Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = 9-substituted adenine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2057 KiB  
Article
Synthesis of Adenine Nucleosides with a Reactive (β-Iodovinyl)sulfone or (β-Keto)sulfone Group at the C2 Position and Their Polymerase-Catalyzed Incorporation into DNA
by A. Hasan Howlader, Richard Fernandez, Pawlos S. Tsegay, Yuan Liu and Stanislaw F. Wnuk
Molecules 2025, 30(6), 1358; https://doi.org/10.3390/molecules30061358 - 18 Mar 2025
Cited by 1 | Viewed by 703
Abstract
Iodosulfonylation of an ethynyl group at the C2 position of 2′-deoxyadenosine or adenosine with TsI provides (E)-2-(β-iodovinyl)sulfones. The latter undergo nucleophilic substitution with amines via an addition–elimination to give β-sulfonylvinylamines (enamines). Acid-catalyzed hydrolysis of the β-sulfonylvinylamines provides [...] Read more.
Iodosulfonylation of an ethynyl group at the C2 position of 2′-deoxyadenosine or adenosine with TsI provides (E)-2-(β-iodovinyl)sulfones. The latter undergo nucleophilic substitution with amines via an addition–elimination to give β-sulfonylvinylamines (enamines). Acid-catalyzed hydrolysis of the β-sulfonylvinylamines provides 2-(β-keto)sulfones, mechanistically different probes that react with alkyl halides, resulting in α-alkylation. Adenine nucleosides with a β-ketosulfone group at C2, during conversion to their 5′-triphosphate form, undergo an unexpected conversion to 2-carboxylic acid nucleotides. The 5′-triphosphate of 2′-deoxyadenosine-2-carboxylic acid was incorporated by a human DNA polymerase into a one-nucleotide gap DNA substrate. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Synthetic Medicinal Chemistry)
Show Figures

Graphical abstract

20 pages, 5940 KiB  
Article
Endemic Radiation of African Moonfish, Selene dorsalis (Gill 1863), in the Eastern Atlantic: Mitogenomic Characterization and Phylogenetic Implications of Carangids (Teleostei: Carangiformes)
by Emmanuel Ofosu Mireku Ewusi, Soo Rin Lee, Ah Ran Kim, Yunji Go, Hsu Htoo, Sangdeok Chung, Muhammad Hilman Fu’adil Amin, Sapto Andriyono, Hyun-Woo Kim and Shantanu Kundu
Biomolecules 2024, 14(10), 1208; https://doi.org/10.3390/biom14101208 - 25 Sep 2024
Cited by 1 | Viewed by 1762
Abstract
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, [...] Read more.
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a control region (CR). The nucleotide composition exhibits a notable adenine-thymine (AT) bias, accounting for 53.13%, which aligns with other species in the Carangidae family. Most PCGs initiate with the ATG codon, with the exception of Cytochrome C oxidase subunit I, which starts with GTG. Analysis of relative synonymous codon usage reveals that leucine and serine are the most prevalent amino acids in the mitochondrial genome of S. dorsalis and its congeners (S. vomer and S. setapinnis). All tRNAs display the typical cloverleaf structure, though tRNA Serine (S1) lacks a dihydrouracil arm. Pairwise comparisons of synonymous and nonsynonymous substitutions for all PCGs yielded values below ‘1’, indicating strong purifying selection. The CR spans 847 bp, representing 5.12% of the mitochondrial genome, and is characterized by high AT content (62.81%). It is situated between tRNA-Pro (TGG) and tRNA-Phe (GAA). The CR contains conserved sequence blocks, with CSB-1 being the longest at 22 bp and CSB-D the shortest at 18 bp. Phylogenetic analysis, using Bayesian and Maximum-likelihood trees constructed from concatenated PCGs across 72 species, successfully differentiates S. dorsalis from other carangids. This study also explores how ocean currents and gyres might influence lineage diversification and parapatric speciation of Selene species between the Atlantic and Pacific Oceans. These results highlight the importance of the mitochondrial genome in elucidating the structural organization and evolutionary dynamics of S. dorsalis and its relatives within marine ecosystems. Full article
Show Figures

Figure 1

14 pages, 3239 KiB  
Article
An Innovative Inhibitor with a New Chemical Moiety Aimed at Biliverdin IXβ Reductase for Thrombocytopenia and Resilient against Cellular Degradation
by Hoe-Myung Jung, Jung-Hye Ha, Mark Vincent C. dela Cerna, Joseph A. Burlison, Joonhyeok Choi, Bo-Ram Kim, Jeong Kyu Bang, Kyoung-Seok Ryu and Donghan Lee
Pharmaceutics 2024, 16(9), 1148; https://doi.org/10.3390/pharmaceutics16091148 - 30 Aug 2024
Viewed by 1744
Abstract
Biliverdin IXβ reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the [...] Read more.
Biliverdin IXβ reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the direct application of OSA as a BLVRB inhibitor faces challenges, as it is prone to degradation into 5-aminosalicylic acid through cleavage of the diazenyl bond by abundant azoreductase (AzoR) enzymes in gut microbiota and eukaryotic cells. To overcome this obstacle, we devised olsalkene (OSK), an inhibitor where the diazenyl bond in OSA has been substituted with an alkene bond. OSK not only matches the efficacy of OSA but also demonstrates improved stability against degradation by AzoR, presenting a promising solution to this limitation. Furthermore, we have found that both OSK and OSA inhibit BLVRB, regardless of the presence of nicotinamide adenine dinucleotide phosphate, unlike other known inhibitors. This discovery opens new avenues for investigating the roles of BLVRB in blood disorders, including thrombocytopenia. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

19 pages, 8855 KiB  
Article
Tunability of Photovoltaic Functions via Halogen Substitution [(Ade)2 CdX4](X = Cl, Br): A Class of Three-Dimensional Organic–Inorganic Hybrid Materials
by Meixia Lv, Hongzhi Hu, Abuduheni Adila, Yibo Yan, Yang Liu and Zunqi Liu
Molecules 2024, 29(12), 2773; https://doi.org/10.3390/molecules29122773 - 11 Jun 2024
Cited by 2 | Viewed by 1225
Abstract
Two new three-dimensional organic–inorganic hybrid crystalline materials, [(Ade)2 CdCl4] (1) and [(Ade)2 CdBr4] (2), were obtained by the slow evaporation of adenine (Ade) and cadmium chloride in aqueous solution at room temperature with [...] Read more.
Two new three-dimensional organic–inorganic hybrid crystalline materials, [(Ade)2 CdCl4] (1) and [(Ade)2 CdBr4] (2), were obtained by the slow evaporation of adenine (Ade) and cadmium chloride in aqueous solution at room temperature with hydrochloric acid and hydrobromic acid used as halogen sources. The structural, thermal, optical, and electrical properties were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, variable-temperature–variable-frequency dielectric constant analysis, and electrochemical tests. With increasing the substitution of Cl by Br, the composition of the material changed and the space group shifted from P-1 to P21/m, with a significant blue-shift in the fluorescence emission. Changing the temperature induced the deformation of the three-dimensional framework structure formed by hydrogen bonding interactions, leading to dielectric anomalies. Cyclic voltammetry tests showed the good reversibility of the electrolysis process. The structural diversity of the complexes was realized by modulating the halogen composition, and a new method for designing novel organic–inorganic hybrids with controllable photoelectric functionality was proposed. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

16 pages, 3210 KiB  
Article
A Comprehensive Assessment of Ultraviolet-Radiation-Induced Mutations in Flammulina filiformis Using Whole-Genome Resequencing
by Qianhui Huang, Xing Han, Zongjun Tong, Youjin Deng, Luyu Xie, Shengrong Liu, Baogui Xie and Weirui Zhang
J. Fungi 2024, 10(3), 228; https://doi.org/10.3390/jof10030228 - 20 Mar 2024
Cited by 4 | Viewed by 2597
Abstract
Nucleotide substitutions have played an important role in molecular evolution, and understanding their dynamics would contribute to genetic studies. Related research with defined DNA sequences lasted for decades until whole-genome sequencing arose. UV radiation (UVR) can generate base changes and other genetic variations [...] Read more.
Nucleotide substitutions have played an important role in molecular evolution, and understanding their dynamics would contribute to genetic studies. Related research with defined DNA sequences lasted for decades until whole-genome sequencing arose. UV radiation (UVR) can generate base changes and other genetic variations in a short period of time, so it would be more meaningful to explore mutations caused by UVR from a genomic perspective. The monokaryon enoki strain WT583 was selected as the experimental material in this study because it can spontaneously produce large amounts of oidia on PDA plates, and the monokaryons originating from oidia have the same genotype as their mother monokaryon. After exposure to UV radiation, 100 randomly selected mutants, with WT583 as the reference genome, were sent for genome sequencing. BWA, samtools, and GATK software were employed for SNP calling, and the R package CMplot was used to visualize the distribution of the SNPs on the contigs of the reference genome. Furthermore, a k-mer-based method was used to detect DNA fragment deletion. Moreover, the non-synonymous genes were functionally annotated. A total of 3707 single-base substitutions and 228 tandem mutations were analyzed. The immediate adjacent bases showed different effects on the mutation frequencies of adenine and cytosine. For adenine, the overall effects of the immediate 5′-side and 3′-side bases were T > A > C > G and A > T > G > C, respectively; for cytosine, the overall effects of the immediate 5′-side and 3′-side bases were T > C > A > G and C > T > A > G, respectively. Regarding tandem mutations, the mutation frequencies of double-transition, double-transversion, 3′-side transition, and 5′-side transition were 131, 8, 72, and 17, respectively. Transitions at the 3′-side with a high mutation frequency shared a common feature, where they held transversions at the 5′-side of A→T or T→A without covalent bond changes, suggesting that the sequence context of tandem motifs might be related to their mutation frequency. In total, 3707 mutation sites were non-randomly distributed on the contigs of the reference genome. In addition, pyrimidines at the 3′-side of adenine promoted its transversion frequency, and UVR generated DNA fragment deletions over 200 bp with a low frequency in the enoki genome. The functional annotation of the genes with non-synonymous mutation indicated that UVR could produce abundant mutations in a short period of time. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Mushroom-Forming Fungi)
Show Figures

Figure 1

26 pages, 4693 KiB  
Article
Genomic and Epigenomic Changes in the Progeny of Cold-Stressed Arabidopsis thaliana Plants
by Ashif Rahman, Narendra Singh Yadav, Boseon Byeon, Yaroslav Ilnytskyy and Igor Kovalchuk
Int. J. Mol. Sci. 2024, 25(5), 2795; https://doi.org/10.3390/ijms25052795 - 28 Feb 2024
Cited by 4 | Viewed by 2023
Abstract
Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for [...] Read more.
Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail. Full article
(This article belongs to the Special Issue New Insights in Plant Abiotic Stress)
Show Figures

Figure 1

18 pages, 4941 KiB  
Article
The Copper(II)-Thiodiacetate (tda) Chelate as Efficient Receptor of N9-(2-Hydroxyethyl)Adenine (9heade): Synthesis, Molecular and Crystal Structures, Physical Properties and DFT Calculations of [Cu(tda)(9heade)(H2O)]·2H2O
by Carmen Rosales-Martínez, Antonio Matilla-Hernádez, Duane Choquesillo-Lazarte, Antonio Frontera, Alfonso Castiñeiras and Juan Niclós-Gutiérrez
Molecules 2023, 28(15), 5830; https://doi.org/10.3390/molecules28155830 - 2 Aug 2023
Cited by 1 | Viewed by 2071
Abstract
Considering that Cu(tda) chelate (tda: dithioacetate) is a receptor for adenine and related 6-aminopurines, this study reports on the synthesis, molecular and crystal structures, thermal stability, spectral properties and DFT calculations related to [Cu(tda)(9heade)(H2O)]·2H2O (1) [9heade: N9-(2-hydroxyethyl)adenine]. [...] Read more.
Considering that Cu(tda) chelate (tda: dithioacetate) is a receptor for adenine and related 6-aminopurines, this study reports on the synthesis, molecular and crystal structures, thermal stability, spectral properties and DFT calculations related to [Cu(tda)(9heade)(H2O)]·2H2O (1) [9heade: N9-(2-hydroxyethyl)adenine]. Concerning the molecular recognition of (metal chelate)-(adenine synthetic nucleoside), 1 represents an unprecedented metal binding pattern (MBP) for 9heade. However, unprecedentedly, the Cu(tda)-9heade molecular recognition in 1 is essentially featured in the Cu-N1(9heade) bond, without any N6-H⋯O(carboxyl tda) interligand interaction. Nevertheless, N1 being the most basic donor for N9-substituted adenines, this Cu-N1 bond is now assisted by an O2–water-mediated interaction (N6-H⋯O2 and O2⋯Cu weak contact). Also, in the crystal packing, the O-H(ol) of 9heade interacts with its own adenine moiety as a result of an O3–water-mediated interaction (O(ol)-H⋯O3 plus O3-H36⋯π(adenine moiety)). Both water-mediated interactions seem to be responsible for serious alterations in the physical properties of crystalline or grounded samples. Density functional theory calculations were used to evaluate the interactions energetically. Moreover, the quantum theory of atoms-in-molecules (QTAIM), in combination with the noncovalent interaction plot (NCIPlot), was used to analyze the interactions and rationalize the existence and relative importance of hydrogen bonding, chalcogen bonding and π-stacking interactions. The novelty of this work resides in the discovery of a novel binding mode for N9-(2-hydroxyethyl)adenine. Moreover, the investigation of the important role of water in the solid state of 1 is also relevant, along with the chalcogen bonding interactions demonstrated by the density functional theory (DFT) study. Full article
(This article belongs to the Special Issue Synthesis and Applications of Transition Metal Complexes)
Show Figures

Figure 1

12 pages, 5211 KiB  
Article
Background-Quenched Aggregation-Induced Emission through Electrostatic Interactions for the Detection of Poly(ADP-ribose) Polymerase-1 Activity
by Fengli Gao, Ruimin Zhao, Liping Huang and Xinyao Yi
Molecules 2023, 28(12), 4759; https://doi.org/10.3390/molecules28124759 - 14 Jun 2023
Cited by 3 | Viewed by 1693
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD+) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy [...] Read more.
Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD+) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy for the detection of PARP1 activity was designed. In the absence of PARP1, the background signal caused by the electrostatic interactions between quencher-labeled PARP1-specitic DNA and tetraphenylethene-substituted pyridinium salt (TPE-Py, a positively charged AIE fluorogen) was low due to the fluorescence resonance energy transfer effect. After poly-ADP-ribosylation, the TPE-Py fluorogens were recruited by the negatively charged PAR polymers to form larger aggregates through electrostatic interactions, thus enhancing the emission. The detection limit of this method for PARP1 detection was found to be 0.006 U with a linear range of 0.01~2 U. The strategy was used to evaluate the inhibition efficiency of inhibitors and the activity of PARP1 in breast cancer cells with satisfactory results, thus showing great potential for clinical diagnostic and therapeutic monitoring. Full article
Show Figures

Figure 1

13 pages, 4663 KiB  
Article
A New SNP in AGPL2, Associated with Floury Endosperm in Rice, Is Identified Using a Modified MutMap Method
by Long Zhang, Ran You, Hualan Chen, Jun Zhu, Lingshang Lin and Cunxu Wei
Agronomy 2023, 13(5), 1381; https://doi.org/10.3390/agronomy13051381 - 15 May 2023
Cited by 4 | Viewed by 2403
Abstract
The floury endosperm mutants of rice can not only be used to uncover the molecular mechanisms involved in regulating starch synthesis and grain development but are also suitable for dry milling to produce rice flour of good quality. In this study, we identified [...] Read more.
The floury endosperm mutants of rice can not only be used to uncover the molecular mechanisms involved in regulating starch synthesis and grain development but are also suitable for dry milling to produce rice flour of good quality. In this study, we identified and characterized a rice floury endosperm mutant, M10, from a mutant pool induced by EMS. The total starch content in the M10 seeds significantly decreased, while the soluble sugar content demonstrably increased. The grain hardness of M10 was lower than that of the wild type because of the spherical and loosely packed starch granules. The modified MutMap analysis demonstrated that AGPL2 on chromosome 1 is most likely to be the candidate gene causing a floury endosperm. The genome sequences of AGPL2 in M10 carried a single nucleotide substitution of guanine (G) to adenine (A) in the seventh exon, leading to a missense mutation from glycine (Gly) to glutamic acid (Glu) at the 251st amino acid. Allele test confirmed that AGPL2 is the gene responsible for the M10 phenotype. Both transcriptional and protein levels of AGPL2 in M10 were obviously higher than those in the developing endosperm of wild type, indicating a positive feedback regulation is caused by AGPL2 mutation. Together, our results suggest that AGPL2 plays a critical role in starch synthesis and that the modified MutMap method is feasible for identifying floury endosperm mutant genes in rice. Full article
Show Figures

Figure 1

17 pages, 4962 KiB  
Article
Manipulating the Subcellular Localization and Anticancer Effects of Benzophenothiaziniums by Minor Alterations of N-Alkylation
by Yanping Wu, Yuncong Chen, Shankun Yao, Shumeng Li, Hao Yuan, Fen Qi, Weijiang He and Zijian Guo
Molecules 2023, 28(4), 1714; https://doi.org/10.3390/molecules28041714 - 10 Feb 2023
Cited by 1 | Viewed by 2117
Abstract
Cationic, water-soluble benzophenothiaziniums have been recognized as effective type I photosensitizers (PSs) against hypoxic tumor cells. However, the study of the structure–property relationship of this type of PS is still worth further exploration to achieve optimized photodynamic effects and minimize the potential side [...] Read more.
Cationic, water-soluble benzophenothiaziniums have been recognized as effective type I photosensitizers (PSs) against hypoxic tumor cells. However, the study of the structure–property relationship of this type of PS is still worth further exploration to achieve optimized photodynamic effects and minimize the potential side effects. Herein, we synthesized a series of benzophenothiazine derivatives with minor N-alkyl alteration to study the effects on the structure–property relationships. The cellular uptake, subcellular organelle localization, reactive oxygen species (ROS) generation, and photocytotoxicity performances were systematically investigated. NH2NBS and EtNBS specifically localized in lysosomes and exhibited high toxicity under light with a moderate phototoxicity index (PI) due to the undesirable dark toxicity. However, NMe2NBS with two methyl substitutions accumulated more in mitochondria and displayed an excellent PI value with moderate light toxicity and negligible dark toxicity. Without light irradiation, NH2NBS and EtNBS could induce lysosomal membrane permeabilization (LMP), while NMe2NBS showed no obvious damage to lysosomes. After irradiation, NH2NBS and EtNBS were released from lysosomes and relocated into mitochondria. All compounds could induce mitochondria membrane potential (MMP) loss and nicotinamide adenine dinucleotide phosphate (NADPH) consumption under light to cause cell death. NMe2NBS exhibited remarkable in vivo photodynamic therapy (PDT) efficacy in a xenograft mouse tumor (inhibition rate, 89%) with no obvious side effects. This work provides a valuable methodology to investigate the structure–property relationships of benzophenothiazine dyes, which is of great importance in the practical application of PDT against hypoxia tumor cells. Full article
(This article belongs to the Special Issue π-Conjugated Molecular Systems)
Show Figures

Figure 1

19 pages, 4771 KiB  
Article
Properly Substituted Benzimidazoles as a New Promising Class of Nicotinate Phosphoribosyltransferase (NAPRT) Modulators
by Cecilia Baldassarri, Gianfabio Giorgioni, Alessandro Piergentili, Wilma Quaglia, Stefano Fontana, Valerio Mammoli, Gabriele Minazzato, Elisa Marangoni, Massimiliano Gasparrini, Leonardo Sorci, Nadia Raffaelli, Loredana Cappellacci, Riccardo Petrelli and Fabio Del Bello
Pharmaceuticals 2023, 16(2), 189; https://doi.org/10.3390/ph16020189 - 27 Jan 2023
Cited by 3 | Viewed by 2863
Abstract
The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a [...] Read more.
The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 1198 KiB  
Article
Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture
by Izabela Grzegorczyk-Karolak, Marta Krzemińska, Anna K. Kiss, Aleksandra Owczarek-Januszkiewicz and Monika A. Olszewska
Biomolecules 2023, 13(2), 227; https://doi.org/10.3390/biom13020227 - 24 Jan 2023
Cited by 11 | Viewed by 2378
Abstract
Salvia bulleyana is a plant native to the Chinese Yunnan Province. This species has been used in traditional Chinese medicine as a substitute for Danshen (the roots of Salvia miltiorrhiza). The aim of our study was to establish an effective system for [...] Read more.
Salvia bulleyana is a plant native to the Chinese Yunnan Province. This species has been used in traditional Chinese medicine as a substitute for Danshen (the roots of Salvia miltiorrhiza). The aim of our study was to establish an effective system for propagating S. bulleyana shoots to obtain large amounts of material rich in bioactive compounds. Phytohormones were used to regulate shoot growth and regeneration potential and influence plant secondary metabolism. The shoot tips were incubated on a Murashige and Skoog agar medium supplemented with 0.1 or 0.5 mg/L IAA (indole-3-acetic acid) and the cytokinins benzylaminopurine (BAP), meta-topoline (M-T), 6-benzylaminopurine riboside (RBAP), N-benzyl-9-(2-tetrahydropyranyl)-adenine (BPA) or kinetin, (K) at concentrations of 0.5, 1 or 2 mg/L. It was observed that the type and concentration of growth regulator significantly influenced the regeneration potential of S. bulleyana shoots. The highest multiplication rate was obtained when 0.1 mg/L IAA and 2 mg/L BPA were used. Under these conditions, 100% of shoot tips formed buds and almost seven buds/shoot per explant were obtained after five weeks. Meanwhile, the highest biomass was found for shoots growing on a medium supplemented with 0.1 mg/L IAA and 1 mg/L M-T: 1.2 g of fresh weight and 0.17 g of dry weight. However, a medium with 0.1 mg/L IAA and 2 mg/L RBAP was most favorable for bioactive phenolic acid content, with a total polyphenol level (37.7 mg/g dw) 4.5 times higher than in shoots grown on medium without growth regulators (8.23 mg/g dw). Finally, optimal conditions were selected by TOPSIS (technique for order of preference by similarity to the ideal solution); the culture of S. bulleyana grown on an MS medium containing 0.1 mg/L IAA and 1 mg/L M-T was found to be the most efficient for polyphenol accumulation and can be used for the production of medicinally relevant compounds. Full article
(This article belongs to the Special Issue Phytohormones 2022–2023)
Show Figures

Figure 1

30 pages, 3930 KiB  
Article
“Dual Anta-Inhibitors” of the A2A Adenosine Receptor and Casein Kinase CK1delta: Synthesis, Biological Evaluation, and Molecular Modeling Studies
by Andrea Spinaci, Michela Buccioni, Daniela Catarzi, Chang Cui, Vittoria Colotta, Diego Dal Ben, Eleonora Cescon, Beatrice Francucci, Ilenia Grieco, Catia Lambertucci, Gabriella Marucci, Davide Bassani, Matteo Pavan, Flavia Varano, Stephanie Federico, Giampiero Spalluto, Stefano Moro and Rosaria Volpini
Pharmaceuticals 2023, 16(2), 167; https://doi.org/10.3390/ph16020167 - 23 Jan 2023
Cited by 9 | Viewed by 6116
Abstract
Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and [...] Read more.
Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called “dual anta-inhibitors”, demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 μM and KiA2A = 0.076 μM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein–ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

24 pages, 19467 KiB  
Article
Evolutionary Analysis of StSnRK2 Family Genes and Their Overexpression in Transgenic Tobacco Improve Drought Tolerance
by Panfeng Yao, Lei Sun, Simon Dekomah, Zhenzhen Bi, Chao Sun, Juan Mao, Chunli Zhang, Tianyuan Qin, Yihao Wang, Yuhui Liu, Zhen Liu, Kazim Ali and Jiangping Bai
Int. J. Mol. Sci. 2023, 24(2), 1000; https://doi.org/10.3390/ijms24021000 - 5 Jan 2023
Cited by 6 | Viewed by 1978
Abstract
Sucrose non-ferment 1-related protein kinase 2 (SnRK2) is a highly conserved protein kinase in plants that plays an important role in regulating plant response to drought stress. Although it has been reported in some plants, the evolutionary relationship of potato SnRK2s and their [...] Read more.
Sucrose non-ferment 1-related protein kinase 2 (SnRK2) is a highly conserved protein kinase in plants that plays an important role in regulating plant response to drought stress. Although it has been reported in some plants, the evolutionary relationship of potato SnRK2s and their function in drought resistance have not been systematically analyzed. In this study, molecular characteristic analysis showed that 8 StSnRK2s were distributed on six chromosomes, coding proteins were divided into three subgroups, and StSnRK2s clustered in the same subgroup had similar conserved motifs and domains. In addition, StSnRK2 has a wide range of replication events in some species, making it closer to dicots in the process of evolution. In addition, the average nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) value of SnRK2s in monocots was higher than that of dicots. The codon usage index showed that SnRK2s prefer to use cytosine 3 (C3s), guanine 3 (G3s) and GC content (GC3s) in monocots, whereas thymine 3 (T3s) and adenine 3 (A3s) are preferred in dicots. Furthermore, stress response analysis showed that the expression of StSnRK2s under different degrees of drought stress significantly correlated with one or more stress-related physiological indices, such as proline and malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity, ion leakage (IL) etc. The drought resistance of StSnRK2 transgenic plants was determined to occur in the order of StSnRK2.1/2.8 > StSnRK2.2/2.5 > StSnRK2.4/2.6 > StSnRK2.3 > StSnRK2.7, was attributed to not only lower IL but also higher proline, soluble sugar contents and stress-related genes in transgenic plants compared to wild type (WT). In conclusion, this study provides useful insights into the evolution and function of StSnRK2s and lays a foundation for further study on the molecular mechanism of StSnRK2s regulating potato drought resistance. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants in 2022)
Show Figures

Figure 1

25 pages, 31223 KiB  
Article
In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities
by Ekaterina M. Savelieva, Anastasia A. Zenchenko, Mikhail S. Drenichev, Anna A. Kozlova, Nikolay N. Kurochkin, Dmitry V. Arkhipov, Alexander O. Chizhov, Vladimir E. Oslovsky and Georgy A. Romanov
Int. J. Mol. Sci. 2022, 23(19), 11334; https://doi.org/10.3390/ijms231911334 - 26 Sep 2022
Cited by 11 | Viewed by 2389
Abstract
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied [...] Read more.
Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties. Full article
(This article belongs to the Special Issue Perception, Transduction and Crosstalk of Auxin and Cytokinin Signals)
Show Figures

Figure 1

Back to TopTop