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Abstract: In this study, we developed the electrical impedance method which simultaneously mea-
sures the thickness and breakdown ratio of oil films in elastohydrodynamic (EHD) line contacts
within thrust needle roller bearings. Initially, we theoretically demonstrated that the oil film thickness
and breakdown ratio can be simultaneously measured using the complex impedance that is produced
when an AC voltage is applied to EHD line contacts. To verify the measurement accuracy of the
electrical method, we monitored the oil film thickness of a thrust needle roller bearing and compared
it with the theoretical value. The results revealed that the oil film thickness was thinner than the
theoretical value immediately after starting the test, with the breakdown ratio being greater than 0
(indicating mixed lubrication); however, the breakdown ratio decreased over time, and the oil film
thickness nearly matched the theoretical value one hour after starting the test, when it is believed
that running-in wear is complete (i.e., breakdown ratio ≈ 0). Furthermore, following the test, after
examining the race surface, we confirmed that running-in wear had indeed occurred. These results
suggest that the developed method can monitor the lubrication conditions in EHD line contacts, such
as those in thrust needle roller bearings, in detail.

Keywords: electrical impedance method; condition monitoring; oil film thickness; breakdown ratio;
elastohydrodynamic lubrication; thrust needle roller bearing; finite element method

1. Introduction

In recent years, due to the growing concern over global warming [1], roller bearings
that are used in the sliding components of various machines have been required to produce
even lower torque. To reduce bearing torque, measures such as decreasing the viscosity
of lubricants or reducing the lubricant fill amount have been taken. However, this may
promote oil film breakdown in elastohydrodynamic (EHD) contacts [2] that use roller
bearings, thus leading to various types of surface damage [3–5]. Consequently, ideal
theoretical lubrication conditions for further reducing the torque of roller bearings may
involve thinning the oil film within a contact area as much as possible without causing
breakdown. Notably, the thickness and breakdown ratio of oil films in EHD contacts
are crucial indices for lubrication conditions. Furthermore, as the impact between the
rolling elements and the cage also affect the oil film thickness [6], visualization techniques
are needed to clarify the actual lubrication conditions of the roller bearings. Numerous
studies have explored methods for monitoring the lubrication conditions of EHD contacts.
Optical interferometry [7–14] is particularly popular, as it can accurately measure oil film
thickness in EHD contacts. However, it requires the use of light-transmitting materials, and
therefore, it cannot determine the lubrication conditions of actual ball bearings. Electrical
methods [15–33] can be a potential solution for monitoring the lubrication conditions of
non-light-transmitting materials. There are three main types of electrical methods: the
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electrical resistance method [16–20], electrical capacitance method [21–27], and electrical
impedance method [28–33].

First, the electrical resistance method measures the breakdown ratio of oil films by
examining the electrical resistance generated in EHD contacts. This method has primarily
been employed in research to identify friction and wear mechanisms under mixed lubrica-
tion conditions. Lugt et al. [18] and Load et al. [19] reported on the relationship between
test piece surface roughness and the oil film breakdown ratio.

Furthermore, the electrical capacitance method treats the space between two sliding
surfaces as a capacitor, and it measures oil film thickness in EHD contacts based on the
measured capacitance. Jablonka et al. [23,24] not only considers the EHD point contacts,
but also their surroundings as a capacitor, thus confirming that the oil film measurement
accuracy of this method is equivalent to that of optical interferometry. Additionally, other
studies have applied these methods to practical deep groove ball bearings to measure oil
film thickness in elliptical EHD contacts [25–27].

In recent years, the electrical impedance method has been proposed, wherein AC
voltage is applied to a contact area, and the thickness and breakdown ratio of oil films are
simultaneously measured based on the complex impedance. The authors [32] also applied
optical interferometry, along with the electrical impedance method, to a ball-on-disc-type
apparatus (i.e., point contact), thus confirming that the oil film measurement accuracy of the
electrical impedance method matches that of the optical interferometry method. Moreover,
we improved the method so that it could be applied to practical ball bearings (i.e., elliptical
contacts) with curvatures on rolling surfaces and multiple contact areas [33]. However,
although this method may be applied to point or elliptical contacts, no electrical impedance
methods appropriate for EHD line contacts, such as thrust needle roller bearings, have
been reported.

Therefore, in this study, we developed an electrical impedance method that could be
applicable to EHD line contacts; then, we applied it to actual thrust needle roller bearings
and measured the oil film thickness and breakdown ratio simultaneously. This method can
accurately monitor the lubrication conditions of actual roller bearings, and it may become a
crucial technique for further reducing torque and extending the life of bearings.

2. Measurement Principle
2.1. Outline

In the proposed method, a sinusoidal voltage is applied to EHD line contacts, and
the complex impedance of the contacts is measured. Using the modulus and phase of the
measured impedance, the oil film thickness and breakdown ratio are quantified. For these
quantifications, two types of models (i.e., a “geometrical model” and an “electrical model”)
of the contact are required. In this study, the EHD line contacts of practical thrust needle
roller bearings are targeted.

2.2. Geometrical Model

Figure 1 depicts a geometrical model of an EHD line contact area and its surroundings
under mixed lubrication conditions with a thrust needle roller bearing. Furthermore, the h
axis is the axis in the oil film thickness direction, the x axis is the axis in the rolling direction,
and the y axis is the axis that is perpendicular to it. Additionally, h1 is the oil film thickness
in the oil film-forming part of the contact area, b denotes the contact half-width, r denotes
the roller radius, L denotes the straight part of the roller’s length, S1 denotes the apparent
contact area, S2 denotes the roller surface area surrounding the contact area (note that S2
in Figure 1 represents the projected area on the xy plane), and α denotes the breakdown
ratio (i.e., 0 ≤ α ≤ 1). Consequently, the surface upon which the breakdown (that is, h = 0)
occurs in the EHD line contact is represented by αS1, as shown in Figure 1.
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Figure 1. Geometrical model of a thrust needle roller bearing.

Additionally, h2 in Figure 1 is a function representing the height of a roller surface
around a contact area (that is, b≤ x≤ b + r), and we use argument ϕ, as shown in the figure,
to express it in Equation (1), as follows:

h2 = h1 + r(1− cos ϕ) (1)

Based on the above equation, in this study, the elastic deformation that occurs when a
load is applied is ignored. Additionally, for the sake of the calculation, a model in which the
roller’s center is shifted by b in the x-axis direction, as shown in Figure 1 (generally, b + r≈ r
from b� r), is adopted, and it is assumed that it is completely filled with lubricant, at least
in the area of x = b + r. Here, our past study [32] confirmed that even if starved lubrication
occurs in an area around a contact area that is not sufficiently filled with lubricant [34–36],
then the effect on the accuracy of the oil film measurement is negligible.

2.3. Electrical Model

Subsequently, Figure 2 shows the equivalent electric circuit of the thrust needle roller
bearing. More specifically, R1 in Figure 2 denotes the electrical resistance in areas wherein
oil film is breaking down, C1 denotes the capacitance in the oil film formed area within an
EHD line contact, and C2 denotes the capacitance in the straight part of the roller around
an EHD line contact, respectively. As shown in Figure 2, in this study, it is assumed that all
contact areas are represented by the same equivalent circuit. The contact areas in the upper
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and lower races are connected in their respective series circuits, and these are joined by
parallel circuits, which are equal in number to the rolling elements. This implies that this
method determines the average value of the oil film thickness and breakdown ratio in all
contact areas. In Figure 2, R1, C1, and C2 are each represented by their respective equations,
as follows:

R1 =
R10

α
(2)

C1 =
ε(1− α)S1

h1
=

2ε(1− α)bL
h1

(3)

C2 = ε
S2

h2
= ε

∫ π
2

− π
2

Lrdϕ

h1 + r(1− cos ϕ)
=

4εLr√
h1(h1 + 2r)

(
arctan

(√
1 +

2r
h1

))
(4)

Here, ε represents the dielectric constant of the lubricating oil, and R10 denotes the
electrical resistance under a stationary contact (i.e., α = 1). Generally, h1 � r; hence,
Equation (4) can be approximated as shown in Equation (5) below.

C2 ≈
4εLr√
2rh1

arctan

(√
2r
h1

)
≈ 4εLr√

2rh1

(
π

2
−
√

h1

2r

)
≈ 2πεL

√
r

2h1
(5)

In actuality, the practical roller end faces are chamfered and their capacitance C2c
should be considered; however, it is neglected in this study, as shown in Figures 1 and 2.
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Figure 2. Electrical model of a thrust needle roller bearing. R1: resistance in breakdown area; C1:
capacitance in lubricated area within EHD line contact; and C2: capacitance in the straight area of the
roller surrounding the EHD line contact.
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2.4. Complex Impedance Analysis

The alternating voltage V = V(t) (as the input) and alternating current I = I(t) (as the
output) can be expressed, respectively, in the following complex forms:

V = |V| exp(jωt) (6)

I = |I| exp(j(ωt− θ)) (7)

where j denotes the imaginary unit and t denotes time. Equations (6) and (7) imply that by
applying the alternating voltage to the angular frequency ω and amplitude |V|, we obtain
the alternating current with the amplitude |I| and phase θ operating at the same angular
frequency ω. Then, the complex impedance Z can be expressed as follows:

Z =
V
I
= |Z| exp(jθ) (8)

It should be noted that the modulus |Z| (= |V|/|I|) and phase θ of the complex
impedance Z are obtained from the electrical impedance measurement. Additionally, the
complex impedance Z of the entire equivalent circuit shown in Figure 2 is determined by
Equation (9), shown below, if n is the number of rolling elements in a thrust needle roller
bearing.

1
Z

=
n
2

(
1

R1
+ jω(C1 + C2)

)
(9)

More specifically, Equations (10) and (11) are obtained from Equations (8) and (9).

R1 =
n|Z|

2 cos θ
(10)

C1 + C2 = − 2 sin θ

nω|Z| (11)

Accordingly, using Equations (2)–(5), Equations (10) and (11) can be expressed as
the equations below.

R10

α
=

n|Z|
2 cos θ

(12)

2ε(1− α)bL
h1

+ 2πεL
√

r
2h1

= − 2 sin θ

nω|Z| (13)

Based on Equation (12), the oil film breakdown ratio α can be expressed as follows:

α =
2R10 cos θ

n|Z| (14)

Furthermore, based on Equation (13), h1 can be obtained from the following equation.

h1 =
8(1− α)2b2

π2r

(
1 +
√

1 + Ψ

Ψ

)2

(15)

Here, the dimensionless number Ψ in Equation (15), shown above, can be obtained
from the following equation.

Ψ = −8(1− α)b sin θ

π2εnLrω|Z| (16)
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In this study, we determined the average oil film thickness h of the EHD line contacts;
hence, if an oil film breakdown occurs in part of a contact area, then h can be obtained from
Equation (17) using α and h1.

h = (1− α)h1 (17)

As shown above, the oil film thickness and oil film breakdown ratio in the EHD line
contacts of a thrust needle roller bearing can be theoretically obtained from
Equations (14) and (17).

3. Experimental Details
3.1. Apparatus

We verified the measurement accuracy of the electrical impedance method using the
bearing tester depicted in Figure 3. The test bearing was a thrust needle roller bearing, and
we employed a spring to apply an axial load Fa. To apply the electrical impedance method
to this bearing, a carbon brush pressed against the rotating shaft was used to introduce an
AC voltage from a LCR meter between the upper and lower races. Additionally, by using a
rubber timing belt for the rotating shaft, power was transmitted in an insulated state from
the motor. A ceramic ball was set between the spring and the lower race, thus applying
the axial load to the test bearing. The use of a ceramic ball allowed the AC voltage to be
applied only to the test bearing, and it also prevented the lower race from tilting against
the rollers. This tester was not only capable of simultaneously measuring the average oil
film thickness h and oil film breakdown ratio α, but also the lower race temperature T and
bearing torque M. T was measured by attaching a thermocouple to the lower race, whereas
M was measured using a torque meter.
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3.2. Materials

Figure 4 shows an image of the external appearance of the test bearing used in this
study. The test bearing was a thrust needle roller bearing FNTA2542 (inner diameter:
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25 mm, outer diameter: 42 mm), n = 30, roller radius r = 1.0 mm, length of the roller’s
straight part L = 4.6 mm, roller’s total length Lt = 5.6 mm, and roller end face chamfer
curvature rc = 0.5 mm. Additionally, the roller material was SUJ2 (Young’s modulus:
208 GPa, Poisson’s ratio: 0.3). Furthermore, the material of the upper and lower races
used in this test (inner diameter: 25 mm, outer diameter: 42 mm, thickness: 1.0 mm) was
SK5 (Young’s modulus: 206 GPa, Poisson’s ratio: 0.3), and the material of the cage was
SPCC (Young’s modulus: 205 GPa, Poisson’s ratio: 0.3). Additionally, the root-mean-square
roughness, Rq1 and Rq2, of the rollers and upper and lower races are Rq1 = 0.15 µm and
Rq2 = 0.12 µm, respectively. As the test bearing is an actual product and the manufacturing
errors of the rollers and races (roundness, waviness, etc.) vary within their respective
tolerances, the experimental results are affected by these factors; however, the developed
method measures the average value of the total contact area when an axial load is applied,
which mitigates the effects of the variation.
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The lubricant used in the test was mineral oil (kinematic viscosity at 40 ◦C: ν = 32 mm2/s),
and the test was conducted using oil lubrication. The relative permittivity εoil of the mineral
oil was εoil ≈ 2.1 in the AC frequency range f = 20 Hz to 1.0 MHz, so the oil film thickness
was calculated by assuming that ε = εoilε0 = 2.1ε0 F/m. Note that the dielectric constant of
vacuum ε0 = 8.85 × 10−12 F/m.

3.3. Procedure

In this study, the test bearing was first ultrasonically cleaned using heptane and
ethanol, then, the upper race was pressed into the rotating shaft of the tester to set the test
bearing. After pouring mineral oil into an oil bath, we applied a sinusoidal voltage (RMS
amplitude: Ve = 1.1 V, AC frequency: f = 10 kHz) while loading an axial load Fa = 1.5 kN
onto the test bearing. Before rotating the bearing, we first measured the initial complex
impedance Z0 using stationary contacts (i.e., α = 1). Based on the value of Z0, the electrical
resistance R10 in Equation (14) can be obtained using the following equation.

R10 =
n|Z0|

2 cos θ0
(18)

Provided that |Z0| and θ0 in Equation (18) are the magnitude and phase of Z0, we
found that by substituting Equation (18) into Equation (14), α is not affected by n. Subse-
quently, the upper race of the test bearing was rotated at a speed of N = 3000 min−1 for 5 h,
and |Z|, θ, T, and M, using dynamic contacts, were simultaneously measured (sampling
rate: 0.5 Hz). The average oil film thickness h obtained using the electrical impedance
method was compared with the theoretical central oil film thickness measurement that was
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derived using the Ertel–Grubin equation [37] in order to verify the oil film measurement
accuracy. Here, the theoretical oil film thickness was calculated using the viscosity of the
lubricant obtained from the lower race temperature T; this varied over time. The wear track
formed on the lower race after the test was observed using an optical microscope, and the
surface roughness was measured using an optical interference microscope.

4. Experimental Results
4.1. Measurements of |Z| and θ

With an axial load of Fa = 1.5 kN, in a practical thrust needle roller bearing, Figure 5
shows the measured values of the modulus |Z| (upper) and phase θ (lower) of the complex
impedance Z at a rotational speed of N = 3000 min−1. |Z| varied from 0.03 kΩ to 30 kΩ,
approximately, and θ varied from 0◦ to –85◦, approximately, under experimental conditions.
In the following section, the average oil film thickness h and breakdown ratio α will be
quantified using |Z| and θ.
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amplitude: Ve = 1.1 V and frequency: f = 10 kHz; red plots in graphs: measured values by LCR meter.

4.2. Measurements of h, α, T, and M

Figure 6 shows the results of measuring the average oil film thickness h, oil film
breakdown ratio α, lower race temperature T, and bearing torque M using the test bearing.
Based on Figure 6, it can be determined that the h that was obtained using this method is in
good agreement with the theoretical central oil film thickness T (black dashed line in the
figure, derived from the Ertel–Grubin equation [37]). However, in the first hour after the
start of the test, there was a large variation in h, with many values indicating a thinner oil
film thickness than the theoretical oil film thickness; nevertheless, these values approached
the theoretical value. On the other hand, from the first hour α ≈ 0, α decreased over time.
At this point, T and M also reached almost constant values. Hence, it appears that the
running-in wear was completed in approximately an hour under these test conditions.
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4.3. Observations of Tested Bearing

Figure 7a shows the results of observing a wear track using an optical microscope, and
Figure 7b shows the results of measuring the surface roughness profile near the wear track
boundary using an optical interference microscope. Asperities of 100 nm or more, observed
in the undamaged area (right half of Figure 7b), could not be confirmed as being inside of
the wear track (left half of Figure 7b). In addition, the surface roughness in the wear track
was less than that in the undamaged part (Rq2 = 0.12 µm to 0.08 µm). Figure 6 shows that
the value of h after one hour was also approximately 100 nm with no breakdown area; thus,
it is thought that the asperities that were greater than the oil film thickness were worn, and
running-in wear was completed.
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5. Discussion
5.1. Validation of Measured h-Values

In this study, as shown in Figures 1 and 2, the capacitance C2c generated in the
chamfer of the roller end face was ignored, and oil film thickness was determined using
the capacitance C2 generated only in the straight part of the roller. However, to be precise,
the oil film thickness should be calculated using the total capacitance C2t, which reflects the
actual roller shape, including the chamfer of the roller end face. Therefore, we calculated C2t
using the finite element method (FEM) [38], and we compared it with the C2 obtained from
Equation (5). The simulations were performed using COMSOL® Multiphysics (version
6.0), employing the AC/DC module. More specifically, the simulations were performed
by assuming that the roller and race were made of steel and filled with test oil (mineral
oil). The race and analytical boundary were grounded, and a potential of 1 V was applied
to the roller. Figure 8 shows the triangular mesh that was automatically assigned by the
software to the roller and race geometry that was used in the simulations. Furthermore, in
this simulation, we did not consider elastic deformation (i.e., Fa = 0 N). Hence, given that
this FEM analysis does not consider C1 occurring in the EHD line contact, it implies that it
can simply be compared with C2, as obtained from Equation (5).
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Figure 8. Triangular mesh used for simulations; radius of roller: r = 1.0 mm, length of roller straight
area: L = 4.6 mm, chamfer curvature at roller edge: rc = 0.5 mm and total length of roller: Lt = 5.6 mm.

Figure 9 shows the results of comparing C2 and C2t when changing the oil film
thickness h1 (see Figure 1) under hydrodynamic lubrication (i.e., α = 0) conditions, assuming
that the roller’s surroundings are sufficiently filled with the mineral oil used in this test.
In accordance with Figure 9, it was found that C2 closely agrees with C2t in the range of
h1 < 1 µm, even though C2 only calculates the capacitance in the straight part of the roller.
However, in the range where h1 > 1 µm, C2t is slightly larger than C2. Furthermore, we
found that this difference gradually widens as h1 thickens. For reference, C1 at Fa = 1.5 kN,
obtained using Equation (3), is also shown in Figure 9. In the range of h1 < 30 nm, C1 is
larger than C2; despite this, C2 significantly affects the accuracy of the oil film measurement.
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Figure 9. Effect of a chamfer at the roller edge on capacitance between the roller and race for varying
oil film thickness h1 with no breakdown area (i.e., α = 0); lubricant: mineral oil and Fa = 0 N; red line
in graph: theoretical prediction C2 using Equation (5); black open circles in graph: simulated values
C2t using COMSOL® Multiphysics; red broken line in graph: theoretical prediction C1 at Fa = 1.5 kN
using Equation (3).

Figure 10 shows the results of analyzing the electric field distribution at h1 = 100 µm.
In Figure 10, it is determined that the electric field generated at the chamfer of the roller
end face cannot be ignored when h1 is thick. In other words, the thicker h1 is, the more C2c
cannot be ignored, which is thought to have led to the results shown in Figure 9. However,
the oil film thickness in EHD line contacts is generally less than 1 µm, thus suggesting that
ignoring C2c does not significantly affect oil film measurement accuracy (see Figure 6).
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Figure 10. Electric field distribution in the yh plane at x = 0; (a) the entire view of simulation and
(b) the enlarged view of the chamfer at the roller edge; oil film thickness: h1 = 100 µm, lubricant:
mineral oil and Fa = 0 N; color bar in simulated results: electric field strength: E [V/m].

Next, we discuss the length of the roller’s straight part L, for which C2c cannot be
ignored. Figure 11 shows the results of the calculating relationship between h1 and C2/C2t
for varying L/Lt at r = 1.0 mm and rc = 0.5 mm. From Figure 11, we found that as L/Lt
increases, C2/C2t increases (i.e., the effects of C2c become smaller). However, we also found
that even if L/Lt is relatively small, and the lower h1 is, the more C2c can be ignored. Given
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that L/Lt ≈ 0.82 for the rollers used in the bearing test, it is thought that the electrical
impedance method developed in this study has a sufficient oil film measurement accuracy
within the range of h1 < 1 µm, as shown in Figure 11.
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5.2. Validation of Measured α-Values

To confirm the validity of α, which was obtained using the electrical impedance
method developed in this study, the oil film parameter Λ was calculated, which is the ratio
of the measured oil film thickness and surface roughness, and we examined its relationship
with breakdown ratio α. More specifically, Λ is determined using the following equation [3].

Λ =
h√

Rq1
2 + Rq22

(19)

Provided that h in Equation (19) is the mean oil film thickness that was measured
using the developed method, and Rq1 and Rq2 denote the root-mean-square roughness
of the roller and lower race before the test, Figure 12 shows the relationship between Λ
and α. From Figure 12, we can determine that when Λ < 3, α increases as Λ decreases,
although the variation is large. Johnson et al. [39] predicted that the number of asperity
contacts within the EHD contact was given by a Poisson distribution, and they pointed out
that theoretically, the oil film breaks at Λ < 3. Hence, Figure 12 suggests that this method
can quantitatively evaluate h and α simultaneously. Furthermore, the reason for the large
variation in the test results shown in Figure 12 is that the test conditions are accompanied
by running-in wear, as shown in Figure 7. Additionally, Figure 6 shows that α, as well as h,
decreased with time, except immediately after starting the test, finally reaching α ≈ 0 and
h ≈ 100 nm. This result is also expected to support the idea of progressive running-in wear
in EHD line contacts.
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6. Conclusions

In this study, we developed an electrical impedance method that can be applied to
EHD line contacts. Furthermore, we applied this method to an actual thrust needle roller
bearing to simultaneously measure the thickness and breakdown ratio of oil films; then, we
verified the measurement accuracy. The findings obtained in this study are as follows:

1. We theoretically demonstrated that the thickness and breakdown ratio of oil films
can be simultaneously measured using the complex impedance generated when a
sinusoidal voltage is applied to EHD line contacts.

2. We applied the developed method to an actual thrust needle bearing, and we simulta-
neously measured the oil film thickness and breakdown ratio. The oil film thickness
and breakdown ratio fluctuated significantly immediately after starting the test, but
the breakdown ratio decreased over time. Furthermore, the oil film thickness after one
hour was thought to be completed when the running-in wear was found to almost
match the theoretical value. It was also confirmed that the lower race temperature
and bearing torque were both constant values at that time, thus indicating that the
lubricated condition was stable.

3. Based on the results of measuring the surface roughness of the lower race after the
test, asperities of 100 nm or more, observed in the undamaged part, were not found
in the wear track. One hour after the start of the test, the oil film thickness was also
approximately 100 nm, and there was no breakdown area; it is thought that running-in
wear was almost completed at this time.

4. When using this method, the oil film thickness in the EHD line contacts is determined
by ignoring the capacitance generated in the chamfer of the roller end face. As a result
of calculating the capacitance in the actual roller shape using FEM, we confirmed that
there is generally no problem in ignoring the capacitance that occurs in the chamfer
of the roller end face. However, this suggests that when the length of the roller’s
straight part is relatively short compared with the total length of roller, the capacitance
occurring in the chamfer part of the roller end face cannot be ignored.

5. We clarified the relationship between the oil film parameter Λ and breakdown ratio α
in EHD line contacts. When Λ < 3, we found that α tended to increase as Λ decreased.
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The reason for the large variation in the obtained test results is that running-in wear
occurred in this study.

This developed method can simultaneously monitor the thickness and breakdown
ratio of oil films in EHD line contacts, and thus, it may become a very important technique
for further lowering the torque and extending the life of thrust needle roller bearings.
Additionally, it is considered to be very effective as a lubrication condition monitoring
technique, and it can be applied to actual rolling bearings.

7. Patents

The patents related to this study are shown below.
Method for Diagnosing Rolling Device, WO-2018128062-A1, https://app.dimensions.

ai/details/patent/WO-2018128062-A1 (accessed on 14 May 2023).
Bearing Device State Detecting Method, Detecting Device, and Program, WO-2022250060-

A1, https://app.dimensions.ai/details/patent/WO-2022250060-A1 (accessed on 14 May 2023).
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Nomenclature

b Hertzian halfwidth [m]
f AC frequency [Hz]
f (y) height of surface roughness in y-axis direction [m]
h coordinate perpendicular to the xy plane [m]
h1 oil film thickness in lubricated area [m]

h2
oil film thickness in surrounding area expressed as
h2 = h1 + r(1− cos ϕ)

[m]

h mean oil film thickness expressed as h = (1− α)h1 [m]
j imaginary unit [–]
n number of rollers per bearing [–]
r radius of roller [m]
rc chamfer curvature at roller edge [m]
t time [s]
x coordinate in rolling direction [m]
y coordinate across rolling direction [m]

https://app.dimensions.ai/details/patent/WO-2018128062-A1
https://app.dimensions.ai/details/patent/WO-2018128062-A1
https://app.dimensions.ai/details/patent/WO-2022250060-A1
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C1 capacitance in lubricated area within EHD line contact [F]
C2 capacitance in roller straight area surrounding EHD line contact [F]
C2c capacitance in chamfer area [F]
C2t total capacitance between roller and race reflecting actual geometry [F]
E electric field strength [V/m]
Fa axial load [N]
I alternating current expressed as I = |I| exp(j(ωt− θ)) [A]
|I| amplitude of alternating current [A]
L length of roller straight area [m]
Lt total length of roller [m]
M bearing torque [N·m]
N rotational speed of upper race [s−1]
R1 resistance in breakdown area under a dynamic contact [Ω]
R10 resistance of the breakdown area under a stationary contact (i.e., α = 1) [Ω]
Rq1 root mean square roughness of roller [m]
Rq2 root mean square roughness of lower race [m]
S1 Hertzian contact area [m2]
S2 roller surface area surrounding EHD line contact [m2]
T lower race temperature [◦C]
V sinusoidal voltage expressed as V = |V| exp(jωt) [V]
|V| amplitude of sinusoidal voltage [V]
Ve RMS amplitude of sinusoidal voltage expressed as Ve = 1√

2
|V| [V]

Z complex impedance expressed as Z = V/I = |Z| exp(jθ) [Ω]
|Z| modulus of complex impedance under dynamic contacts [Ω]
|Z0| modulus of complex impedance under stationary contacts [Ω]
α breakdown ratio of oil films [–]
ε dielectric constant of lubricant expressed as ε = εoilε0 [F/m]
ε0 dielectric constant of vacuum [F/m]
εoil relative permittivity of lubricant [–]
θ phase of complex impedance under dynamic contacts [deg]
θ0 phase of complex impedance under stationary contacts [deg]
ν kinematic viscosity of lubricant [m2/s]
ϕ polar angle [rad]
ω angular frequency of AC voltage expressed as ω = 2π f [rad/s]
Λ film parameter expressed as Λ = h/

√
Rq1

2 + Rq22 [–]

Ψ dimensionless number expressed as Ψ = − 8(1−α)b sin θ
π2εnLrω|Z| [–]
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