Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = 8-hydroxy guanosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 446 KiB  
Article
Dynamic Soluble IL-6R/Soluble gp130 Ratio as a Potential Indicator for the Prostate Malignancy Phenotype—A Multicenter Case–Control Study
by Cosmin-Victor Ene, Bogdan Geavlete, Cristian Mares, Ilinca Nicolae and Corina Daniela Ene
J. Pers. Med. 2024, 14(10), 1037; https://doi.org/10.3390/jpm14101037 - 28 Sep 2024
Cited by 2 | Viewed by 1333
Abstract
Objective: Prostate tumors, if prostate cancer or adenoma, represent a major public health challenge. Progress in research on inflammation has revealed a connection between inflammation, immunity, and cancer. In this context, this study aimed to find IL-6 signaling systemic abnormalities in the inflammatory [...] Read more.
Objective: Prostate tumors, if prostate cancer or adenoma, represent a major public health challenge. Progress in research on inflammation has revealed a connection between inflammation, immunity, and cancer. In this context, this study aimed to find IL-6 signaling systemic abnormalities in the inflammatory tumor microenvironment. Material and methods: This study was case–controlled, multicentered, and included 86 patients, 43 diagnosed with BPH and 43 diagnosed with PCa, between January 2019 and January 2020. The study group was homogenous and the studied parameters were IL-6 complex (IL-6, soluble receptor IL-6R, soluble glycoprotein gp130), acute phase proteins (C reactive protein—CRP, acid alpha1 glycoprotein—AGPA, ferritin, albumin, transferrin), and oxidative stress-associated variables (malondialdehyde—MDA, carbonylated protein—PCO, 8-hydroxy-deoxy guanosine-8-OHdG, total antioxidant status—bTAS). Results: The inflammatory microenvironment determined IL-6 signaling alterations (over-regulation of sIL-6R and suppression of sgp130 in PCa versus BPH), changes in acute phase reaction markers (increased serum levels of CRP, AGPA, ferritin, and decreased serum levels of albumin, transferrin) that were much more evident in PCa compared to BPH, an imbalance between macromolecular oxidative damage (MDA, PCO, 8-OHdG) and endogenous antioxidants (TAS) that was more accentuated in PCa compared with BPH, and a representative association between the sIL-6R/sgp130 ratio and inflammatory/oxidative stress-related factors only in PCa patients. Conclusions: Our study reconfirms the anterior concept that IL-6 promotes prostatic tumorigenesis. In this study, we first demonstrated that a high sIL-6R/sgp130 ratio facilitates prostate malignancy. Full article
(This article belongs to the Special Issue Novel Diagnostic and Therapeutic Approaches to Urologic Oncology)
Show Figures

Figure 1

19 pages, 1200 KiB  
Article
Assessment of Total Antioxidant Capacity, 8-Hydroxy-2′-deoxy-guanosine, the Genetic Landscape, and Their Associations in BCR::ABL-1-Negative Chronic and Blast Phase Myeloproliferative Neoplasms
by Mihnea-Alexandru Găman, Cristina Mambet, Ana Iulia Neagu, Coralia Bleotu, Petruta Gurban, Laura Necula, Anca Botezatu, Marius Ataman, Camelia Cristina Diaconu, Bogdan Octavian Ionescu, Alexandra Elena Ghiaur, Aurelia Tatic, Daniel Coriu, Amelia Maria Găman and Carmen Cristina Diaconu
Int. J. Mol. Sci. 2024, 25(12), 6652; https://doi.org/10.3390/ijms25126652 - 17 Jun 2024
Cited by 2 | Viewed by 1405
Abstract
Myeloproliferative neoplasms (MPNs), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal stem cell disorders defined by an excessive production of functionally mature and terminally differentiated myeloid cells. MPNs can transform into secondary acute myeloid leukemia (sAML/blast phase MPN) [...] Read more.
Myeloproliferative neoplasms (MPNs), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal stem cell disorders defined by an excessive production of functionally mature and terminally differentiated myeloid cells. MPNs can transform into secondary acute myeloid leukemia (sAML/blast phase MPN) and are linked to alterations in the redox balance, i.e., elevated concentrations of reactive oxygen species and markers of oxidative stress (OS), and changes in antioxidant systems. We evaluated OS in 117 chronic phase MPNs and 21 sAML cases versus controls by measuring total antioxidant capacity (TAC) and 8-hydroxy-2′-deoxy-guanosine (8-OHdG) concentrations. TAC was higher in MPNs than controls (p = 0.03), particularly in ET (p = 0.04) and PMF (p = 0.01). MPL W515L-positive MPNs had higher TAC than controls (p = 0.002) and triple-negative MPNs (p = 0.01). PMF patients who had treatment expressed lower TAC than therapy-free subjects (p = 0.03). 8-OHdG concentrations were similar between controls and MPNs, controls and sAML, and MPNs and sAML. We noted associations between TAC and MPNs (OR = 1.82; p = 0.05), i.e., ET (OR = 2.36; p = 0.03) and PMF (OR = 2.11; p = 0.03), but not sAML. 8-OHdG concentrations were not associated with MPNs (OR = 1.73; p = 0.62) or sAML (OR = 1.89; p = 0.49). In conclusion, we detected redox imbalances in MPNs based on disease subtype, driver mutations, and treatment history. Full article
Show Figures

Figure 1

18 pages, 1449 KiB  
Review
Using 8-Hydroxy-2′-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes
by Ancuta Goriuc, Karina-Alexandra Cojocaru, Ionut Luchian, Ramona-Garbriela Ursu, Oana Butnaru and Liliana Foia
Int. J. Mol. Sci. 2024, 25(3), 1425; https://doi.org/10.3390/ijms25031425 - 24 Jan 2024
Cited by 20 | Viewed by 4586
Abstract
In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered [...] Read more.
In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered to be one of the major risk factors of periodontal disease and the inflammation characterizing this condition is associated with oxidative stress, implicitly resulting in oxidative damage to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) is the most common stable product of oxidative DNA damage caused by reactive oxygen species, and its levels have been reported to increase in body fluids and tissues during inflammatory conditions. 8-OHdG emerges as a pivotal biomarker for assessing oxidative DNA damage, demonstrating its relevance across diverse health conditions, including neurodegenerative disorders, cancers, inflammatory conditions, and periodontal disease. Continued research in this field is crucial for developing more precise treatments and understanding the detailed link between oxidative stress and the progression of periodontitis. The use of the 8-OHdG biomarker in assessing and managing chronic periodontitis is an area of increased interest in dental research, with the potential to provide crucial information for diagnosis and treatment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 8116 KiB  
Article
Relationship between Aspartame-Induced Cerebral Cortex Injury and Oxidative Stress, Inflammation, Mitochondrial Dysfunction, and Apoptosis in Sprague Dawley Rats
by Jureeporn U-pathi, Yen-Chia Yeh, Chia-Wen Chen, Eddy E. Owaga and Rong-Hong Hsieh
Antioxidants 2024, 13(1), 2; https://doi.org/10.3390/antiox13010002 - 19 Dec 2023
Cited by 7 | Viewed by 3953
Abstract
There are emerging concerns about the potential cerebral cortex injury from aspartame due to the accumulation of the various neurotoxic metabolic components in the central nervous system after long-term dietary exposure. The aim of this study was to evaluate the effect of oral [...] Read more.
There are emerging concerns about the potential cerebral cortex injury from aspartame due to the accumulation of the various neurotoxic metabolic components in the central nervous system after long-term dietary exposure. The aim of this study was to evaluate the effect of oral aspartame consumption on cerebral cortex injury in the rat brain, and further evaluate the various underlying molecular mechanisms, with a special focus on oxidative stress, inflammation, mitochondrial dysfunction, and apoptosis pathways. Sprague Dawley rats (nineteen, female) were randomly sub-divided into three groups: (i) normal diet with vehicle: control group (five rats), (ii) low dose of aspartame group (LA): seven rats received 30 mg/kg body weight (bw) daily doses of aspartame, (iii) high dose of aspartame group (HA): seven rats received 60 mg/kg bw daily doses of aspartame. After 8 weeks, the LA and HA groups showed lower expression levels of brain-derived neurotrophic factor (BDNF), antioxidant enzyme activity (SOD2, CAT), antioxidant marker (Nrf2), inflammatory response (IκB), mitochondrial biogenesis (Sirt1, PGC1α, Nrf1, TFAM), mitochondrial DNA (mtDNA) copy number, and apoptosis-related proteins (Bax, Caspase-3) expressions. Aspartame administration also elevated oxidative stress levels (Malondialdehyde, MDA), 8-hydroxy-2-deoxy guanosine (8-OHdG), PGE2 and COX-2 expressions, pro-inflammatory cytokines (TNFα, IL6, IL1β), antioxidant marker expression (Keap1), inflammatory responses (iNOS, NFκB), and glial fibrillary acidic protein (GFAP) levels in the cerebral cortex of the rats, thereby contributing to the reduced survival of pyramidal cells and astrocyte glial cells of the cerebral cortex. Therefore, these findings imply that aspartame-induced neurotoxicity in rats’ cerebral cortex could be regulated through four mechanisms: inflammation, enhanced oxidant stress, decreased mitochondrial biogenesis, and apoptosis pathways. Full article
(This article belongs to the Special Issue Cellular ROS and Antioxidants: Physiological and Pathological Role)
Show Figures

Figure 1

19 pages, 2521 KiB  
Article
Each Cellular Compartment Has a Characteristic Protein Reactive Cysteine Ratio Determining Its Sensitivity to Oxidation
by Ricardo Pires das Neves, Mónica Chagoyen, Antonio Martinez-Lorente, Carlos Iñiguez, Ana Calatrava, Juana Calabuig and Francisco J. Iborra
Antioxidants 2023, 12(6), 1274; https://doi.org/10.3390/antiox12061274 - 14 Jun 2023
Cited by 3 | Viewed by 2086
Abstract
Signaling and detoxification of Reactive Oxygen Species (ROS) are important patho-physiologcal processes. Despite this, we lack comprehensive information on individual cells and cellular structures and functions affected by ROS, which is essential to build quantitative models of the effects of ROS. The thiol [...] Read more.
Signaling and detoxification of Reactive Oxygen Species (ROS) are important patho-physiologcal processes. Despite this, we lack comprehensive information on individual cells and cellular structures and functions affected by ROS, which is essential to build quantitative models of the effects of ROS. The thiol groups from cysteines (Cys) in proteins play a major role in redox defense, signaling, and protein function. In this study, we show that the proteins in each subcellular compartment contain a characteristic Cys amount. Using a fluorescent assay for -SH in thiolate form and amino groups in proteins, we show that the thiolate content correlates with ROS sensitivity and signaling properties of each compartment. The highest absolute thiolate concentration was found in the nucleolus, followed by the nucleoplasm and cytoplasm whereas protein thiolate groups per protein showed an inverse pattern. In the nucleoplasm, protein reactive thiols concentrated in SC35 speckles, SMN, and the IBODY that accumulated oxidized RNA. Our findings have important functional consequences, and explain differential sensitivity to ROS. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

20 pages, 4314 KiB  
Article
Molineria recurvata Ameliorates Streptozotocin-Induced Diabetic Nephropathy through Antioxidant and Anti-Inflammatory Pathways
by Prasanta Dey, Amit Kundu, Ha Eun Lee, Babli Kar, Vineet Vishal, Suvakanta Dash, In Su Kim, Tejendra Bhakta and Hyung Sik Kim
Molecules 2022, 27(15), 4985; https://doi.org/10.3390/molecules27154985 - 5 Aug 2022
Cited by 9 | Viewed by 4312
Abstract
Molineria recurvata (MR) has been traditionally used to manage diabetes mellitus in India. However, the molecular mechanism of MR on the diabetic-induced nephropathy has not been clearly investigated. Thus, this study investigates the protective effects of the MR extract on nephropathy in streptozotocin [...] Read more.
Molineria recurvata (MR) has been traditionally used to manage diabetes mellitus in India. However, the molecular mechanism of MR on the diabetic-induced nephropathy has not been clearly investigated. Thus, this study investigates the protective effects of the MR extract on nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was instigated by a single intraperitoneal injection of STZ (45 mg/kg) in male Sprague-Dawley rats. Once the diabetes was successfully induced, the MR extract (200 mg/kg/day) or metformin (200 mg/kg/day) was orally administered for 14 days. Renal function, morphology changes and levels of inflammatory cytokines were measured. Blood glucose concentrations were considerably reduced in STZ-induced diabetic rats following treatment with the MR extract. The administration of the MR extract substantially restored the abnormal quantity of the oxidative DNA damage marker 8-hydroxy-2′-deoxy-guanosine (8-OHdG), malondialdehyde, glutathione, oxidized glutathione, superoxide dismutase, catalase, interleukin (IL)-1β, IL-6, IL-10, and transforming growth factor-β (TGF-β). The urinary excretion of kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), selenium binding protein 1 (SBP1), and pyruvate kinase M2 (PKM2) was significantly reduced in diabetes rats after administration of the MR extracts. In the kidneys of STZ-induced diabetic rats, the MR extracts markedly downregulated the expression of fibronectin, collagen-1, and α-smooth muscle actin (α-SMA). In particular, the MR extracts markedly increased the level of SIRT1 and SIRT3 and reduced claudin-1 in the kidney. These results suggest that the MR extracts exhibits therapeutic activity in contrast to renal injury in STZ-induced diabetic rats through repressing inflammation and oxidative stress. Full article
(This article belongs to the Special Issue A Feasible Approach for Natural Products to Treatment of Diseases)
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Randomized Clinical Trial of How Long-Term Glutathione Supplementation Offers Protection from Oxidative Damage and Improves HbA1c in Elderly Type 2 Diabetic Patients
by Saurabh Kalamkar, Jhankar Acharya, Arjun Kolappurath Madathil, Vijay Gajjar, Uma Divate, Sucheta Karandikar-Iyer, Pranay Goel and Saroj Ghaskadbi
Antioxidants 2022, 11(5), 1026; https://doi.org/10.3390/antiox11051026 - 23 May 2022
Cited by 23 | Viewed by 14601
Abstract
Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and [...] Read more.
Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and aged between 30 and 78 years, were recruited. A total of 125 diabetic patients were additionally given 500 mg oral GSH supplementation daily for a period of six months. Fasting and PP glucose, insulin, HbA1c, GSH, oxidized glutathione (GSSG), and 8-hydroxy-2-deoxy guanosine (8-OHdG) were measured upon recruitment and after three and six months of supplementation. Statistical significance and effect size were assessed longitudinally across all arms. Blood GSH increased (Cohen’s d = 1.01) and 8-OHdG decreased (Cohen’s d = −1.07) significantly within three months (p < 0.001) in diabetic individuals. A post hoc sub-group analysis showed that HbA1c (Cohen’s d = −0.41; p < 0.05) and fasting insulin levels (Cohen’s d = 0.56; p < 0.05) changed significantly in diabetic individuals above 55 years. GSH supplementation caused a significant increase in blood GSH and helped maintain the baseline HbA1c overall. These results suggest GSH supplementation is of considerable benefit to patients above 55 years, not only supporting decreased glycated hemoglobin (HbA1c) and 8-OHdG but also increasing fasting insulin. The clinical implication of our study is that the oral administration of GSH potentially complements anti-diabetic therapy in achieving better glycemic targets, especially in the elderly population. Full article
(This article belongs to the Special Issue Antioxidants in Diabetes)
Show Figures

Figure 1

19 pages, 2513 KiB  
Article
A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes
by Gustavo D. Campagnaro, Hamza A. A. Elati, Sofia Balaska, Maria Esther Martin Abril, Manal J. Natto, Fabian Hulpia, Kelly Lee, Lilach Sheiner, Serge Van Calenbergh and Harry P. de Koning
Int. J. Mol. Sci. 2022, 23(2), 710; https://doi.org/10.3390/ijms23020710 - 10 Jan 2022
Cited by 9 | Viewed by 3033
Abstract
Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei [...] Read more.
Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 2198 KiB  
Article
The Response to Oxidative Damage Correlates with Driver Mutations and Clinical Outcome in Patients with Myelofibrosis
by Elena Genovese, Margherita Mirabile, Sebastiano Rontauroli, Stefano Sartini, Sebastian Fantini, Lara Tavernari, Monica Maccaferri, Paola Guglielmelli, Elisa Bianchi, Sandra Parenti, Chiara Carretta, Selene Mallia, Sara Castellano, Corrado Colasante, Manjola Balliu, Niccolò Bartalucci, Raffaele Palmieri, Tiziana Ottone, Barbara Mora, Leonardo Potenza, Francesco Passamonti, Maria Teresa Voso, Mario Luppi, Alessandro Maria Vannucchi, Enrico Tagliafico, Rossella Manfredini and on behalf of the Mynerva (MYeloid NEoplasms Research Venture AIRC)add Show full author list remove Hide full author list
Antioxidants 2022, 11(1), 113; https://doi.org/10.3390/antiox11010113 - 5 Jan 2022
Cited by 13 | Viewed by 3045
Abstract
Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal [...] Read more.
Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis. Full article
(This article belongs to the Special Issue Reactive Oxygen Species in Different Biological Processes)
Show Figures

Figure 1

17 pages, 3942 KiB  
Article
Molecular Evidence of the Inhibitory Potential of Melatonin against NaAsO2-Induced Aging in Male Rats
by Maryam Baeeri, Tina Didari, Madiha Khalid, Solmaz Mohammadi-Nejad, Seyed Mojtaba Daghighi, Ramtin Farhadi, Mahban Rahimifard, Zahra Bayrami, Hamed Haghi-Aminjan, Roham Foroumadi, Mahdi Gholami and Mohammad Abdollahi
Molecules 2021, 26(21), 6603; https://doi.org/10.3390/molecules26216603 - 31 Oct 2021
Cited by 13 | Viewed by 3366
Abstract
Arsenic (As) poisoning is widespread due to exposure to pollution. The toxic level of (As) causes oxidative stress-induced aging and tissue damage. Since melatonin (MLT) has anti-oxidant and anti-aging properties, we aimed to evaluate the protective effect of MLT against the toxicity of [...] Read more.
Arsenic (As) poisoning is widespread due to exposure to pollution. The toxic level of (As) causes oxidative stress-induced aging and tissue damage. Since melatonin (MLT) has anti-oxidant and anti-aging properties, we aimed to evaluate the protective effect of MLT against the toxicity of sodium arsenite (NaAsO2). Healthy male NMRI mice were divided into eight different groups. The control group received a standard regular diet. Other groups were treated with varying diets, including MLT alone, NaAsO2, and NaAsO2 plus MLT. After one month of treatment, biochemical and pathological tests were performed on blood, heart, and lung tissue samples. NaAsO2 increased the levels of TNF-α, 8-hydroxy-2-deoxy guanosine (8OHdG), malondialdehyde (MDA), reactive oxygen species (ROS), and high mobility group box 1 (HMGB1), increased the expression of TNF receptor type 1-associated death domain (TRADD) mRNA and telomerase reverse transcriptase, and decreased the expression of Klotho (KL) mRNA in both plasma and tissues. In contrast, MLT reduced MDA, ROS, HMGB1, lactate, and TNF-α enhanced the mRNA expression of KL, and suppressed the mRNA expression of the TERT and TRADD genes. Thus, MLT confers potent protection against NaAsO2- induced tissue injury and oxidative stress. Full article
Show Figures

Figure 1

19 pages, 8300 KiB  
Article
Metabolic Analysis of the Development of the Plant-Parasitic Cyst Nematodes Heterodera schachtii and Heterodera trifolii by Capillary Electrophoresis Time-of-Flight Mass Spectrometry
by Awraris Derbie Assefa, Seong-Hoon Kim, Vimalraj Mani, Hyoung-Rai Ko and Bum-Soo Hahn
Int. J. Mol. Sci. 2021, 22(19), 10488; https://doi.org/10.3390/ijms221910488 - 28 Sep 2021
Cited by 6 | Viewed by 3276
Abstract
The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of [...] Read more.
The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (β-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode–plant interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 5061 KiB  
Article
Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies
by Paula J. Scaife, Amy Simpson, Lesia O. Kurlak, Louise V. Briggs, David S. Gardner, Fiona Broughton Pipkin, Carolyn J. P. Jones and Hiten D. Mistry
Int. J. Mol. Sci. 2021, 22(14), 7295; https://doi.org/10.3390/ijms22147295 - 7 Jul 2021
Cited by 37 | Viewed by 4638
Abstract
Up to 11% of pregnancies extend to post-term with adverse obstetric events linked to pregnancies over 42 weeks. Oxidative stress and senescence (cells stop growing and dividing by irreversibly arresting their cell cycle and gradually ageing) can result in diminished cell function. There [...] Read more.
Up to 11% of pregnancies extend to post-term with adverse obstetric events linked to pregnancies over 42 weeks. Oxidative stress and senescence (cells stop growing and dividing by irreversibly arresting their cell cycle and gradually ageing) can result in diminished cell function. There are no detailed studies of placental cell senescence markers across a range of gestational ages, although increased levels have been linked to pre-eclampsia before full term. This study aimed to determine placental senescence and oxidative markers across a range of gestational ages in women with uncomplicated pregnancies and those with a diagnosis of pre-eclampsia. Placentae were obtained from 37 women with uncomplicated pregnancies of 37–42 weeks and from 13 cases of pre-eclampsia of 31+2–41+2 weeks. The expression of markers of senescence, oxidative stress, and antioxidant defence (tumour suppressor protein p16INK4a, kinase inhibitor p21, interleukin-6 (IL-6), NADPH oxidase 4 (NOX4), glutathione peroxidases 1, 3, and 4 (GPx1, GPx3, and GPx4), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1)) genes was measured (quantitative real-time PCR). Protein abundance of p16INK4a, IL-6, NOX4, 8-hydroxy-2′-deoxy-guanosine (8-OHdG), and PlGF was assessed by immunocytochemistry. Placental NOX4 protein was higher in post-term than term deliveries and further increased by pre-eclampsia (p < 0.05 for all). P21 expression was higher in post-term placentae (p = 0.012) and in pre-eclampsia (p = 0.04), compared to term. Placental P16INK4a protein expression was increased post-term, compared to term (p = 0.01). In normotensive women, gestational age at delivery was negatively associated with GPx4 and PlGF (mRNA and protein) (p < 0.05 for all), whereas a positive correlation was seen with placental P21, NOX4, and P16INK4a (p < 0.05 for all) expression. Markers of placental oxidative stress and senescence appear to increase as gestational age increases, with antioxidant defences diminishing concomitantly. These observations increase our understanding of placental health and may contribute to assessment of the optimal gestational age for delivery. Full article
(This article belongs to the Special Issue Placental Related Disorders of Pregnancy)
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Crystal Structures of [Fe]-Hydrogenase from Methanolacinia paynteri Suggest a Path of the FeGP-Cofactor Incorporation Process
by Gangfeng Huang, Francisco Javier Arriaza-Gallardo, Tristan Wagner and Seigo Shima
Inorganics 2020, 8(9), 50; https://doi.org/10.3390/inorganics8090050 - 17 Sep 2020
Cited by 7 | Viewed by 3550
Abstract
[Fe]-hydrogenase (Hmd) catalyzes the reversible heterolytic cleavage of H2, and hydride transfer to methenyl-tetrahydromethanopterin (methenyl-H4MPT+). The iron-guanylylpyridinol (FeGP) cofactor, the prosthetic group of Hmd, can be extracted from the holoenzyme and inserted back into the protein. Here, [...] Read more.
[Fe]-hydrogenase (Hmd) catalyzes the reversible heterolytic cleavage of H2, and hydride transfer to methenyl-tetrahydromethanopterin (methenyl-H4MPT+). The iron-guanylylpyridinol (FeGP) cofactor, the prosthetic group of Hmd, can be extracted from the holoenzyme and inserted back into the protein. Here, we report the crystal structure of an asymmetric homodimer of Hmd from Methanolacinia paynteri (pHmd), which was composed of one monomer in the open conformation with the FeGP cofactor (holo-form) and a second monomer in the closed conformation without the cofactor (apo-form). In addition, we report the symmetric pHmd-homodimer structure in complex with guanosine monophosphate (GMP) or guanylylpyridinol (GP), in which each ligand was bound to the protein, where the GMP moiety of the FeGP-cofactor is bound in the holo-form. Binding of GMP and GP modified the local protein structure but did not induce the open conformation. The amino-group of the Lys150 appears to interact with the 2-hydroxy group of pyridinol ring in the pHmd–GP complex, which is not the case in the structure of the pHmd–FeGP complex. Lys150Ala mutation decreased the reconstitution rate of the active enzyme with the FeGP cofactor at the physiological pH. These results suggest that Lys150 might be involved in the FeGP-cofactor incorporation into the Hmd protein in vivo. Full article
Show Figures

Graphical abstract

23 pages, 4913 KiB  
Article
Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize (Zea mays L.) Seedlings
by Hubert Sytykiewicz, Iwona Łukasik, Sylwia Goławska and Grzegorz Chrzanowski
Int. J. Mol. Sci. 2019, 20(15), 3742; https://doi.org/10.3390/ijms20153742 - 31 Jul 2019
Cited by 26 | Viewed by 3932
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose [...] Read more.
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time. Full article
(This article belongs to the Special Issue Plant Innate Immunity 3.0)
Show Figures

Figure 1

14 pages, 4858 KiB  
Article
Protective Effects of Dioscorea batatas Flesh and Peel Extracts against Ethanol-Induced Gastric Ulcer in Mice
by Siyul Byeon, Jisun Oh, Ji Sun Lim, Jeong Soon Lee and Jong-Sang Kim
Nutrients 2018, 10(11), 1680; https://doi.org/10.3390/nu10111680 - 5 Nov 2018
Cited by 52 | Viewed by 6268
Abstract
Gastric ulcer is a major digestive disorder and provoked by multifactorial etiologies, including excessive alcohol consumption. In this study, we examined the gastroprotective effect of aqueous and ethanolic extracts of Dioscorea batatas Decne (DBD; commonly called Chinese yam) flesh or peel against acidified [...] Read more.
Gastric ulcer is a major digestive disorder and provoked by multifactorial etiologies, including excessive alcohol consumption. In this study, we examined the gastroprotective effect of aqueous and ethanolic extracts of Dioscorea batatas Decne (DBD; commonly called Chinese yam) flesh or peel against acidified ethanol-induced acute gastric damage in mice. Our findings demonstrated that oral supplementation of aqueous or ethanolic extracts of DBD flesh or peel before ulcer induction was significantly effective in macroscopically and histologically alleviating ethanol-induced pathological lesions in gastric mucosa, decreasing the plasma levels of inflammatory mediators, such as nitric oxide and interleukin-6, attenuating the gastric expression of cyclooxygenase-2, and increasing the gastric content of prostaglandin E2. In particular, pretreatment with the flesh extract prepared in 60% ethanol prominently decreased the expression of biomarkers of oxidative stress, including the plasma levels of 8-hydroxy-2-guanosine and malondialdehyde, and restored heme oxygenase-1 expression and superoxide dismutase activity in the stomach. Overall, these findings suggest that the oral supplementation with DBD extract, especially flesh ethanol extract, prior to excessive alcohol consumption, may exert a protective effect against ethanol-induced gastric mucosal damage in vivo, presumably through the activation of the antioxidant system and suppression of the inflammatory response. Full article
(This article belongs to the Special Issue Inflammation- An Ancient Battle. What are the Roles of Nutrients?)
Show Figures

Figure 1

Back to TopTop