What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research?
Abstract
:1. Introduction
2. Suggested Paraquat Resistance Mechanisms in Plants
2.1. Target-Site Resistance Mechanisms
2.2. Non-Target-Site Resistance Mechanisms
2.2.1. Metabolism-Based Resistance Mechanisms
2.2.2. Enhanced Antioxidant Capacity
2.2.3. Transport and Sequestration of Paraquat in Plants
2.2.4. Enhanced Sequestration of Paraquat in Plants
3. Perspectives of Paraquat and Paraquat Resistance Research in Plants
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bromilow, R.H. Paraquat and sustainable agriculture. Pest Manag. Sci. 2004, 60, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Syngenta. Paraquat. Available online: https://www.syngenta.com/media/paraquat-in-the-media (accessed on 7 February 2025).
- Shaner, D.L. Herbicide Handbook; Weed Science Society of America: Lawrence, KS, USA, 2014. [Google Scholar]
- Nazish, T.; Huang, Y.-J.; Zhang, J.; Xia, J.-Q.; Alfatih, A.; Luo, C.; Cai, X.-T.; Xi, J.; Xu, P.; Xiang, C.-B. Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. Plant Commun. 2022, 3, 100321. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Herbicide-Resistant Weed Database. 2025. Available online: http://www.weedscience.org/ (accessed on 1 March 2025).
- Borger, C.P.; Hashem, A. Evaluating the double knockdown technique: Sequence, application interval, and annual ryegrass growth stage. Aust. J. Agric. Res. 2007, 58, 265–271. [Google Scholar] [CrossRef]
- Yu, Q.; Cairns, A.; Powles, S. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 2007, 225, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Jalaludin, A.; Yu, Q.; Powles, S. Multiple resistance across glufosinate, glyphosate, paraquat and ACC ase-inhibiting herbicides in an Eleusine indica population. Weed Res. 2015, 55, 82–89. [Google Scholar] [CrossRef]
- Soar, C.; Preston, C.; Karotam, J.; Powles, S.B. Polyamines can inhibit paraquat toxicity and translocation in the broadleaf weed Arctotheca calendula. Pestic. Biochem. Physiol. 2004, 80, 94–105. [Google Scholar] [CrossRef]
- Soar, C.; Karotam, J.; Preston, C.; Powles, S.B. Reduced paraquat translocation in paraquat resistant Arctotheca calendula (L.) Levyns is a consequence of the primary resistance mechanism, not the cause. Pestic. Biochem. Physiol. 2003, 76, 91–98. [Google Scholar] [CrossRef]
- Purba, E.; Preston, C.; Powles, S.B. Inheritance of Bipyridyl Herbicide Resistance in Arctotheca calendula and Hordeum leporinum. Theor. Appl. Genet. 1993, 87, 598–602. [Google Scholar] [CrossRef]
- Njoroge, J.M. Tolerance of Bidens pilosa L. and Parthenium hysterophorus L. to paraquat (Gramoxone) in Kenya coffee. Kenya Coffee-Coffee Board Kenya Mon. Bull. 1991, 56, 651. [Google Scholar]
- Addow, A. Evaluation of Black Jack (Bidens pilosa L.) Resistance to Paraquat. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 1996. [Google Scholar]
- Fuerst, E.P.; Nakatani, H.Y.; Dodge, A.D.; Penner, D.; Arntzen, C.J. Paraquat Resistance in Conyza. Plant Physiol. 1985, 77, 984–989. [Google Scholar] [CrossRef]
- Shaaltiel, Y.; Gressel, J. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pestic. Biochem. Physiol. 1986, 26, 22–28. [Google Scholar] [CrossRef]
- Shaaltiel, Y.; Chua, N.H.; Gepstein, S.; Gressel, J. Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis. Theor. Appl. Genet. 1988, 75, 850–856. [Google Scholar] [CrossRef]
- Amsellem, Z.; Jansen, M.; Driesenaar, A.; Gressel, J. Developmental Variability of Photooxidative Stress Tolerance in Paraquat-Resistant Conyza. Plant Physiol. 1993, 103, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Palma-Bautista, C.; Vázquez-García, J.G.; Domínguez-Valenzuela, J.A.; Mendes, K.F.; de la Cruz, R.A.; Torra, J.; De Prado, R. Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. J. Agric. Food Chem. 2021, 69, 14792–14801. [Google Scholar] [CrossRef]
- Qasem, J.R. Chemical control and herbicide resistance of hairy fleabane (Erigeron bonariensis L.) in Jordan. PLoS ONE 2023, 18, e0263154. [Google Scholar] [CrossRef]
- Pölös, E.; Mikulás, J.; Szigeti, Z.; Matkovics, B.; Hai, D.Q.; Párducz, Á.; Lehoczki, E. Paraquat and Atrazine Co-Resistance in Conyza canadensis (L.) Cronq. Pestic. Biochem. Physiol. 1988, 30, 142–154. [Google Scholar] [CrossRef]
- Smisek, A.; Doucet, C.; Jones, M.; Weaver, S. Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci. 1998, 46, 200–204. [Google Scholar] [CrossRef]
- Hickmott, H.; Tardif, F.J.; Laforest, M.; Rajcan, I.; Meloche, S.; Thibodeau, A.; Bedal, E.; Page, E.R. Transgressive segregation and the inheritance of paraquat resistance in horseweed (Erigeron canadensis). Weed Sci. 2025, 73, e2. [Google Scholar] [CrossRef]
- Chiang, Y.J.; Wu, Y.X.; Chiang, M.Y.; Wang, C.Y. Role of antioxidative system in paraquat resistance of tall fleabane (Conyza sumatrensis). Weed Sci. 2008, 56, 350–355. [Google Scholar] [CrossRef]
- Zobiole, L.; Pereira, V.; Albrecht, A.; Rubin, R.; Adegas, F.; Albrecht, L. Paraquat Resistance of Sumatran Fleabane (Conyza sumatrensis). Planta Daninha 2019, 37, e019183264. [Google Scholar] [CrossRef]
- Albrecht, A.J.P.; Thomazini, G.; Albrecht, L.P.; Pires, A.; Lorenzetti, J.B.; Danilussi, M.T.Y.; Silva, A.F.M.; Adegas, F.S. Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay. Agriculture 2020, 10, 582. [Google Scholar] [CrossRef]
- Leal, J.F.L.; Souza, A.d.S.; Borella, J.; Araujo, A.L.S.; Langaro, A.C.; Chapeta, A.C.; Amorim, E.S.; Silva, G.S.; Morran, S.; Zobiole, L.H.S.; et al. Sumatran fleabane (Conyza sumatrensis) resistant to PSI-inhibiting herbicides and physiological responses to paraquat. Weed Sci. 2022, 70, 46–54. [Google Scholar] [CrossRef]
- Ismail, B.S.; Chuah, T.S.; Salmijah, S.; Hussin, K.H. Role of superoxide dismutase and peroxidase activities in paraquat-resistant redflower ragleaf (Crassocephalum crepidioides (Benth.) S. Moore). Aust. J. Agric. Res. 2001, 52, 583–586. [Google Scholar] [CrossRef]
- Luo, Q.; Wei, J.; Dong, Z.; Shen, X.; Chen, Y.; Gupta, D. Differences of endogenous polyamines and putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS ONE 2019, 14, e0216513. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, S.; Nian, H.; Ma, Q.; Ding, Y.; Hao, Q.; Wei, J.; Patel, J.D.; McElroy, J.S.; Liu, Y.; et al. Establishment of an efficient agrobacterium-mediated genetic transformation system to enhance the tolerance of the paraquat stress in engineering goosegrass (Eleusine indica L.). Int. J. Mol. Sci. 2023, 24, 6629. [Google Scholar] [CrossRef]
- Buker, R.S.; Steed, S.T.; Stall, W.M. Confirmation and control of a paraquat-tolerant goosegrass (Eleusine indica) biotype. Weed Technol. 2002, 16, 309–313. [Google Scholar] [CrossRef]
- Seng, C.T.; VAN Lun, L.; San, C.T.; BIN Sahid, I. Initial report of glufosinate and paraquat multiple resistance that evolved in a biotype of goosegrass (Eleusine indica) in Malaysia. Weed Biol. Manag. 2010, 10, 229–233. [Google Scholar] [CrossRef]
- McElroy, J.S.; Harris, J.R.; Price, A.; Harkess, A.; Li, X. Identification of a paraquat-resistant goosegrass (Eleusine indica) population from a central Alabama vegetable production field. Weed Sci. 2021, 69, 648–652. [Google Scholar] [CrossRef]
- Napitupulu, B.S.; Purba, E. Fitness of paraquat resistant and susceptible biotypes population of goosegrass (Eleusine indica (L.) Gaetrn.). IOP Conf. Ser. Earth Environ. Sci. 2021, 810, 012050. [Google Scholar] [CrossRef]
- Vázquez-García, J.G.; la Cruz, R.A.-D.; Rojano-Delgado, A.M.; Palma-Bautista, C.; Vasconcelos, J.M.d.P.; De Prado, R. Multiple Herbicide Resistance Evolution: The Case of Eleusine indica in Brazil. J. Agric. Food Chem. 2021, 69, 1197–1205. [Google Scholar] [CrossRef]
- Diaz, M.A.; De Prado, R.; Paul, R.N.; Smeda, R.J. Identification of paraquat and atrazine resistance in populations of Epilobium ciliatum. In Proceedings of the 50th International Symposium on Crop Protection, Ghent, Belgium, 5 May 1998; Volume 50, pp. 795–797. [Google Scholar]
- Tahmasebi, B.K.; La Cruz, R.A.-D.; Alcántara, E.; Torra, J.; Valenzuela, J.A.D.; Cruz-Hipólito, H.E.; Rojano-Delgado, A.M.; De Prado, R. Multiple Resistance Evolution in Bipyridylium-Resistant Epilobium ciliatum After Recurrent Selection. Front. Plant Sci. 2018, 9, 695. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Chisaka, H.; Saka, H. Movement of Paraquat in Resistant and Susceptible Biotypes of Erigeron-Philadelphicus and Erigeron-Canadensis. Physiol. Plant. 1986, 66, 605–608. [Google Scholar] [CrossRef]
- Bishop, T.; Powles, S.B.; Cornic, G. Mechanism of Paraquat Resistance in Hordeum-Glaucum.2. Paraquat Uptake and Translocation. Aust. J. Plant Physiol. 1987, 14, 539–547. [Google Scholar] [CrossRef]
- Purba, E.; Preston, C.; Powles, S.B. The mechanism of resistance to paraquat is strongly temperature-dependent in resistant Hordeum-leporinum Link and H-glaucum steud. Planta 1995, 196, 464–468. [Google Scholar] [CrossRef]
- Powles, S.B. Appearance of a Biotype of the Weed, Hordeum glaucum Steud, Resistant to the Herbicide Paraquat. Weed Res. 1986, 26, 167–172. [Google Scholar] [CrossRef]
- Islam, A.; Powles, S.B. Inheritance of resistance to paraquat in barley grass Hordeum glaucum steud. Weed Res. 1988, 28, 393–397. [Google Scholar] [CrossRef]
- Powles, S.B.; Tucker, E.S.; Morgan, T.R. Eradication of Paraquat-Resistant Hordeum glaucum Steud. by Prevention of Seed Production for 3 Years. Weed Res. 1992, 32, 207–211. [Google Scholar] [CrossRef]
- Preston, C.; Soar, C.J.; Hidayat, I.; Greenfield, K.M.; Powles, S.B. Differential translocation of paraquat in paraquat-resistant populations of Hordeum leporinum. Weed Res. 2005, 45, 289–295. [Google Scholar] [CrossRef]
- Tucker, E.S.; Powles, S.B. A Biotype of Hare Barley (Hordeum leporinum) Resistant to Paraquat and Diquat. Weed Sci. 1991, 39, 159–162. [Google Scholar] [CrossRef]
- Purba, E.; Preston, C.; Powles, S.B. Growth and competitiveness of paraquat-resistant and -susceptible biotypes of Hordeum leporinum. Weed Res. 1996, 36, 311–317. [Google Scholar] [CrossRef]
- Koschnick, T.J.; Haller, W.T.; Glasgow, L. Documentation of landoltia (Landoltia punctata) resistance to diquat. Weed Sci. 2006, 54, 615–619. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, S.; Powles, S. Direct measurement of paraquat in leaf protoplasts indicates vacuolar paraquat sequestration as a resistance mechanism in Lolium rigidum. Pestic. Biochem. Physiol. 2010, 98, 104–109. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Hoagland, R.E.; Zablotowicz, R.M.; Hall, J.C. Pesticide metabolism in plants and microorganisms. Weed Sci. 2003, 51, 472–495. [Google Scholar] [CrossRef]
- Tehranchian, P.; Nandula, V.; Jugulam, M.; Putta, K.; Jasieniuk, M. Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: Confirmation and mechanisms of resistance. Pest Manag. Sci. 2018, 74, 868–877. [Google Scholar] [CrossRef]
- Yu, Q.; Cairns, A.; Powles, S.B. Paraquat resistance in a population of Lolium rigidum. Funct. Plant Biol. 2004, 31, 247–254. [Google Scholar] [CrossRef]
- Yu, Q.; Han, H.; Nguyen, L.; Forster, J.W.; Powles, S.B. Paraquat resistance in a Lolium rigidum population is governed by one major nuclear gene. Theor. Appl. Genet. 2009, 118, 1601–1608. [Google Scholar] [CrossRef]
- Tsuji, K.; Hosokawa, M.; Morita, S.; Miura, R.; Tominaga, T.; Kudsk, P. Resistance to paraquat in Mazus pumilus. Weed Res. 2013, 53, 176–182. [Google Scholar] [CrossRef]
- Ndou, V.; Kotze, D.; Marjanovic-Painter, B.; Phiri, E.E.; Pieterse, P.J.; Sonopo, M.S. Reduced Translocation Confers Paraquat Resistance in Plantago lanceolata. Agronomy 2024, 14, 977. [Google Scholar] [CrossRef]
- Ndou, V.; Eksteen, F.; Phiri, E.; Pieterse, P.J. First report of glyphosate and paraquat resistance in two Plantago biotypes. South Afr. J. Plant Soil 2021, 38, 134–139. [Google Scholar] [CrossRef]
- Bewick, T.A.; Kostewicz, S.R.; Stall, W.M.; Shilling, D.G.; Smith, K. Interaction of Cupric Hydroxide, Paraquat, and Biotype of American Black Nightshade (Solanum americanum). Weed Sci. 1990, 38, 634–638. [Google Scholar] [CrossRef]
- Chase, C.A.; Bewick, T.A.; Shilling, D.G. Differential photosynthetic electron transport and oxidative stress in paraquat-resistant and sensitive biotypes of Solanum americanum. Pestic. Biochem. Physiol. 1998, 60, 83–90. [Google Scholar] [CrossRef]
- Purba, E.; Preston, C.; Powles, S.B. Paraquat Resistance in a Biotype of Vulpia bromoides (L) S.F. Gray. Weed Res. 1993, 33, 409–413. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, H.; Harrington, K.C. Non-target Site Mechanisms of Resistance to Herbicides. Crit. Rev. Plant Sci. 2017, 36, 24–34. [Google Scholar] [CrossRef]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020, 290, 110255. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Hawkes, T.R. Mechanisms of resistance to paraquat in plants. Pest Manag. Sci. 2014, 70, 1316–1323. [Google Scholar] [CrossRef]
- Fuerst, E.P.; Vaughn, K.C. Mechanisms of Paraquat Resistance. Weed Technol. 1990, 4, 150–156. [Google Scholar] [CrossRef]
- Hart, J.J.; Di Tomaso, J.M. Sequestration and Oxygen Radical Detoxification as Mechanisms of Paraquat Resistance. Weed Sci. 1994, 42, 277–284. [Google Scholar] [CrossRef]
- Preston, C. Resistance to Photosystem I Disrupting Herbicides. In Herbicide Resistance in Plants, Biology and Biochemistry; Powles, S.B., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 61–82. [Google Scholar]
- Chase, C.A.; Bewick, T.A.; Shilling, D.G. Characterization of paraquat resistance in Solanum americanum Mill. II: Evidence for a chloroplast mechanism. Pestic. Biochem. Physiol. 1998, 60, 23–30. [Google Scholar] [CrossRef]
- Mishra, S.; Sabat, S. Photosynthetic Electron-Transport in Hydrilla verticillata (L.) is Insensitive to Methylviologen (Paraquat) Inhibition. Biochem. Biophys. Res. Commun. 1995, 212, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Fuerst, E.; Smeda, R.; Vaughn, K. Evaluation of Paraquat Resistance Mechanisms in Conyza. Pestic. Biochem. Physiol. 1993, 46, 236–249. [Google Scholar] [CrossRef]
- Dixon, D.P.; Lapthorn, A.; Edwards, R. Plant glutathione transferases. Genome Biol. 2002, 3, reviews3004. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.C.; Nelson, D.R.; Møller, B.L.; Werck-Reichhart, D. Plant cytochrome P450 plasticity and evolution. Mol. Plant 2021, 14, 1244–1265. [Google Scholar] [CrossRef]
- Gharabli, H.; Della Gala, V.; Welner, D.H. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol. Adv. 2023, 67, 108182. [Google Scholar] [CrossRef]
- Huang, Y.J.; Huang, Y.P.; Xia, J.Q.; Fu, Z.P.; Chen, Y.F.; Huang, Y.P.; Ma, A.; Hou, W.T.; Chen, Y.X.; Qi, X.; et al. AtPQT11, a P450 enzyme, detoxifies paraquat via N-demethylation. J. Genet. Genom. 2022, 49, 1169–1173. [Google Scholar] [CrossRef]
- Harvey, B.M.R.; Muldoon, J.; Harper, D.B. Mechanism of paraquat tolerance in perennial ryegrass. Plant Cell Environ. 1978, 1, 203–209. [Google Scholar] [CrossRef]
- Brunharo, C.A.C.G.; Hanson, B.D. Vacuolar Sequestration of Paraquat Is Involved in the Resistance Mechanism in Lolium perenne L. spp. multiflorum. Front. Plant Sci. 2017, 8, 1485. [Google Scholar] [CrossRef]
- Huang, Y.; Zhan, H.; Bhatt, P.; Chen, S. Paraquat Degradation from Contaminated Environments: Current Achievements and Perspectives. Front. Microbiol. 2019, 10, 1754. [Google Scholar] [CrossRef]
- Religia, P.; Nguyen, N.D.; Nong, Q.D.; Matsuura, T.; Kato, Y.; Watanabe, H. Mutation of the Cytochrome P450 CYP360A8 Gene Increases Sensitivity to Paraquat in Daphnia magna. Environ. Toxicol. Chem. 2021, 40, 1279–1288. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.B.; Harvey, B.M.R. Mechanism of paraquat tolerance in perennial ryegrass II. Role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ. 1978, 1, 211–215. [Google Scholar] [CrossRef]
- Pereira, V.G.C.; Carbonari, C.A.; Silva, M.A.; Costa, R.N.; Krenchinski, F.H.; Bevilaqua, N.C.; Velini, E.D. The role of the antioxidant system and the photosynthetic behavior of paraquat-resistant Conyza sumatrensis in Brazil. J. Environ. Sci. Health. Part. B Pestic. Food Contam. Agric. Wastes 2023, 58, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J.; Va, M.; Montagu, N.; Inzé, D. Oxidative stress tolerance and longevity in Arabidopsis: The late-flowering mutant gigantea is tolerant to paraquat. Plant J. 1998, 14, 759–764. [Google Scholar] [CrossRef]
- Tsugane, K.; Kobayashi, K.; Niwa, Y.; Ohba, Y.; Wada, K.; Kobayashi, H. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 1999, 11, 1195–1206. [Google Scholar] [CrossRef]
- Fujibe, T.; Saji, H.; Arakawa, K.; Yabe, N.; Takeuchi, Y.; Yamamoto, K.T. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol. 2004, 134, 275–285. [Google Scholar] [CrossRef]
- Sipari, N.; Lihavainen, J.; Keinänen, M. Metabolite Profiling of Paraquat Tolerant Arabidopsis thaliana Radical-induced Cell Death1 (rcd1)-A Mediator of Antioxidant Defence Mechanisms. Antioxidants 2022, 11, 2034. [Google Scholar] [CrossRef]
- Chen, R.; Sun, S.; Wang, C.; Li, Y.; Liang, Y.; An, F.; Li, C.; Dong, H.; Yang, X.; Zhang, J.; et al. The Arabidopsis Paraquat Resistant2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 2009, 19, 1377–1387. [Google Scholar] [CrossRef]
- Luo, C.; Cai, X.-T.; Du, J.; Zhao, T.-L.; Wang, P.-F.; Zhao, P.-X.; Liu, R.; Xie, Q.; Cao, X.-F.; Xiang, C.-B.; et al. Paraquat Tolerance3 is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying Protein Methyltransferase4b. PLoS Genet. 2016, 12, e1006332. [Google Scholar] [CrossRef]
- Xi, J.; Xu, P.; Xiang, C.B. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J. 2012, 69, 782–791. [Google Scholar] [CrossRef]
- Wang, H.; Xu, D.; Zhu, X.; Wang, M.; Xia, Z. The maize SUMO conjugating enzyme ZmSCE1b protects plants from paraquat toxicity. Ecotoxicol. Environ. Saf. 2021, 211, 111909. [Google Scholar] [CrossRef] [PubMed]
- Rigó, G.; Valkai, I.; Faragó, D.; Kiss, E.; Van Houdt, S.; Van de Steene, N.; Hannah, M.A.; Szabados, L. Gene mining in halophytes: Functional identification of stress tolerance genes in Lepidium crassifolium. Plant Cell Environ. 2016, 39, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Faragó, D.; Zsigmond, L.; Benyó, D.; Alcazar, R.; Rigó, G.; Ayaydin, F.; Rabilu, S.A.; Hunyadi-Gulyás, É.; Szabados, L. Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. Plant Cell Environ. 2022, 45, 1985–2003. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-Y.; Ou, J.-F.; Wang, C.-Y. Role of the Ascorbate-Glutathione Cycle in Paraquat Tolerance of Rice. Weed Sci. 2013, 61, 361–373. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, S.; Zhu, J.; Ye, L.; Hall, N.D.; Basak, S.; McElroy, J.S.; Chen, Y. Overexpression of EiKCS confers paraquat-resistance in rice (Oryza sativa L.) by promoting the polyamine pathway. Pest Manag. Sci. 2022, 78, 246–262. [Google Scholar] [CrossRef]
- Broadbent, P.; Creissen, G.; Kular, B.; Wellburn, A.; Mullineaux, P. Mullineaux. Oxidative Stress Responses in Transgenic Tobacco Containing Altered Levels of Glutathione-Reductase Activity. Plant J. 1995, 8, 247–255. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Jeong, Y.J.; Lee, H.S.; Kim, J.S.; Cho, K.Y.; Allen, R.D.; Kwak, S.S. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ. 2002, 25, 873–882. [Google Scholar] [CrossRef]
- Kwon, S.-Y.; Choi, S.-M.; Ahn, Y.-O.; Lee, H.-S.; Lee, H.-B.; Park, Y.-M.; Kwak, S.-S. Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J. Plant Physiol. 2003, 160, 347–353. [Google Scholar] [CrossRef]
- Murgia, I.; Tarantino, D.; Vannini, C.; Bracale, M.; Carravieri, S.; Soave, C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. 2004, 38, 940–953. [Google Scholar] [CrossRef]
- Yoshimura, K.; Miyao, K.; Gaber, A.; Takeda, T.; Kanaboshi, H.; Miyasaka, H.; Shigeoka, S. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 2004, 37, 21–33. [Google Scholar] [CrossRef]
- Lee, Y.-P.; Kim, S.-H.; Bang, J.-W.; Lee, H.-S.; Kwak, S.-S.; Kwon, S.-Y. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 2007, 26, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, K.C.; Vaughan, M.A.; Camilleri, P. Lack of Cross-Resistance of Paraquat-Resistant Hairy Fleabane (Conyza bonariensis) to Other Toxic Oxygen Generators Indicates Enzymatic Protection is Not the Resistance Mechanism. Weed Sci. 1989, 37, 5–11. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development; Sinauer Associates: Sunderland, MA, USA, 2015. [Google Scholar]
- Slade, P.; Bell, E.G. Movement of Paraquat in Plants. Weed Res. 1966, 6, 267–274. [Google Scholar] [CrossRef]
- Putnam, A.R.; Ries, S.K. Factors Influencing Phytotoxicity and Movement of Paraquat in Quackgrass. Weed Sci. 1968, 16, 80–83. [Google Scholar] [CrossRef]
- Lasat, M.M.; Ditomaso, J.M.; Hart, J.J.; Kochian, L.V. Resistance to paraquat in Hordeum glaucum is temperature dependent and not associated with enhanced apoplasmic binding. Weed Res. 1996, 36, 303–309. [Google Scholar] [CrossRef]
- Hart, J.J.; DiTomaso, J.M.; Linscott, D.L.; Kochian, L.V. Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiol. 1992, 99, 1400–1405. [Google Scholar] [CrossRef]
- Fujita, M.; Shinozaki, K. Identification of Polyamine Transporters in Plants: Paraquat Transport Provides Crucial Clues. Plant Cell Physiol. 2014, 55, 855–861. [Google Scholar] [CrossRef]
- Hart, J.J.; DiTomaso, J.M.; Kochian, L.V. Characterization of paraquat transport in protoplasts from maize (Zea mays L.) suspension cells. Plant Physiol. 1993, 103, 963–969. [Google Scholar] [CrossRef]
- Jared, B.F.; Fitzpatrick, T.B. Paraquat resistance mutations have differential effects on plant fitness in two rice cultivars. Biochem. J. 2025, 482, 401–412. [Google Scholar]
- Vaughn, K.C.; Fuerst, E. Structural and physiological studies of paraquat-resistant Conyza. Pestic. Biochem. Physiol. 1985, 24, 86–94. [Google Scholar] [CrossRef]
- Preston, C.; Holtum, J.A.M.; Powles, S.B. On the mechanism of resistance to paraquat in Hordeum glaucum and H. leporinum—Delayed inhibition of photosynthetic o-2 evolution after paraquat application. Plant Physiol. 1992, 100, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Smeda, R.; Vaughn, K.; Fuerst, E. Differential movement of paraquat in resistant and sensitive biotypes of Conyza. Pestic. Biochem. Physiol. 1994, 50, 31–42. [Google Scholar] [CrossRef]
- Jo, J.; Won, S.-H.; Son, D.; Lee, B.-H. Paraquat resistance of transgenic tobacco plants over-expressing the Ochrobactrum anthropi pqrA gene. Biotechnol. Lett. 2004, 26, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Jóri, B.; Soós, V.; Szegő, D.; Páldi, E.; Szigeti, Z.; Rácz, I.; Lásztity, D. Role of transporters in paraquat resistance of horseweed Conyza canadensis (L.) Cronq. Pestic. Biochem. Physiol. 2007, 88, 57–65. [Google Scholar] [CrossRef]
- Brûle, S.V.D.; Müller, A.; Fleming, A.J.; Smart, C.C. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J. 2002, 30, 649–662. [Google Scholar] [CrossRef]
- Schulz, B.; Kolukisaglu, H. Genomics of plant ABC transporters: The alphabet of photosynthetic life forms or just holes in membranes? Febs Lett. 2006, 580, 1010–1016. [Google Scholar] [CrossRef]
- Kim, D.Y.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Kang, J.; Hwang, J.-U.; Lee, M.; Kim, Y.-Y.; Assmann, S.M.; Martinoia, E.; Lee, Y. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 2010, 107, 2355–2360. [Google Scholar] [CrossRef]
- Song, W.; Maeda, H.; DellaPenna, D. Mutations of the ER to plastid lipid transporters TGD1, 2, 3 and 4 and the ER oleate desaturase FAD2 suppress the low temperature-induced phenotype of Arabidopsis tocopherol-deficient mutant vte2. Plant J. 2010, 62, 1004–1018. [Google Scholar] [CrossRef]
- Panzeri, D.; Cassani, E.; Doria, E.; Tagliabue, G.; Forti, L.; Campion, B.; Bollini, R.; Brearley, C.A.; Pilu, R.; Nielsen, E.; et al. A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol. 2011, 191, 70–83. [Google Scholar] [CrossRef]
- Fujita, M.; Fujita, Y.; Iuchi, S.; Yamada, K.; Kobayashi, Y.; Urano, K.; Kobayashi, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 6343–6347. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mu, J.; Bai, J.; Fu, F.; Zou, T.; An, F.; Zhang, J.; Jing, H.; Wang, Q.; Li, Z.; et al. Paraquat Resistant1, a Golgi-Localized Putative Transporter Protein, is Involved in Intracellular Transport of Paraquat. Plant Physiol. 2013, 162, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, H.; Liu, L.; Meng, X.; Liu, Q.; Ye, Q.; Wen, J.; Wang, T.; Dong, J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. Plant Cell 2024, 36, 3770–3786. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Hu, H.; Wang, Y.; Xu, Z.; Zha, Y.; Cai, X.; Peng, L.; Feng, S. A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana. J. Plant Res. 2016, 129, 899–907. [Google Scholar] [CrossRef]
- Xia, J.-Q.; Nazish, T.; Javaid, A.; Ali, M.; Liu, Q.-Q.; Wang, L.; Zhang, Z.-Y.; Zhang, Z.-S.; Huang, Y.-J.; Wu, J.; et al. A gain-of-function mutation of the MATE family transporter DTX6 confers paraquat resistance in Arabidopsis. Mol. Plant 2021, 14, 2126–2133. [Google Scholar] [CrossRef]
- Kuromori, T.; Sugimoto, E.; Shinozaki, K. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J. 2011, 67, 885–894. [Google Scholar] [CrossRef]
- Lyu, Y.-S.; Cao, L.-M.; Huang, W.-Q.; Liu, J.-X.; Lu, H.-P. Disruption of three polyamine uptake transporter genes in rice by CRISPR/Cas9 gene editing confers tolerance to herbicide paraquat. Abiotech 2022, 3, 140–145. [Google Scholar] [CrossRef]
- Lasat, M.M.; DiTomaso, J.M.; Hart, J.J.; Kochian, L.V. Evidence for vacuolar sequestration of paraquat in roots of a paraquat-resistant Hordeum glaucum biotype. Physiol. Plant. 1997, 99, 255–262. [Google Scholar] [CrossRef]
- Mornet, C.; Mondory, C.; Gaillard, C.; Martinoia, E. Transport of paraquat and polyamines across the vacuolar membrane of barley mesophyll cells. Plant Physiol. Biochem. 1997, 35, 589–594. [Google Scholar]
- Tanaka, Y.; Hipolito, C.J.; Maturana, A.D.; Ito, K.; Kuroda, T.; Higuchi, T.; Katoh, T.; Kato, H.E.; Hattori, M.; Kumazaki, K.; et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 2013, 496, 247–251. [Google Scholar] [CrossRef]
- Lu, M. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels 2016, 10, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhao, M.; Wang, W.; Wang, Q.; Huang, M.; Li, C.; Lian, Q.; Xia, J.; Qi, J.; Xiang, C.; et al. Changing Gly311 to an acidic amino acid in the MATE family protein DTX6 enhances Arabidopsis resistance to the dihydropyridine herbicides. Mol Plant 2021, 14, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gilroy, E.M.; Chini, A.; Nurmberg, P.L.; Hein, I.; Lacomme, C.; Birch, P.R.J.; Hussain, A.; Yun, B.-W.; Loake, G.J. ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytol. 2011, 192, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, Z.; Pandey, G.K.; Tsuchiya, T.; Luan, S. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J. Biol. Chem. 2002, 277, 5360–5368. [Google Scholar] [CrossRef]
- Omote, H.; Hiasa, M.; Matsumoto, T.; Otsuka, M.; Moriyama, Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci. 2006, 27, 587–593. [Google Scholar] [CrossRef]
- Dobritzsch, M.; Lübken, T.; Eschen-Lippold, L.; Gorzolka, K.; Blum, E.; Matern, A.; Marillonnet, S.; Böttcher, C.; Dräger, B.; Rosahl, S. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides. Plant Cell 2016, 28, 583–596. [Google Scholar] [CrossRef]
- Takanashi, K.; Shitan, N.; Yazaki, K. The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol. 2014, 31, 417–430. [Google Scholar] [CrossRef]
- Won, S.-H.; Lee, B.-H.; Lee, H.-S.; Jo, J. An Ochrobactrum anthropi gene conferring paraquat resistance to the heterologous host Escherichia coli. Biochem. Biophys. Res. Commun. 2001, 285, 885–890. [Google Scholar] [CrossRef]
- Norman, M.A.; Fuerst, E. Interactions of cations with paraquat in leaf sections of resistant and sensitive biotypes of Conyza bonariensis. Pestic. Biochem. Physiol. 1997, 57, 181–191. [Google Scholar] [CrossRef]
- Copping, L.G. Paraquat: Boon or Bane? Outlooks Pest. Manag. 2004, 15, 258. [Google Scholar] [CrossRef]
- Dinham, B. Why paraquat should be banned. Outlooks Pest. Manag. 2004, 15, 268. [Google Scholar] [CrossRef]
- Utyasheva, L.; Amarasinghe, P.; Eddleston, M. Paraquat at 63-the story of a controversial herbicide and its regulations: It is time to put people and public health first when regulating paraquat. Res. Sq. 2024. [Google Scholar] [CrossRef]
- EPA. Pesticide Usage Survey of Agricultural, Governmental, and Industrial Sectors in the United States; EPA: Washington, DC, USA, 1974. [Google Scholar]
- USGS. 2018: Estimated Agricultural Use for Paraquat; USGS: Reston, VA, USA, 2018.
- Casar, G. Casar Leads 46 Members of Congress to Demand EPA Bans Use of Paraquat to Protect Public Health. 2024. Available online: https://casar.house.gov/media/press-releases/news-casar-leads-46-members-congress-demand-epa-bans-use-paraquat-protect#:~:text=Golfers%20are%20already%20protected%2C%20farmworkers,U.S.%20to%20protect%20public%20health (accessed on 12 June 2025).
- Walsh, A.; Kingwell, R. Economic implications of the loss of glyphosate and paraquat on Australian mixed enterprise farms. Agric. Syst. 2021, 193, 103207. [Google Scholar] [CrossRef]
- APVMA. Understanding the Proposed Regulatory Decision for Paraquat; APVMA: Armidale, NSW, Australia, 2024.
- Stuart, A.M.; Merfield, C.N.; Horgan, F.G.; Willis, S.; Watts, M.A.; Ramírez-Muñoz, F.; Jorge Sanchez, U.; Utyasheva, L.; Eddleston, M.; Davis, M.L.; et al. Agriculture without paraquat is feasible without loss of productivity-lessons learned from phasing out a highly hazardous herbicide. Environ. Sci. Pollut. Res. Int. 2023, 30, 16984–17008. [Google Scholar] [CrossRef]
- Watts, M. Paraquat: Pesticide Action Network Asia and the Pacific (PANAP); Pesticide Action Network Asia and the Pacific: Penang, Malaysia, 2010. [Google Scholar]
- Peng, H.; Zhao, D.; Tang, W.; Peng, A. Dienediamine: A safe surrogate for the herbicide paraquat. Mol. Plant 2023, 16, 1962–1975. [Google Scholar] [CrossRef]
- Brookes, G. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012. GM Crops Food 2014, 5, 321–332. [Google Scholar] [CrossRef]
- Brookes, G. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crops Food 2022, 13, 262–289. [Google Scholar] [CrossRef]
- Gage, K.L.; Krausz, R.F.; Walters, S.A. Emerging Challenges for Weed Management in Herbicide-Resistant Crops. Agriculture 2019, 9, 180. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. 2020: Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef]
- Xia, J.Q.; Liu, Q.Q.; Xiang, C.B. (14) C-paraquat Efflux Assay in Arabidopsis Mesophyll Protoplasts. Bio Protoc. 2022, 12, e4512. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Q.; Shi, M.; Sun, Z.; Tang, H.; Ge, X. Determination of Paraquat in Arabidopsis Tissues and Protoplasts by UHPLC-MS/MS. Int. J. Mol. Sci. 2023, 13, e4642. [Google Scholar] [CrossRef] [PubMed]
- Michels, J.; Bandarupalli, R.; Akbari, A.A.; Le, T.; Xiao, H.; Li, J.; Hom, E.F.Y. Natural Language Processing Methods for the Study of Protein–Ligand Interactions. J. Chem. Inf. Model. 2025, 65, 2191–2213. [Google Scholar] [CrossRef] [PubMed]
- Carroll, E.W.; Schwarz, O.J.; Hickok, L.G. Biochemical Studies of Paraquat-Tolerant Mutants of the Fern Ceratopteris richardii 1. Plant Physiol. 1988, 87, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, P. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Griffith, S.; Chastain, T. Physiology and growth of ryegrass. Ecol. Prod. Manag. Lolium Forage USA 1997, 24, 15–28. [Google Scholar]
- Nagy, I.; Veeckman, E.; Liu, C.; Van Bel, M.; Vandepoele, K.; Jensen, C.S.; Ruttink, T.; Asp, T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genom. 2022, 23, 505. [Google Scholar] [CrossRef]
- Paril, J.; Pandey, G.; Barnett, E.M.; Rane, R.V.; Court, L.; Walsh, T.; Fournier-Level, A. Rounding up the annual ryegrass genome: High-quality reference genome of Lolium rigidum. Front. Genet. 2022, 13, 1012694. [Google Scholar] [CrossRef]
- Chen, Y.; Kölliker, R.; Mascher, M.; Copetti, D.; Himmelbach, A.; Stein, N.; Studer, B. An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). Gigabyte 2024, 2024, 112. [Google Scholar] [CrossRef]
- Chen, Y.; Kiesbauer, J.; Copetti, D.; Frei, D.; Frey, J.E.; Grieder, C.; Koelliker, R.; Studer, B. Chromosome-level haplotype-resolved genome assembly provides insights into the highly heterozygous genome of Italian ryegrass (Lolium multiflorum Lam.). bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, C.; Johnson, N.A.; Hall, N.; Tian, X.; Yu, Q.; Patterson, E.L. Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase copy number variation confers glyphosate resistance in Eleusine indica. Nat. Commun. 2023, 14, 4865. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C. Chromosome-scale genome assembly of Korean goosegrass (Eleusine indica). Sci. Data 2025, 12, 156. [Google Scholar] [CrossRef]
- Demin, I.N.; Naraikina, N.V.; Tsedendambaev, V.D.; Moshkov, I.E.; Trunova, T.I. Integration of the Cyanobacterial DesA Gene for Δ12-Acyl-Lipid Desaturase Improves Potato Tolerance to Paraquat-Induced Oxidative Stress. Russ. J. Plant Physiol. 2011, 58, 660–666. [Google Scholar] [CrossRef]
Scientific Name | Common Name | Resistance Level (×) (R vs. S) | LD₅₀ (Resistant) (g ai ha−1) | LD₅₀ (Sensitive) (g ai ha−1) | Possible Resistance Mechanism | Genetics | References |
---|---|---|---|---|---|---|---|
Alopecurus japonicus | Japanese Foxtail | N/A | N/A | N/A | N/A | A nuclear trait | [5] |
Amaranthus blitum (ssp. oleraceus) | Livid Amaranth | N/A | N/A | N/A | N/A | N/A | [5] |
Arctotheca calendula | Capeweed | >4 | >800 | <200 | Reduced translocation, polyamines or a polyamine transporter | A single incompletely dominant gene | [9,10,11] |
Bidens pilosa | Hairy Beggarticks | >4 | >800 | <200 | N/A | N/A | [12,13] |
Convolvulus arvensis | Field Bindweed | 2–8 | 400–1200 | 100–300 | Reduced uptake, antioxidants | N/A | [5] |
Conyza bonariensis | Hairy Fleabane | 20–300, 10–100 | 940 a, >500 b | N/A | Antioxidant enzymes, exclusion from its action site /sequestration | A dominant nuclear gene | [14,15,16,17,18,19] |
Conyza canadensis | Horseweed | 25–35, 160 | 800–3720 a | 97–400 a | Antioxidants, altered transporters | Not a single major gene | [20,21,22] |
Conyza sumatrensis | Sumatran Fleabane | 14–39, 3.6–34 | 913–2468, 244–2007 a | 54–63, 20–67 a | Antioxidative system, others | N/A | [23,24,25,26] |
Crassocephalum crepidioides | Redflower Ragleaf | 2.6–2.9 | N/A | N/A | Antioxidant capacity | N/A | [27] |
Cuphea carthagenensis | Tarweed Cuphea | N/A | N/A | N/A | N/A | N/A | [5] |
Eleusine indica | Goosegrass | 10–124, 3.6–30 | 3740, 320 a | 30–40, 20–30 a | Translocation, polyamine metabolism | e.g., EiKCS | [28,29,30,31,32,33,34] |
Epilobium ciliatum | Fringed Willowherb | N/A | N/A | N/A | N/A | N/A | [35,36] |
Erigeron philadelphicus | Philadelphia Fleabane | >100 | 500 c | 5 c | Paraquat movement | N/A | [37] |
Gamochaeta pensylvanica | Pennsylvania Everlasting | N/A | N/A | N/A | N/A | N/A | [5] |
Hedyotis verticillata | Woody Borreria | N/A | N/A | N/A | N/A | N/A | [5] |
Hordeum murinum ssp. glaucum | Smooth Barley | 3–40, 250 | 6400 | 25 | Vacuolar sequestration, reduced uptake, translocation | A single incomplete dominant nuclear gene | [38,39,40,41,42] |
Hordeum murinum ssp. leporinum | Hare Barley | >10 | >800 | 57 | Antioxidant enhancement, decreased translocation | A single partially dominant gene | [11,39,43,44,45] |
Ischaemum rugosum | Saramollagrass | N/A | N/A | N/A | N/A | N/A | [5] |
Landoltia punctata | Dotted Duckweed | 29 | 148 d | 5.1 d | Independent of PS electron transport | N/A | [46] |
Lepidium virginicum | Virginia Pepperweed | 10 | 1588–2461 a | 191–444 a | N/A | N/A | [21] |
Lolium perenne | Perennial Ryegrass | 6 | N/A | N/A | Antioxidant enhancement | N/A | [47] |
Lolium perenne ssp. multiflorum | Italian Ryegrass | 20.5–30 | 514–1780 a | 25–59 a | Translocation, sequestration, reduced uptake | N/A | [48,49] |
Lolium rigidum | Rigid Ryegrass | 14–32 | 404–1280 | 30–41 | Vacuolar sequestration/translocation | A single major nuclear gene | [7,50,51] |
Mazus fauriei | Asian Mazus | N/A | N/A | N/A | N/A | N/A | [5] |
Mazus pumilus | Japanese Mazus | 4–6 | 150–200 e | 10–50 e | Increased antioxidant capacity | N/A | [52] |
Mitracarpus hirtus | Tropical Girdlepod | N/A | N/A | N/A | N/A | N/A | [5] |
Plantago lanceolata | Buckhorn Plantain | 2–3 | 785.14–1246.43 | 387.75 | Reduced translocation | N/A | [53,54] |
Poa annua | Annual Bluegrass | N/A | N/A | N/A | N/A | N/A | [5] |
Sclerochloa dura | Hardgrass | N/A | N/A | N/A | N/A | N/A | [5] |
Solanum americanum | American Black Nightshade | 7–14 | 150–850 a | 18–61 a | Reduced photosynthetic electron flow | N/A | [55,56] |
Solanum nigrum | Black Nightshade | N/A | N/A | N/A | N/A | N/A | [5] |
Solanum ptycanthum | Eastern Black Nightshade | N/A | N/A | N/A | N/A | N/A | [5] |
Vulpia bromoides | Squirreltail Fescue | 5–6 | 170 | 30 | N/A | N/A | [57] |
Youngia japonica | Asiatic Hawksbeard | N/A | N/A | N/A | N/A | N/A | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xu, C.; Han, H.; Askew, S.; Ervin, E.; Yu, Q.; Wang, K. What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research? Agriculture 2025, 15, 1288. https://doi.org/10.3390/agriculture15121288
Zhang L, Xu C, Han H, Askew S, Ervin E, Yu Q, Wang K. What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research? Agriculture. 2025; 15(12):1288. https://doi.org/10.3390/agriculture15121288
Chicago/Turabian StyleZhang, Liyun, Chang Xu, Heping Han, Shawn Askew, Erik Ervin, Qin Yu, and Kehua Wang. 2025. "What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research?" Agriculture 15, no. 12: 1288. https://doi.org/10.3390/agriculture15121288
APA StyleZhang, L., Xu, C., Han, H., Askew, S., Ervin, E., Yu, Q., & Wang, K. (2025). What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research? Agriculture, 15(12), 1288. https://doi.org/10.3390/agriculture15121288