Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = ABC drug efflux transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3757 KiB  
Article
Growth Hormone Signaling in Bladder Cancer: Transcriptomic Profiling of Patient Samples and In Vitro Evidence of Therapy Resistance via ABC Transporters and EMT Activation
by Emily Davis, Lydia J. Caggiano, Hannah Munholland, Reetobrata Basu, Darlene E. Berryman and John J. Kopchick
Int. J. Mol. Sci. 2025, 26(15), 7113; https://doi.org/10.3390/ijms26157113 - 23 Jul 2025
Viewed by 486
Abstract
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and [...] Read more.
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and disease progression in urothelial carcinoma (UC) through integrated transcriptomic and in vitro analyses. Transcriptomic profiling of The Cancer Genome Atlas bladder cancer cohort revealed that high tumoral GHR expression was associated with differential upregulation of genes involved in drug efflux, epithelial-to-mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. Notably, elevated GHR levels correlated with significantly reduced overall survival in patients with UC. In parallel, in vitro experiments demonstrated that GH promotes chemoresistance in UC cell lines via upregulation of ATP-binding cassette-containing (ABC) transporters and activation of EMT. GH also modulated ECM-remodeling-associated genes in a chemotherapy-dependent manner, including matrix metalloproteinases and tissue inhibitors of metalloproteinases. Importantly, these effects were abrogated by Pegvisomant, a GHR antagonist, indicating the functional relevance of GH/GHR signaling in the mediation of these phenotypes. Collectively, our findings support a mechanistic role for GH signaling in driving therapy resistance and tumor aggressiveness in bladder cancer and suggest GHR antagonism as a potential therapeutic strategy to improve treatment outcomes. Full article
(This article belongs to the Special Issue Urologic Cancers: Molecular Basis for Novel Therapeutic Approaches)
Show Figures

Figure 1

32 pages, 4374 KiB  
Article
Predictive and Prognostic Relevance of ABC Transporters for Resistance to Anthracycline Derivatives
by Rümeysa Yücer, Rossana Piccinno, Ednah Ooko, Mona Dawood, Gerhard Bringmann and Thomas Efferth
Biomolecules 2025, 15(7), 971; https://doi.org/10.3390/biom15070971 - 6 Jul 2025
Viewed by 597
Abstract
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of [...] Read more.
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of the National Cancer Institute, USA. The log10IC50 values varied from −10.49 M (3′-deamino-3′-(4″-(3″-cyano)morpholinyl)-doxorubicin, 1) to −4.93 M (N,N-dibenzyldaunorubicin hydrochloride, 30). Multidrug-resistant NCI-ADR-Res ovarian cancer cells revealed a high degree of resistance to established anthracyclines (between 18-fold to idarubicin (4) and 166-fold to doxorubicin (13) compared to parental, drug-sensitive OVCAR8 cells). The resistant cells displayed only low degrees of resistance (1- to 5-fold) to four other anthracyclines (7, 18, 28, 30) and were even hypersensitive (collaterally sensitive) to two compounds (1, 26). Live cell time-lapse microscopy proved the cross-resistance of the three chosen anthracyclines (4, 7, 9) on sensitive CCRF/CEM and multidrug-resistant CEM/ADR5000 cells. Structure–activity relationships showed that the presence of tertiary amino functions is helpful in avoiding resistance, while primary amines rather increased resistance development. An α-aminonitrile function as in compound 1 was favorable. Investigating the mRNA expression of 49 ATP-binding cassette (ABC) transporter genes showed that ABCB1/MDR1 encoding P-glycoprotein was the most important one for acquired and inherent resistance to anthracyclines. Molecular docking demonstrated that all anthracyclines bound to the same binding domain at the inner efflux channel side of P-glycoprotein with high binding affinities. Kaplan–Meier statistics of RNA sequencing data of more than 8000 tumor biopsies of TCGA database revealed that out of 23 tumor entities high ABCB1 expression was significantly correlated with worse survival times for acute myeloid leukemia, multiple myeloma, and hepatocellular carcinoma patients. This indicates that ABCB1 may serve as a prognostic marker in anthracycline-based chemotherapy regimens in these tumor types and a target for the development of novel anthracycline derivatives. Full article
(This article belongs to the Special Issue Current Advances in ABC Transporters in Physiology and Disease)
Show Figures

Graphical abstract

12 pages, 1713 KiB  
Article
Influence of Tariquidar, an ABC Transporter Inhibitor, on the Ca2+-Dependent Mitochondrial Permeability Transition Pore
by Tatiana A. Fedotcheva, Alexey G. Kruglov and Nadezhda I. Fedotcheva
Pharmaceuticals 2025, 18(6), 924; https://doi.org/10.3390/ph18060924 - 19 Jun 2025
Viewed by 386
Abstract
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new [...] Read more.
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new generation of MDR inhibitors with high affinity to ABC proteins. However, there are still no data on the possible effect of Tq on mitochondria as an important target in the regulation of cell death or survival. Methods: We investigated the influence of Tq on the Ca2+-dependent mitochondrial permeability transition pore (mPTP). The effect of Tq was assessed using several parameters, including the calcium load, membrane potential, and mitochondrial swelling. To evaluate the specific targets of Tq, selective inhibitors of components of the mitochondrial pore were used, including adenine nucleotides, carboxyatractylozide (Catr) and bongkrekic acid (BA), oligomycin, and cyclosporine A. Results: Tq decreased the calcium retention capacity, activated mitochondrial swelling, and lowered the influence of ADP and ATP, the inhibitors of the Ca2+-induced pore opening, at their low concentrations. These effects of Tq were observed in both calcium-load and swelling assays, thus mimicking the effect of Catr, a selective inhibitor of adenine nucleotide translocase (ANT). Tq also decreased the protective effect of BA, an inhibitor of ANT and mPTP, on the calcium retention capacity of mitochondria. Further, Tq dose-dependently decreased the inhibitory effect of a low ATP concentration but not of high concentrations, at which the effect of Tq was activated by oligomycin, an inhibitor of F-ATP synthase. Conclusions: The influence of Tq extends to mitochondria, specifically to the regulation of membrane permeability, promoting the activation of pore opening, probably through an interaction with ANT, a component of the pore-forming complex. The effect of Tq on the opening of mPTP is strongly dependent on the concentrations of adenine nucleotides and, consequently, on the functional state of mitochondria. The direct influence of Tq on mitochondria can be considered as a new activity that promotes the sensitization of cells to various treatments and stimuli. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

29 pages, 5545 KiB  
Article
Elacridar Inhibits BCRP Protein Activity in 2D and 3D Cell Culture Models of Ovarian Cancer and Re-Sensitizes Cells to Cytotoxic Drugs
by Piotr Stasiak, Justyna Sopel, Artur Płóciennik, Oliwia Musielak, Julia Maria Lipowicz, Agnieszka Anna Rawłuszko-Wieczorek, Karolina Sterzyńska, Jan Korbecki and Radosław Januchowski
Int. J. Mol. Sci. 2025, 26(12), 5800; https://doi.org/10.3390/ijms26125800 - 17 Jun 2025
Viewed by 2325
Abstract
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which [...] Read more.
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which actively effluxes chemotherapeutic agents such as topotecan (TOP) or mitoxantrone (MIT), limiting their intracellular accumulation and efficacy. This study investigated the potential of elacridar (GG918), a potent dual P-gp and BCRP inhibitor, to overcome drug resistance in ovarian cancer cell lines. Both TOP-sensitive and TOP-resistant ovarian cancer cells were grown in two-dimensional (2D) monolayers and three-dimensional (3D) spheroid models to better mimic the tumor microenvironment. The expression of the ABCG2 gene was quantified via qPCR and BCRP protein levels were assessed by western blotting and immunofluorescence. Drug response was evaluated using MTT viability assays, while BCRP transporter activity was examined using flow cytometry and microscopic assessment of the intracellular retention of BCRP fluorescent substrates (Hoechst 33342 and MIT). In both 2D and 3D cultures, elacridar effectively inhibited BCRP function and significantly enhanced sensitivity to TOP. These findings suggest that elacridar can inhibit BCRP-mediated drug resistance in ovarian cancer cell models. Full article
(This article belongs to the Special Issue New Insights into Chemotherapeutic Agents in Cancer Treatment)
Show Figures

Figure 1

21 pages, 2164 KiB  
Review
What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research?
by Liyun Zhang, Chang Xu, Heping Han, Shawn Askew, Erik Ervin, Qin Yu and Kehua Wang
Agriculture 2025, 15(12), 1288; https://doi.org/10.3390/agriculture15121288 - 15 Jun 2025
Viewed by 698
Abstract
Paraquat is one of the most widely used nonselective herbicides globally. Although the emergence of weed resistance to paraquat has progressed relatively slowly since the first reported case in Japan in 1980, it has been steadily increasing. Resistance in weedy plants is predominantly [...] Read more.
Paraquat is one of the most widely used nonselective herbicides globally. Although the emergence of weed resistance to paraquat has progressed relatively slowly since the first reported case in Japan in 1980, it has been steadily increasing. Resistance in weedy plants is predominantly associated with non-target-site resistance (NTSR), particularly via reduced uptake and translocation to target sites (i.e., chloroplasts) and/or enhanced sequestration; increased antioxidant capacity is also a common mechanism by which plants cope with various stresses, including reactive oxygen species (ROS). However, direct evidence for paraquat transport mediated by membrane transporters in weeds has not been established. Over the past decade, research, especially in model plants such as Arabidopsis thaliana, has advanced our understanding of the mechanisms underlying plant resistance to paraquat. This brief review summarized recent studies on paraquat resistance, with a particular focus on uptake, translocation, and sequestration mechanisms. For instance, three L-amino acid transporter (LAT) proteins (LAT1/3/4) and one (PDR11) belonging to the PDR (pleiotropic drug resistance) subfamily within the ABC (ATP-binding cassette) transporter family were confirmed to exhibit paraquat transporter activity; furthermore, transporters such as DTX6 (detoxification efflux carrier) can export/sequestrate paraquat inside the cell to the vacuole and apoplast, which confers stronger paraquat resistance to nearly commercial doses. In addition, the evolving perspectives in paraquat resistance research integrating big data and artificial intelligence, development of paraquat-tolerant crops, and a proposal of ryegrass (Lolium. spp.) and/or goosegrass (Eleusine indica) as a model weed species for paraquat resistance studies were also briefly discussed. Further advances in elucidating the molecular mechanisms of paraquat resistance in plants, including weeds, are anticipated. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

19 pages, 1885 KiB  
Article
Targeting Drug Resistance in Cancer: Dimethoxycurcumin as a Functional Antioxidant Targeting ABCC3
by Jochem Nelen, Valeria Naponelli, José Manuel Villalgordo-Soto, Marco Falasca and Horacio Pérez-Sánchez
Antioxidants 2025, 14(5), 599; https://doi.org/10.3390/antiox14050599 - 16 May 2025
Viewed by 626
Abstract
The development of new anticancer therapies remains challenging due to tumor heterogeneity and the frequent emergence of multidrug resistance (MDR). Natural products have garnered increasing attention as alternative or complementary therapeutic agents due to their bioactivity and reduced toxicity. Polyphenols, particularly curcumin and [...] Read more.
The development of new anticancer therapies remains challenging due to tumor heterogeneity and the frequent emergence of multidrug resistance (MDR). Natural products have garnered increasing attention as alternative or complementary therapeutic agents due to their bioactivity and reduced toxicity. Polyphenols, particularly curcumin and its derivatives, have shown promise in modulating signaling pathways, enhancing chemosensitivity, and overcoming drug resistance. The anticancer potential of dimethoxycurcumin, a chemically modified curcumin derivative identified through consensus fingerprint similarity screening, was investigated for its potential to inhibit ABCC3 (MRP3)—a member of the ATP-binding cassette (ABC) transporter family implicated in drug efflux, tumor cell survival, and resistance. In vitro experiments demonstrated that dimethoxycurcumin significantly reduced cancer cell viability and colony formation, indicating a strong inhibitory effect on ABCC3 function. These results suggest that dimethoxycurcumin may sensitize cancer cells to chemotherapy by targeting resistance pathways. The data presented contribute to the growing body of evidence suggesting that bioactive plant-derived compounds, including chemically modified derivatives, may hold therapeutic potential in oncology by modulating multidrug resistance pathways. Targeting ABC transporters with natural compound derivatives could offer a promising strategy for developing more effective and less toxic anticancer therapies. Full article
(This article belongs to the Special Issue Anti-Cancer Potential of Plant-Based Antioxidants)
Show Figures

Figure 1

18 pages, 642 KiB  
Review
The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers
by Chiharu Sogawa, Katsumitsu Shimada and Keisuke Nakano
Int. J. Mol. Sci. 2025, 26(9), 4310; https://doi.org/10.3390/ijms26094310 - 1 May 2025
Viewed by 496
Abstract
Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the [...] Read more.
Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets. Full article
(This article belongs to the Special Issue Oral Cancer: Update on Molecular Pathology, Mechanisms and Treatments)
Show Figures

Figure 1

23 pages, 8442 KiB  
Review
Mapping the Role of P-gp in Multidrug Resistance: Insights from Recent Structural Studies
by Shi Ting Tia, Min Luo and Wenjie Fan
Int. J. Mol. Sci. 2025, 26(9), 4179; https://doi.org/10.3390/ijms26094179 - 28 Apr 2025
Cited by 1 | Viewed by 1189
Abstract
P-glycoprotein (P-gp/ABCB1), a key ATP-binding cassette (ABC) transporter, plays a central role in multidrug resistance (MDR), one of the leading causes of chemotherapy failure in cancer treatment. P-gp actively pumps chemotherapeutic agents out of cancer cells, reducing intracellular drug concentration and compromising therapeutic [...] Read more.
P-glycoprotein (P-gp/ABCB1), a key ATP-binding cassette (ABC) transporter, plays a central role in multidrug resistance (MDR), one of the leading causes of chemotherapy failure in cancer treatment. P-gp actively pumps chemotherapeutic agents out of cancer cells, reducing intracellular drug concentration and compromising therapeutic efficacy. Recent advancements in structural biology, particularly cryogenic electron microscopy (cryo-EM), have revealed detailed conformational states of P-gp, providing unprecedented insights into its transport mechanisms. In parallel, studies have identified various P-gp mutants in cancer patients, many of which are linked to altered drug efflux activity and resistance phenotypes. This review systematically examines recent structural studies of P-gp, correlates known patient-derived mutations to their functional consequences, and explores their impact on MDR. We propose plausible mechanisms by which these mutations affect P-gp’s activity based on structural evidence and discuss their implications for chemotherapy resistance. Additionally, we review current approaches for P-gp inhibition, a critical strategy to restore drug sensitivity in resistant cancers, and outline future research directions to combat P-gp-mediated MDR. Full article
(This article belongs to the Special Issue ABC Transporters: Where Are We 45 Years On? (2nd Edition))
Show Figures

Figure 1

27 pages, 3093 KiB  
Article
Acridine-Based Chalcone 1C and ABC Transporters
by Ondrej Franko, Martina Čižmáriková, Martin Kello, Radka Michalková, Olga Wesołowska, Kamila Środa-Pomianek, Sérgio M. Marques, David Bednář, Viktória Háziková, Tomáš Ján Liška and Viera Habalová
Int. J. Mol. Sci. 2025, 26(9), 4138; https://doi.org/10.3390/ijms26094138 - 27 Apr 2025
Viewed by 827
Abstract
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; [...] Read more.
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320’s absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 3327 KiB  
Review
CD44 Variant Expression in Follicular Cell-Derived Thyroid Cancers: Implications for Overcoming Multidrug Resistance
by Benny Mosoane, Michelle McCabe, Brandon S. Jackson and Zodwa Dlamini
Molecules 2025, 30(9), 1899; https://doi.org/10.3390/molecules30091899 - 24 Apr 2025
Viewed by 805
Abstract
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC), [...] Read more.
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC), and poorly differentiated (PDTC) subtypes—the role of CD44 variants has emerged as a critical factor influencing tumor progression and multidrug resistance (MDR). CD44, a transmembrane glycoprotein, and its splice variants (CD44v) mediate cell adhesion, migration, and survival, contributing to cancer stem cell (CSC) maintenance and therapy resistance. Differential expression patterns of CD44 isoforms across TC subtypes have shown diagnostic, prognostic, and therapeutic implications. Specifically, CD44v6 expression in PTC has been correlated with metastasis and aggressive tumor behavior, while in FTC, its expression aids in distinguishing malignant from benign lesions. Furthermore, CD44 contributes to MDR through enhanced drug efflux via ABC transporters, apoptosis evasion, and CSC maintenance via the Wnt/β-catenin and PI3K/Akt pathways. Targeted therapies against CD44 such as monoclonal antibodies, hyaluronic acid-based nanocarriers, and gene-editing technologies hold promise in overcoming MDR. However, despite the mounting evidence supporting CD44-targeted strategies in various cancers, research on this therapeutic potential in TC remains limited. This review synthesizes existing knowledge on CD44 variant expression in follicular cell-derived thyroid cancers and highlights potential therapeutic strategies to mitigate MDR, particularly in high-burden regions, thereby improving patient outcomes and survival. Full article
Show Figures

Figure 1

16 pages, 1058 KiB  
Article
Association of ABC Efflux Transporter Genetic Variants and Adverse Drug Reactions and Survival in Patients with Non-Small Lung Cancer
by Cecilia Souto Seguin, Giovana Fernanda Santos Fidelis, Carolina Dagli-Hernandez, Pedro Eduardo Nascimento Silva Vasconcelos, Mariana Vieira Morau, Yasmim Gabriele Matos, Maurício Wesley Perroud, Eder de Carvalho Pincinato and Patricia Moriel
Genes 2025, 16(4), 453; https://doi.org/10.3390/genes16040453 - 15 Apr 2025
Viewed by 718
Abstract
Background/Objectives: Lung cancer has a high mortality rate worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent. Carboplatin and paclitaxel are key treatments for NSCLC; however, adverse drug reactions (ADRs) pose significant challenges. This study examined the impact of genetic variations [...] Read more.
Background/Objectives: Lung cancer has a high mortality rate worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent. Carboplatin and paclitaxel are key treatments for NSCLC; however, adverse drug reactions (ADRs) pose significant challenges. This study examined the impact of genetic variations in ABCB1 and ABCC2 genes on the incidence of ADRs and survival in NSCLC patients treated with carboplatin and paclitaxel. Methods: Variants were identified using RT-PCR, and ADRs classified according to the Common Toxicity Criteria for Adverse Events, Version 4.03. Results: The ABCB1 rs1128503 (c.1236C>T) CC genotype was associated with a higher chance of nausea (OR: 3.5, 95% CI 1.367–9.250, p = 0.0093), vomiting (OR: 13.553, 95% CI 1.705–107.723, p = 0.0137), and a higher risk of death in CT or TT genotypes (HR: 1.725, 95% CI 1.036–2.871, p = 0.0361). The ABCC2 rs717620 (c.-24C>T) TT genotype was associated with increased ALP levels (OR: 14.6, 95% CI 1.234–174.236, p = 0.0335). The ABCB1 rs2032582 non-CC genotypes (TT+AA+TA+CA+CT) were associated with an increased risk of death (HR: 1.922, 95% CI 1.093–3.377, p = 0.0232). Patients with hypocalcemia (HR: 2.317, 95% IC 1.353–3.967, p = 0.022), vomiting (HR: 3.047, 95% IC 1.548–5.997, p = 0.0013), and diarrhea (HR: 2.974, 95% IC 1.590–5.562, p = 0.0006) were associated with lower overall survival. Conclusions: The data suggest that ABCB1 variants may influence gastrointestinal ADRs and patient survival, highlighting the importance of pharmacogenomics in predicting ADRs and drug resistance. This approach offers more precise pharmacotherapy, reduces ADRs, and enhances the patients’ quality of life and survival. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 9717 KiB  
Article
Phyto-Sesquiterpene Lactones Prevent the Development of Multidrug Resistance in TNBC via ABC Transporters Inhibition and STAT3/MYC Signaling
by Ying-Tzu Chang, I-Ting Wu, Chien-Hsing Lee and Chin-Chuan Hung
Cancers 2025, 17(8), 1321; https://doi.org/10.3390/cancers17081321 - 14 Apr 2025
Viewed by 671
Abstract
Background: Multidrug resistance (MDR) in triple-negative breast cancer (TNBC) leads to treatment failure and tumor recurrence. Dysregulation of the MYC oncogene is associated with the pathogenesis of TNBC and the development of chemoresistance via overexpression of ATP-binding cassette (ABC) transporters. Therefore, in the [...] Read more.
Background: Multidrug resistance (MDR) in triple-negative breast cancer (TNBC) leads to treatment failure and tumor recurrence. Dysregulation of the MYC oncogene is associated with the pathogenesis of TNBC and the development of chemoresistance via overexpression of ATP-binding cassette (ABC) transporters. Therefore, in the present study, we aimed to identify molecules from a natural product origin that prevent the development of MDR in TNBC by targeting the MYC signaling. Methods: The cell viability of TNBC was evaluated using sulforhodamine assay. Protein levels were detected by western blots or enzyme-linked immunosorbent assays. Intracellular calcein and hoechst33342 accumulation assay aimed to evaluate the inhibitory ability of phytocompounds on drug-efflux functions of ABCB1 and ABCG2 transporters. The Cancer Genome Atlas (TCGA) database was used to explore clinical genomic data. Furthermore, the zebrafish xenotransplantation model bearing Dil-labeled TNBC cells was applied to testify the in vivo effects of phyto-sesquiterpene lactones. Results: The results of the present study demonstrated that the phyto-sesquiterpene lactones exhibited an MDR prevention effect by repressing efflux activities of ABCB1 and ABCG2 transporters. Mechanistic studies showed that phyto-sesquiterpene lactones inducted TNBC cell apoptosis and cell cycle G2/M arrested by blocking the STAT3/MYC pathway. Clinical genomic data demonstrated that the percentages of MYC amplification and mRNA were upregulated approximately two-fold higher in the TNBC patients than the non-TNBC breast cancer patients. The survival of patients with an alteration in MYC was significantly lower in TNBC as compared to other subtypes. Moreover, the results of the zebrafish xenograft model confirmed that phyto-sesquiterpene lactones exerted stronger inhibitory effects on TNBC tumor growth in vivo. Conclusions: In conclusion, these three phyto-sesquiterpene lactones were promising candidates for TNBC treatment and shed light on the prevention of developing MDR TNBC. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

20 pages, 1229 KiB  
Review
Opportunities and Challenges in Antibody–Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment
by Idil Buyukgolcigezli, Ates Kutay Tenekeci and Ibrahim Halil Sahin
Cancers 2025, 17(6), 958; https://doi.org/10.3390/cancers17060958 - 12 Mar 2025
Cited by 2 | Viewed by 3473
Abstract
The antibody, linker, and payload moieties all play a significant role in giving the ADC its unique therapeutic potential. The antibody subclass employed in ADCs is determined based on relative individual receptor affinities and pharmacokinetics. Meanwhile, the linker used in an ADC can [...] Read more.
The antibody, linker, and payload moieties all play a significant role in giving the ADC its unique therapeutic potential. The antibody subclass employed in ADCs is determined based on relative individual receptor affinities and pharmacokinetics. Meanwhile, the linker used in an ADC can either be cleavable or non-cleavable. ADC therapy comprises antibody-dependent mechanisms in addition to the direct cytotoxic effects of the payload. These include antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, as well as the “bystander effect”, which refers to the diffusion of a portion of the cytotoxic molecules out of the target cell, exerting its cytotoxic effect on the adjacent cells. Target antigens of ADCs are expected to be expressed on the membranes of the cancer cells facing the external matrix, although new approaches utilize antigens regarding tumor-associated cells, the tumor microenvironment, or the tumor vasculature. These target antigens of ADCs not only determine the efficacy of these agents but also impact the off-targets and related adverse effects. The majority of ADC-related toxicities are associated with off-targets. The proposed mechanisms of ADC resistance include disrupted intracellular drug trafficking, dysfunctional lysosomal processing, and the efflux of the cytotoxic molecule via ATP-binding cassette (ABC) transporters. The latter mechanism is especially prominent for multi-drug-resistant tumors. An important limitation of ADCs is the penetration of the conjugate into the tumor microenvironment and their delivery to target cancer cells. Cancerous tissues’ vascular profile and the steric “binding site barrier” formed around the peripheral vessels of tumors stand as potential challenges of ADC therapy for solid tumors. As research efforts focus on reducing toxicities, overcoming resistance, and improving pharmacokinetics, ADC options for cancer therapy are expected to continue to diversify, including standalone approaches and combination therapies. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

27 pages, 5525 KiB  
Article
Combining Sulfonylureas with Anticancer Drugs: Evidence of Synergistic Efficacy with Doxorubicin In Vitro and In Vivo
by Mateusz D. Tomczyk, Karolina Matczak, Marta Denel-Bobrowska, Grzegorz Dzido, Anna Kubicka, Daria Gendosz de Carrillo, Tomasz Cichoń, Marlena Golec, Beata Powieczko, Waldemar Rzetelny, Agnieszka B. Olejniczak and Horacio Pérez-Sánchez
Int. J. Mol. Sci. 2025, 26(4), 1429; https://doi.org/10.3390/ijms26041429 - 8 Feb 2025
Cited by 2 | Viewed by 1506
Abstract
Sulfonylureas (SUs)—a class of drugs primarily used to treat type 2 diabetes—have recently attracted interest for their potential anticancer properties. While some studies have explored the chemical modification or design of new SU derivatives, our work instead centers on biological evaluations of all [...] Read more.
Sulfonylureas (SUs)—a class of drugs primarily used to treat type 2 diabetes—have recently attracted interest for their potential anticancer properties. While some studies have explored the chemical modification or design of new SU derivatives, our work instead centers on biological evaluations of all commercially available SUs in combination with doxorubicin (DOXO). These antidiabetic agents act by stimulating insulin secretion via KATP channel inhibition, and because KATP channels share structural features with ATP-binding cassette (ABC) transporters involved in multidrug resistance (e.g., P-glycoprotein, MRP1, and MRP2), SUs may also reduce cancer cell drug efflux. In this study, we systematically examined each commercially available SU for potential synergy with DOXO in a panel of human cancer cell lines. Notably, combining DOXO with glimepiride (GLIM), the newest SU, results in a 4.4-fold increase in cytotoxicity against MCF-7 breast cancer cells relative to DOXO alone. Mechanistic studies suggest that the observed synergy may arise from increased intracellular accumulation of DOXO. Preliminary in vivo experiments support these findings, showing that DOXO (5 mg/kg, i.v.) plus GLIM (4 mg/kg, i.p.) is more effective at inhibiting 4T1 tumor growth in mice than DOXO alone. Additionally, we show that adding a small amount of the surfactant Tween-80 to culture media affects SU binding to bovine serum albumin (BSA), potentially unmasking anticancer effects of SUs that strongly bind to proteins. Overall, these results underscore the potential of repurposing existing SUs to enhance standard chemotherapy regimens. Full article
(This article belongs to the Collection Anticancer Drug Discovery and Development)
Show Figures

Figure 1

26 pages, 6118 KiB  
Review
Plant-Derived Molecules Modulate Multidrug Resistance in Gastrointestinal Cancers: A Comprehensive Review
by Gloria Perazzoli, Cristina Mesas, Francisco Quiñonero, Kevin Doello, Mercedes Peña, Ana Cepero, Jorge Rodríguez-Criado, Jose Prados and Consolación Melguizo
Appl. Sci. 2025, 15(3), 1125; https://doi.org/10.3390/app15031125 - 23 Jan 2025
Cited by 1 | Viewed by 1311
Abstract
Multidrug resistance (MDR) development against cytotoxic drugs by tumor cells is one of the main causes of treatment failure in gastrointestinal cancers, a group of cancers of great relevance due to their prevalence and/or mortality. This phenomenon is mediated by diverse mechanisms, including [...] Read more.
Multidrug resistance (MDR) development against cytotoxic drugs by tumor cells is one of the main causes of treatment failure in gastrointestinal cancers, a group of cancers of great relevance due to their prevalence and/or mortality. This phenomenon is mediated by diverse mechanisms, including the overexpression of members of the superfamily of membrane transporters of the ATP-binding cassette (ABC). Most of these molecules, including P-glycoprotein (P-gp or MDR1/ABCB), MDR-associated protein 1 (MRP1/ABCC1), MRP2, and breast cancer resistance protein (BCRP/ABCG2), are integrated in the cell membrane, acting as drug efflux pumps. Despite the use of various MDR modulators as adjuvants to improve the chemotherapy response, the results have not been satisfactory. Natural products from plants, such as flavonoids, alkaloids, terpenoids, and coumarins, are capable of modifying drug resistance, suggesting an improvement in the antitumoral effect of the current treatments without generating side effects. This review aims to provide an overview of the most recent studies in relation to plant-derived molecules and extracts that modulate resistance to antitumor drugs and that could be applied in the future in clinical practice to improve the treatment of patients with gastrointestinal cancer. Full article
Show Figures

Figure 1

Back to TopTop