and emphasize the importance of uniformity in extruded cable sections. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

16 pages, 6614 KiB  
Article
Comparison of Aging Effect of Ester Liquids and Mineral Oil in Semi-Uniform Field Geometry under Lightning Impulse Voltage and Standard Compliant AC Voltage Testing
by Sabrina Krügel and Ronald Plath
Energies 2024, 17(19), 4946; https://doi.org/10.3390/en17194946 - 3 Oct 2024
Viewed by 1144
Abstract
This study examines and compares the breakdown and aging properties of five insulating liquids. Additionally, the influence of different voltage polarities on these properties was analyzed to investigate the effect of aging on polarity behavior under lightning impulse voltage in a semi-uniform field. [...] Read more.
This study examines and compares the breakdown and aging properties of five insulating liquids. Additionally, the influence of different voltage polarities on these properties was analyzed to investigate the effect of aging on polarity behavior under lightning impulse voltage in a semi-uniform field. The results were compared to standardized AC breakdown tests. After 2330 h and 4350 h of aging, changes were observed in key aging indicators such as water content (both absolute and relative), total acid number, and color across all liquids. Viscosity increased by up to 10% in natural esters. Notably, the rise in water content due to aging was concerning only for mineral oil, exceeding 20%. The impact of aging on breakdown voltage varied depending on the voltage type and polarity. Aging had the least effect under negative lightning impulse voltage, while the synthetic ester MIDEL 7131 exhibited the most significant reduction in breakdown voltage under positive lightning impulse voltage, dropping by over 24%, from more than 560 kV to 428 kV. In contrast, mineral oil showed only a 3% decrease. For the other liquids, the most pronounced reduction in breakdown voltage due to aging occurred under AC voltage, with natural esters showing a 17% decline, synthetic esters 26%, and mineral oil experiencing a 38% reduction. Full article
Show Figures

Figure 1

14 pages, 2277 KiB  
Article
Structure–Activity Relationship Models to Predict Properties of the Dielectric Fluids for Transformer Insulation System
by Mi Zhang, Hua Hou and Baoshan Wang
Int. J. Mol. Sci. 2024, 25(12), 6654; https://doi.org/10.3390/ijms25126654 - 17 Jun 2024
Cited by 1 | Viewed by 1265
Abstract
Mineral oils and synthetic and natural esters are the predominant insulating liquids in electrical equipment. Structure–activity relationship models to predict the key properties of pure insulating liquids, including pulse breakdown strengths, AC breakdown voltages, dielectric constants, flash points, and kinematic viscosities, have been [...] Read more.
Mineral oils and synthetic and natural esters are the predominant insulating liquids in electrical equipment. Structure–activity relationship models to predict the key properties of pure insulating liquids, including pulse breakdown strengths, AC breakdown voltages, dielectric constants, flash points, and kinematic viscosities, have been proposed for the first time. Dependence of the specific properties on the molecular structures has been illustrated quantitatively in terms of surface area, statistical total variance, and average deviation of positive and negative electrostatic potentials, as augmented by molecular weight, volume, and ovality. Moreover, the individual contribution of the functional groups to viscosity has been revealed by an additive approach. The predicted properties are in good agreement with the experimental data. The present theoretical work provides new insights on the development of novel dielectric fluids. Full article
Show Figures

Figure 1

23 pages, 6181 KiB  
Article
A Novel Polyester Varnish Nanocomposites for Electrical Machines with Improved Thermal and Dielectric Properties Using Functionalized TiO2 Nanoparticles
by Hanaa M. Ahmed, Nagat M. K. Abdel-Gawad, Waleed A. Afifi, Diaa-Eldin A. Mansour, Matti Lehtonen and Mohamed M. F. Darwish
Materials 2023, 16(19), 6478; https://doi.org/10.3390/ma16196478 - 29 Sep 2023
Cited by 7 | Viewed by 1769
Abstract
Recently, there has been a growing interest in polymer insulating materials that incorporate nanoscale inorganic additives, as they have shown significantly improved dielectric, thermal, and mechanical properties, making them highly suitable for application in high-voltage insulating materials for electrical machines. This study aims [...] Read more.
Recently, there has been a growing interest in polymer insulating materials that incorporate nanoscale inorganic additives, as they have shown significantly improved dielectric, thermal, and mechanical properties, making them highly suitable for application in high-voltage insulating materials for electrical machines. This study aims to improve the dielectric and thermal properties of a commercial polyester varnish by incorporating different concentrations of titanium dioxide nanoparticles (TiO2) with proper surface functionalization. Permafil 9637 dipping varnish is the varnish used for this investigation, and vinyl silane is the coupling agent used in the surface functionalization of TiO2 nanoparticles. First, nanoparticles are characterized through Fourier transform infrared spectroscopy to validate the success of their surface functionalization. Then, varnish nanocomposites are characterized through field emission scanning electron microscopy to validate the dispersion and morphology of nanoparticles within the varnish matrix. Following characterization, varnish nanocomposites are evaluated for thermal and dielectric properties. Regarding thermal properties, the thermal conductivity of the prepared nanocomposites is assessed. Regarding dielectric properties, both permittivity and dielectric losses are evaluated over a wide frequency range, starting from 20 Hz up to 2 MHz. Moreover, the AC breakdown voltage is measured for varnish nanocomposites, and the obtained data are incorporated into a finite element method to obtain the dielectric breakdown strength. Finally, the physical mechanisms behind the obtained results are discussed, considering the role of nanoparticle loading and surface functionalization. Full article
Show Figures

Figure 1

18 pages, 10997 KiB  
Article
Experimental Study of the Electrical and Physiochemical Properties of Different Types of Crude Palm Oils as Dielectric Insulating Fluids in Transformers
by Pichai Muangpratoom, Chinnapat Suriyasakulpong, Sakda Maneerot, Wanwilai Vittayakorn and Norasage Pattanadech
Sustainability 2023, 15(19), 14269; https://doi.org/10.3390/su151914269 - 27 Sep 2023
Cited by 4 | Viewed by 3008
Abstract
This paper gives information on the electrical and physiochemical characteristics of six different types of palm oil compared with traditional mineral oil. We found that natural processed crude palm oil (PO-C) had a higher resistance to AC breakdown voltage than other types of [...] Read more.
This paper gives information on the electrical and physiochemical characteristics of six different types of palm oil compared with traditional mineral oil. We found that natural processed crude palm oil (PO-C) had a higher resistance to AC breakdown voltage than other types of palm oil, including traditional mineral oil. The results of the positive lightning impulse voltage test for PO-C were still the highest compared to other types of palm oil, including traditional mineral oil, at 58.26%. The summarised dissipation factors of all tested crude palm oils were significantly higher than those of mineral oils, which will make the palm oil less insulating, especially in PO-A palm oil (36.197%), where the values were higher than those of other oils, while mineral oil has a slightly increased dispersion factor. For relative permittivity, all palm oils were compared, and it was found that PO-C had a lower relative permittivity than the other oils. In terms of physical and chemical properties, in the moisture content test on all oils, PO-C had the percentile with the highest moisture content decrease of 58.74%. In the case of testing the surface tension value, it was found that traditional mineral oil had the highest value (48.46 m/Nm) when compared to palm oil. On the other hand, the acidity in traditional mineral oil is the lowest (0.03 mg KOH/g) compared to all palm oils. Results from studies demonstrate the possibility of using natural processed crude palm oil, or PO-C, as a replacement for traditional mineral oil. This is consistent with the results of electrical properties that show PO-C is higher than other types of palm oil and includes traditional mineral oil. Full article
Show Figures

Figure 1

13 pages, 5711 KiB  
Article
Comprehensive Properties of Grafted Polypropylene Insulation Materials for AC/DC Distribution Power Cables
by Shangshi Huang, Yuxiao Zhou, Shixun Hu, Hao Yuan, Jun Yuan, Changlong Yang, Jun Hu, Qi Li and Jinliang He
Energies 2023, 16(12), 4701; https://doi.org/10.3390/en16124701 - 14 Jun 2023
Cited by 12 | Viewed by 2936
Abstract
Polypropylene (PP) exhibits excellent insulation properties, high thermo-stability, and recyclable nature, thus expected to be the next-generation insulation material for HV cable application. Chemical grafting modification is an effective technology to improve the electrical properties of polypropylene. In this paper, we develop and [...] Read more.
Polypropylene (PP) exhibits excellent insulation properties, high thermo-stability, and recyclable nature, thus expected to be the next-generation insulation material for HV cable application. Chemical grafting modification is an effective technology to improve the electrical properties of polypropylene. In this paper, we develop and report a new-type grafted PP insulation material by water-phase grafting technology. The comprehensive properties including electrical, thermal, and mechanical of it are tested and compared with traditional cable insulation material—crosslinked polyethylene (XLPE). The results show that the grafted PP holds superior thermal properties and enough mechanical flexibility. The electrical properties are of significant advantages, including resistivity enhanced by nearly two degrees of magnitudes, AC/DC breakdown strength raised by over 20%, and obviously suppressed space charge accumulation. These results indicate that grafted PP is very suitable for application in HV cable systems, either AC or DC. This research lays a foundation for the research and development of the next-generation recyclable polypropylene cables at higher voltage levels. Full article
Show Figures

Figure 1

13 pages, 29909 KiB  
Article
Effect of Microwave Irradiation on the Dielectric Characteristics of Semi-Conductive Nanoparticle-Based Nanofluids: Progress towards the Microwave Synthesis
by S. Raja, G. Koperundevi and Muthusankar Eswaran
Micromachines 2023, 14(6), 1194; https://doi.org/10.3390/mi14061194 - 3 Jun 2023
Viewed by 1988
Abstract
Studies on dispersing nanoparticles in base fluid to elevate its essential and critical properties have evolved significantly in the recent decade. Alongside the conventional dispersion techniques used for nanofluid synthesis, microwave energy at 2.4 GHz frequency is irradiated onto the nanofluids is experimented [...] Read more.
Studies on dispersing nanoparticles in base fluid to elevate its essential and critical properties have evolved significantly in the recent decade. Alongside the conventional dispersion techniques used for nanofluid synthesis, microwave energy at 2.4 GHz frequency is irradiated onto the nanofluids is experimented with in this study. The effect of microwave irradiation on the electrical and thermal properties of semi-conductive nanofluids (SNF) is investigated and presented in this article. Titanium dioxide and zinc oxide are the semi-conductive nanoparticles used for this study to synthesize the SNF, viz., titania nanofluid (TNF) and zinc nanofluid (ZNF). Flash and fire points are the thermal properties verified, and dielectric breakdown strength, dielectric constant (εr), and dielectric dissipation factor (tan δ) are the electrical properties verified in this study. AC breakdown voltage (BDV) of TNF and ZNF is improved by 16.78% and 11.25%, respectively, more than SNFs prepared without microwave irradiation. Results justify that the synergetic effect of stirring, sonication, and microwave irradiation in a rational sequence (microwave synthesis) exhibited better electrical and unaltered thermal properties. This microwave-applied nanofluid synthesis could be a simple and effective route to prepare the SNF with improved electrical properties. Full article
(This article belongs to the Special Issue Microfluidic Synthesis)
Show Figures

Figure 1

16 pages, 4930 KiB  
Article
Lubrication Condition Monitoring in EHD Line Contacts of Thrust Needle Roller Bearing Using the Electrical Impedance Method
by Taisuke Maruyama, Faidhi Radzi, Tsutomu Sato, Shunsuke Iwase, Masayuki Maeda and Ken Nakano
Lubricants 2023, 11(5), 223; https://doi.org/10.3390/lubricants11050223 - 16 May 2023
Cited by 18 | Viewed by 3766
Abstract
In this study, we developed the electrical impedance method which simultaneously measures the thickness and breakdown ratio of oil films in elastohydrodynamic (EHD) line contacts within thrust needle roller bearings. Initially, we theoretically demonstrated that the oil film thickness and breakdown ratio can [...] Read more.
In this study, we developed the electrical impedance method which simultaneously measures the thickness and breakdown ratio of oil films in elastohydrodynamic (EHD) line contacts within thrust needle roller bearings. Initially, we theoretically demonstrated that the oil film thickness and breakdown ratio can be simultaneously measured using the complex impedance that is produced when an AC voltage is applied to EHD line contacts. To verify the measurement accuracy of the electrical method, we monitored the oil film thickness of a thrust needle roller bearing and compared it with the theoretical value. The results revealed that the oil film thickness was thinner than the theoretical value immediately after starting the test, with the breakdown ratio being greater than 0 (indicating mixed lubrication); however, the breakdown ratio decreased over time, and the oil film thickness nearly matched the theoretical value one hour after starting the test, when it is believed that running-in wear is complete (i.e., breakdown ratio ≈ 0). Furthermore, following the test, after examining the race surface, we confirmed that running-in wear had indeed occurred. These results suggest that the developed method can monitor the lubrication conditions in EHD line contacts, such as those in thrust needle roller bearings, in detail. Full article
(This article belongs to the Special Issue Behavior of Lubricated Bearings in Electric Circuits)
Show Figures

Figure 1

15 pages, 3818 KiB  
Article
Investigation of the Electrical Properties of Mineral Oils with and without Carbon Nanotube Concentration under Different Magnetic Fields Applied in Transformer Applications
by Stephanie Azlyn Anak Felix, Muhamad Faiz Md Din, Asnor Mazuan Ishak, Jianli Wang, Nurul Hayati Idris and Wan Fathul Hakim Wan Zamri
Energies 2023, 16(8), 3381; https://doi.org/10.3390/en16083381 - 12 Apr 2023
Cited by 1 | Viewed by 2940
Abstract
The increased voltage loading of transformers has led to research on improving transformers’ lifespans to meet demand. Insulation oil acts as cooling medium that can significantly affect the performance of a transformer. This paper discusses an experimental study on the influences of the [...] Read more.
The increased voltage loading of transformers has led to research on improving transformers’ lifespans to meet demand. Insulation oil acts as cooling medium that can significantly affect the performance of a transformer. This paper discusses an experimental study on the influences of the doping of carbon nanotube (CNT) particles and magnetic fields on the electrical properties of mineral oil (MO). An analysis of electrical properties was conducted using AC breakdown tests, Tan Delta tests, Raman measurements, and simultaneous thermal analysis. Proper preparation was considered before starting the analysis of the electrical properties. The AC breakdown voltages before and after modification were measured. The experiment results indicated that the AC breakdown of mineral oil with a suitable amount of carbon nanotube particles (0.005 g/L) and a suitable magnetic field (0.45 T) gives the highest breakdown voltage. It was found that the proper treatment of nanofluid also greatly influences breakdown voltage. Additionally, Raman measurements analyzed the physical changes in the samples. From the results obtained, the addition of carbon nanotubes and the magnetic field of mineral oil leads to an improved performance of the transformer. Full article
(This article belongs to the Collection Advanced Energy Materials and Research)
Show Figures

Figure 1

11 pages, 1030 KiB  
Article
Effect of Fullerene and Graphene Nanoparticles on the AC Dielectric Strength of Natural Ester
by Hocine Khelifa, Eric Vagnon and Abderrahmane Beroual
Energies 2023, 16(4), 1995; https://doi.org/10.3390/en16041995 - 17 Feb 2023
Cited by 8 | Viewed by 1506
Abstract
The current study addresses the impact of the addition of fullerene and graphene nanoparticles on the AC breakdown voltage (AC BdV) of natural ester (FR3). The nanofluids (NFs) were prepared following the two-step process, and the AC BdV was performed in compliance with [...] Read more.
The current study addresses the impact of the addition of fullerene and graphene nanoparticles on the AC breakdown voltage (AC BdV) of natural ester (FR3). The nanofluids (NFs) were prepared following the two-step process, and the AC BdV was performed in compliance with IEC 60156 standards. Five different concentrations of NPs were considered (0.1 g/L, 0.2 g/L, 0.3 g/L, 0.4 g/L, and 0.5 g/L). A Student’s t-test was performed to compare the base liquid’s AC BdV data with different nanofluids. The experimental data were checked to see if they obeyed the Weibull distribution fitting curve, and the AC BdV at 1%, 10%, and 50% risk levels were then calculated. The performed t-test provides evidence that AC BdV data from the base liquid were different from those of different NFs (except 0.2 g/L fullerene, and 0.1 g/L and 0.4 g/L graphene NFs). It is also shown that the Weibull distribution fit the BdV data of all liquids (except 0.5 g/L fullerene NF), and remarkable improvements of AC BdVs at 1%, 10%, and 50% were observed. The best improvement was obtained with 0.4 g/L fullerene and 0.3 g/L graphene NFs. These results show the importance of using nanofluids as substitutes for the existing insulating liquids for current oil-filled power transformers. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

19 pages, 7207 KiB  
Article
Improvement of the Electrical Performance of Outdoor Porcelain Insulators by Utilization of a Novel Nano-TiO2 Coating for Application in Railway Electrification Systems
by Pichai Muangpratoom, Issaraporn Khonchaiyaphum and Wanwilai Vittayakorn
Energies 2023, 16(1), 561; https://doi.org/10.3390/en16010561 - 3 Jan 2023
Cited by 1 | Viewed by 3523
Abstract
The present study aimed to develop the electrical performance of outdoor insulators using a nano-TiO2 coating for railway electrification systems. The prototype design of porcelain insulators with normal coatings and using a nano-TiO2 coating is based on IEC 60815-1. The first [...] Read more.
The present study aimed to develop the electrical performance of outdoor insulators using a nano-TiO2 coating for railway electrification systems. The prototype design of porcelain insulators with normal coatings and using a nano-TiO2 coating is based on IEC 60815-1. The first test was performed to measure the low-frequency flashover AC voltage under both dry and wet conditions. In addition, the other test was conducted to measure the lightning impulse critical-flashover voltage at positive and negative polarity under dry-normal and wet-contaminated conditions. X-ray diffraction (X-RD) and Scanning electron microscopy (SEM) were used to examine the micro surface and show that the nano-TiO2 coating was adhered to the surface of the outdoor porcelain insulator and exists in an amorphous state. Additionally, it was observed and discovered that scattered nano-TiO2 strengthens the glassy matrix and creates a sturdy barrier that causes flashover voltage to be reduced under conditions of high dielectric strength. Nanostructured ceramic formulations outperform ordinary porcelain in terms of breakdown voltage strength, particularly for the insulators’ low-frequency flashover performances under dry and wet test conditions. However, a significant change in the lightning impulse critical-flashover voltage characteristics is observed and is not much better when adding the nano-TiO2 coating to the porcelain insulators. Full article
(This article belongs to the Special Issue Testing, Monitoring and Diagnostic of High Voltage Equipment)
Show Figures

Figure 1

Back to TopTop