Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = 7075 Al-alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 29928 KB  
Article
Enhancing the Printability of Laser Powder Bed Fusion-Processed Aluminum 7xxx Series Alloys Using Grain Refinement and Eutectic Solidification Strategies
by Chukwudalu Uchenna Uba, Huan Ding, Yehong Chen, Shengmin Guo and Jonathan Richard Raush
Materials 2025, 18(22), 5089; https://doi.org/10.3390/ma18225089 - 9 Nov 2025
Viewed by 470
Abstract
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges [...] Read more.
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges such as hot cracking and porosity due to rapid solidification, thermal gradients, and a wide freezing range. To address these challenges, this study proposes an integrated computational and experimental framework to enhance the LPBF processability of Al 7xxx alloys by compositional modification. Using the Calculation of Phase Diagram approach, printable Al 7xxx compositions were designed by adding grain refiners (V and/or Ti) and a eutectic solidification enhancer (Mg) to Al 7075 alloy to enable grain refinement and eutectic solidification. Subsequent LPBF experiments and characterization tests, such as metallography (scanning electron microscopy), energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray micro-computed tomography, confirmed the production of refined microstructures with reduced defects. This study contributes to existing approaches for producing high-quality Al 7xxx alloy parts without significant compositional deviations using an integrated computational and experimental approach. Finally, aligning with the Materials Genome Initiative, this study contributes to the development and industrial adoption of advanced materials. Full article
Show Figures

Figure 1

18 pages, 7962 KB  
Article
Influence of Pure Aluminum and 7075 Aluminum Alloy Powder Interlayers on the Microstructural and Mechanical Properties of Diffusion-Bonded 7B04 Aluminum Alloy Joints
by Ning Wang, Chunbo Li, Lansheng Xie and Minghe Chen
Materials 2025, 18(21), 4907; https://doi.org/10.3390/ma18214907 - 27 Oct 2025
Viewed by 331
Abstract
Diffusion bonding (DB) of aluminum alloys faces significant technical challenges, requiring thorough surface preparation and precise control of process parameters. To enhance the joint quality of 7B04 aluminum alloy sheets, pure aluminum (Al) and 7075 aluminum alloy powders were used as interlayers. In [...] Read more.
Diffusion bonding (DB) of aluminum alloys faces significant technical challenges, requiring thorough surface preparation and precise control of process parameters. To enhance the joint quality of 7B04 aluminum alloy sheets, pure aluminum (Al) and 7075 aluminum alloy powders were used as interlayers. In the DB experiments, nano-sized Al powder and micro-sized 7075 powders with different particle sizes served as interlayer materials. Compared to DB without an interlayer, using powder interlayers substantially reduced the bonding temperature while improving overall joint performance, with deformation kept below 6%. The lap shear strength (LSS) of the bonded 7B04 joints was significantly higher when 45 μm and 75 μm 7075 powders were used, compared to the 5 μm 7075 powder. The joint with a 50 nm Al powder interlayer achieved a maximum LSS of up to 220 MPa and exhibited considerably higher microhardness. Additionally, the mixed Al/7075 powder interlayer effectively decreased voids at the joint interface, contributing to increased LSS. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 14379 KB  
Article
Effect of AlCoCrFeNi2.1 High-Entropy Alloy Reinforcement on the Densification, Microstructure, and Hot-Cracking Behavior of LPBF-Processed AA7075
by Shixi Gan, Qiongqi Xu, Yi Zhang and Baljit Singh Bhathal Singh
Metals 2025, 15(11), 1193; https://doi.org/10.3390/met15111193 - 27 Oct 2025
Viewed by 394
Abstract
The application of laser powder bed fusion (LPBF) to 7xxx-series aluminum alloys is fundamentally limited by hot cracking and porosity. This study demonstrates that adding 5 wt.% AlCoCrFeNi2.1 high-entropy alloy (HEA) particles to 7075 aluminum alloy (AA7075) powder can effectively mitigate these [...] Read more.
The application of laser powder bed fusion (LPBF) to 7xxx-series aluminum alloys is fundamentally limited by hot cracking and porosity. This study demonstrates that adding 5 wt.% AlCoCrFeNi2.1 high-entropy alloy (HEA) particles to 7075 aluminum alloy (AA7075) powder can effectively mitigate these issues. Microstructural characterization revealed that the HEA particles remained largely intact and formed a strong metallurgical bond with the α-Al matrix. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed that this bonding is facilitated via the in situ formation of new intermetallic phases at the particle/matrix interface. X-ray diffraction (XRD) identified these phases as primarily Al5Co2 and Fe3Ni2. A key consequence of this reinforced interface is a significant change in cracking behavior; optical microscopy (OM) showed that long, continuous cracks typical of AA7075 were replaced by shorter, deflected cracks in the composite. While porosity was not eliminated, the addition of HEA stabilized the process, yielding a consistent density improvement of 0.5–1.5% across the processing window. This microstructural modification resulted in a substantial ~64% increase in average microhardness, which increased from 96.41 ± 9.81 HV0.5 to 158.46 ± 11.33 HV0.5. These results indicate that HEA reinforcement is a promising route for engineering the microstructure and improving the LPBF processability of high-strength aluminum alloys. Full article
Show Figures

Figure 1

21 pages, 8060 KB  
Article
Enhanced Microstructural and Mechanical Properties of Mig Welded Al 7075 Alloy Under Longitudinal Vibrations
by Teodor Machedon-Pisu and Mihai Machedon-Pisu
Materials 2025, 18(18), 4281; https://doi.org/10.3390/ma18184281 - 12 Sep 2025
Viewed by 435
Abstract
In many areas such as the automotive, aircraft, and building industries, the high-strength aluminum alloy Al 7075 is frequently used due to its appropriate properties as a lightweight structural material. However, due to modest weldability, it is challenging to obtain high-quality welds with [...] Read more.
In many areas such as the automotive, aircraft, and building industries, the high-strength aluminum alloy Al 7075 is frequently used due to its appropriate properties as a lightweight structural material. However, due to modest weldability, it is challenging to obtain high-quality welds with suitable mechanical properties, as cracks are generated while welding. Moreover, in order to avoid post-welding heat treatments and the use of complex welding equipment, in this paper the Al 7075 alloy is welded with MIG under longitudinal vibrations by using the Al 4043 alloy as filler material. As a consequence of strengthening the HAZ through precipitation, the mechanical and structural properties of the welded joints can be improved. These are investigated both under longitudinal forced vibrations at 50 Hz and without such vibrations. The results reveal improvements in terms of reducing the risk of hot cracking, obtaining a band structure free of porosity of the welds, improving the hardness of the welds under vibrations by 8.7% to 12.5%, and improving the tensile strength of the plates welded under vibrations by 12 to 15.5% in comparison to no vibrations. In relation to other welding procedures, the proposed procedure is more cost-effective and the weld quality is improved during the welding process. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 9095 KB  
Article
Electrochemical Corrosion Behavior of SiO2 Superhydrophobic Inhibitor in Al7075
by Jesús Manuel Jáquez-Muñoz, Luis Eduardo Vázquez-Nuñez, Betania Sánchez-Santamaria, José Saúl Arias-Cerón, Jaime Gonzalo Santana-Esquivel, Abel Diaz-Olivares, Luis Enrique Arambula-Miranda, Martha Guadalupe Carrera-Rámirez, Aurora Abigail López-Ibarra and Delfino Cornejo-Monroy
Coatings 2025, 15(9), 1064; https://doi.org/10.3390/coatings15091064 - 11 Sep 2025
Viewed by 618
Abstract
The automotive industry has been employing Al alloys to reduce the weight of chassis; however, this can present some corrosion problems. In this research, we study the electrochemical behavior of SiO2 superhydrophobic on Al 7075. The electrochemical techniques employed were cyclic potentiodynamic [...] Read more.
The automotive industry has been employing Al alloys to reduce the weight of chassis; however, this can present some corrosion problems. In this research, we study the electrochemical behavior of SiO2 superhydrophobic on Al 7075. The electrochemical techniques employed were cyclic potentiodynamic polarization (CPP), performed at a scan rate of 60 mV/s from −800 to 800 mV vs. OCP, and electrochemical impedance spectroscopy (EIS) at ±10 mV with frequencies ranging from 10 mHz to 100 kHz, as per ASTM G61 and ASTM G106. The electrolytes employed were NaCl and H2SO4 at 3.5 wt.% simulating marine and industrial atmospheres. The results showed that the coating presented an efficiency of 81% when exposed to NaCl, but the corrosion in this medium is localized. In H2SO4, the corrosion type is uniform. Full article
Show Figures

Figure 1

14 pages, 6773 KB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 - 1 Aug 2025
Cited by 1 | Viewed by 541
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

13 pages, 1799 KB  
Article
Effect of Micro-Arc Oxidation Voltage on the Surface Morphology and Properties of Ceramic Coatings on 7075 Aluminum Alloy
by Zarina Satbayeva, Ainur Zhassulan, Bauyrzhan Rakhadilov, Aibek Shynarbek, Kuanysh Ormanbekov and Aiym Leonidova
Metals 2025, 15(7), 746; https://doi.org/10.3390/met15070746 - 2 Jul 2025
Viewed by 851
Abstract
Ceramic oxide coatings were fabricated on 7075 aluminum alloy via micro-arc oxidation (MAO) in a silicate-phosphate electrolyte under voltages of 250 V, 300 V, and 350 V for 600 s. The effect of the applied voltage on the surface morphology, microstructure, phase composition, [...] Read more.
Ceramic oxide coatings were fabricated on 7075 aluminum alloy via micro-arc oxidation (MAO) in a silicate-phosphate electrolyte under voltages of 250 V, 300 V, and 350 V for 600 s. The effect of the applied voltage on the surface morphology, microstructure, phase composition, microhardness, roughness, coating thickness, and corrosion resistance was systematically studied. The coating obtained at 300 V demonstrated a dense structure with relatively low surface roughness (2.3 μm) and a thickness of approximately 70 μm. This sample also exhibited the most balanced performance, combining relatively high microhardness (~422 HV) and the lowest corrosion current density (6.1 × 10−7 A/cm2) in a 3.5 wt.% NaCl solution. X-ray diffraction patterns revealed the presence of both γ- and α-Al2O3 phases in all coated samples, with a relative increase in α-phase intensity observed at an intermediate voltage. The results demonstrate that the applied voltage plays a critical role in determining the coating structure and performance, offering insights into the surface treatment of high-strength aluminum alloys for engineering applications. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

16 pages, 4539 KB  
Article
Effect of Scanning Speed on Wear and Corrosion Behaviors of High-Speed Laser-Cladded Cu-TiC Coating
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(6), 641; https://doi.org/10.3390/met15060641 - 9 Jun 2025
Cited by 2 | Viewed by 1080
Abstract
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed [...] Read more.
In response to the performance requirements of ship conductive rings in the coupled environment of high salt spray, high humidity, and mechanical wear in the ocean, a Cu-TiC composite coating was prepared on the surface of 7075 aluminum alloy by using the high-speed laser cladding (HLC) technology. The influence laws of the scanning speed (86.4–149.7 mm/s) on the microstructure, tribological properties, and corrosion resistance of the coating were explored. The results show that the scanning speed significantly changes the phase composition and grain morphology of the coating by regulating the thermodynamic behavior of the molten pool. At a low scanning speed (86.4 mm/s), the CuAl2 phase is dominant, and the grains are mainly columnar crystals. As the scanning speed increases to 149.7 mm/s, the accelerated cooling rate promotes an increase in the proportion of Cu2Al3 phase, refines the grains to a coexisting structure of equiaxed crystals and cellular crystals, and improves the uniformity of TiC particle distribution. Tribological property analysis shows that the high scanning speed (149.7 mm/s) coating has a 17.9% lower wear rate than the substrate due to grain refinement and TiC interface strengthening. The wear mechanism is mainly abrasive wear and adhesive wear, accompanied by slight oxidative wear. Electrochemical tests show that the corrosion current density of the high-speed cladding coating is as low as 7.36 × 10−7 A·cm−2, and the polarization resistance reaches 23,813 Ω·cm2. The improvement in corrosion resistance is attributed to the formation of a dense passivation film and the blocking of the Cl diffusion path. The coating with a scanning speed of 149.7 mm/s exhibits optimal wear-resistant and corrosion-resistant synergistic performance and is suitable for the surface strengthening of conductive rings in extreme marine environments. This research provides theoretical support for the process performance regulation and engineering application of copper-based composite coatings. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

21 pages, 8847 KB  
Article
The Importance of Laser Beam Power on the Microstructure and Wear Behavior of Al-WC Composite Layers Produced by Laser Surface Alloying
by Natalia Makuch and Piotr Dziarski
Materials 2025, 18(9), 1899; https://doi.org/10.3390/ma18091899 - 22 Apr 2025
Viewed by 552
Abstract
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 [...] Read more.
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 kW) were used, generating different temperature distributions during processing. The temperature across the laser track axis was determined according to the mathematical model proposed by Ashby and Esterling. All layers produced contained unmelted WC particles in an aluminum-based matrix. The depth of the WC-Al composite layers strongly depended on the applied laser beam power. The lowest thickness of 198 ± 36 µm was measured for the layer produced at a laser beam power of 0.65 kW. A twofold increase in power P was the reason for obtaining a thickness thAZ = 387 ± 21 µm. The power of the laser beam also affected the percentage of the substrate material (7075 alloy) in the molten pool during the laser processing. As a result, the highest amount of substrate material was obtained for the WC-Al composite layer produced using the highest laser beam power P = 1.3 kW. Simultaneously, this layer was characterized by the lowest percentage of tungsten carbide particles in this layer. The temperature profile along the axis of the laser track and also the maximum temperature reached confirmed the difference in the bonding between the reinforcing WC particles and the metal matrix. For P = 0.65 kW, too low a temperature was reached for the tungsten carbide particles to overmelt, resulting in poor bonding to the metallic matrix in the layer. Moreover, the layer showed serious defects such as discontinuity, porosity, and cracks. As a result, the WC-Al composite layer produced at the lowest laser beam power was characterized by a wear resistance lower (Imw = 6.094 mg/cm2/h) than the 7075 alloy without surface layer (Imw = 5.288 mg/cm2). The highest wear resistance was characteristic of the 7075 alloy laser alloyed with a laser beam power equal to 1.17 kW (Imw = 2.475 mg/cm2/h). This layer showed satisfactory quality and adhesion to the substrate material. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

15 pages, 5143 KB  
Article
Microstructure Evolution During Preparation of Semi-Solid Billet for 7075 Aluminum Alloy by EASSIT Process
by Yanghu Hu, Ming Chang, Shuqin Fan, Boyang Liu, Yongfei Wang, Shuangjiang Li, Chao Zhang, Peng Zhang and Shengdun Zhao
Metals 2025, 15(4), 452; https://doi.org/10.3390/met15040452 - 17 Apr 2025
Viewed by 729
Abstract
The 7075 aluminum alloy semi-solid billet is prepared using the extrusion alloy semi-solid isothermal treatment (EASSIT) process. These findings indicate that as the isothermal time increases, there is a noticeable increase in both the average grain size (AGS) and shape factor (SF). The [...] Read more.
The 7075 aluminum alloy semi-solid billet is prepared using the extrusion alloy semi-solid isothermal treatment (EASSIT) process. These findings indicate that as the isothermal time increases, there is a noticeable increase in both the average grain size (AGS) and shape factor (SF). The relationship between the AGS, SF, and isothermal temperature is complex due to the influence of grain refinement mechanisms. The HV0.2 of isothermal samples decreased with the increase in isothermal temperature, which may be related to the increase in liquid-phase composition and AGS; Cu and Si show obvious segregation at grain boundaries and within intracrystalline droplets. The segregation of Cu and Si in the initially melted solid grains leads to the creation of intracrystalline droplets. The diffraction peaks of Al7Cu2Fe, Al6(Cu, Fe), Al2CuMg, and MgZn2 gradually decrease as the isothermal temperature increases. Due to the influence of the grain refinement mechanism and melting mechanism, the coarsening behavior of grains at high isothermal temperatures is more complicated, and the coarsening rate constant shows an increment followed by a subsequent decrease as the isothermal temperature rises. The coarsening kinetics of 7075 aluminum alloy in a semi-solid state can be described using the LSW equation of n = 3. Full article
Show Figures

Figure 1

14 pages, 6899 KB  
Article
Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment
by Gahyun Choi, Hobyung Chae, You Sub Kim, Soon-Ku Hong, Eunjoo Shin and Soo Yeol Lee
Materials 2025, 18(7), 1544; https://doi.org/10.3390/ma18071544 - 28 Mar 2025
Cited by 3 | Viewed by 1535
Abstract
Al 7075 alloy (AA7075) exhibits excellent strength yet poses significant challenges for additive manufacturing (AM) due to its complex composition and propensity for defects during rapid solidification. To address these issues, this study introduces a novel AA7075 containing a small amount of Si [...] Read more.
Al 7075 alloy (AA7075) exhibits excellent strength yet poses significant challenges for additive manufacturing (AM) due to its complex composition and propensity for defects during rapid solidification. To address these issues, this study introduces a novel AA7075 containing a small amount of Si fabricated by selective laser melting (SLM). Despite concerns about reduced melt-pool stability at low Si content, the alloy was successfully processed into defect-minimized samples. Systematic evaluations of as-built and heat-treated (direct aging, solid-solution, T6) samples revealed distinct microstructural evolution and clear improvements in mechanical properties and corrosion resistance. Specifically, as-built and direct aging conditions showed high strength but limited ductility and pronounced galvanic corrosion due to inhomogeneous microstructures. Conversely, solid-solution and T6 treatments effectively homogenized the microstructure, significantly enhancing ductility and reducing corrosion susceptibility, with the T6-treated samples exhibiting the most balanced mechanical and electrochemical performance. By maintaining a favorable microstructural balance while minimizing Si-induced brittleness, the low-Si AA7075 demonstrates improved SLM processability and robust performance. These findings offer a new pathway for optimizing AM aluminum alloys through tailored heat treatments. Full article
Show Figures

Figure 1

19 pages, 49232 KB  
Article
Tribological Study of Multi-Walled Carbon Nanotube-Reinforced Aluminum 7075 Using Response Surface Methodology and Multi-Objective Genetic Algorithm
by Endalkachew Mosisa Gutema, Mahesh Gopal and Hirpa G. Lemu
J. Compos. Sci. 2025, 9(3), 137; https://doi.org/10.3390/jcs9030137 - 14 Mar 2025
Cited by 2 | Viewed by 993
Abstract
Aluminum metal matrix composites (AlMMCs) are widely employed in the aerospace and automotive industries due to their greater qualities in comparison to the base alloy. Adding nanocomposites like multi-walled carbon nanocomposites (MWCNTs) to aluminum enhances its mechanical properties. In the current research, aluminum [...] Read more.
Aluminum metal matrix composites (AlMMCs) are widely employed in the aerospace and automotive industries due to their greater qualities in comparison to the base alloy. Adding nanocomposites like multi-walled carbon nanocomposites (MWCNTs) to aluminum enhances its mechanical properties. In the current research, aluminum 7075 with MWCNT particles was prepared and characterized to study its tribological behaviors, such as its hardness and specific wear rate. The experiment was designed with varying weight percentages of MWCNTs of 0.5, 1.0, and 1.5, and these were fabricated using powder metallurgy, employing compacting pressures of 300, 400, and 500 MPa and sintering temperatures of 400, 450, and 500 °C. Further, the experimental setup was designed using Design-Expert V13 to examine the impact of influencing parameters. A second-order mathematical model was developed via central composite design (CCD) using a response surface methodology (RSM), and the performance characteristics were analyzed using an analysis of variance (ANOVA). The hardness (HV) and specific wear rate (SWR) were measured using a hardness tester and pin-on-disk apparatus. From the results thus obtained, it was observed that an increase in compacting pressure and sintering temperature tends to increase the hardness and specific wear rate. An increasing weight percentage of MWCNTs increased their hardness, while the SWR was less between the weight percentages 0.9 and 1.3. A multi-objective genetic algorithm (MOGA) was trained and evaluated to provide the best feasible solutions. The MOGA suggested sixteen sets of non-dominated Pareto optimal solutions that had the best and lowest predicted values. The confirmatory analytical results and predicted characteristics were found to be excellent and consistent with the experiential values. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 6589 KB  
Article
Atmospheric Corrosion Behavior of Typical Aluminum Alloys in Low-Temperature Environment
by Tengfei Cui, Jianguo Wu, Jian Song, Di Meng, Xiaoli Jin, Huiyun Tian and Zhongyu Cui
Metals 2025, 15(3), 277; https://doi.org/10.3390/met15030277 - 4 Mar 2025
Cited by 1 | Viewed by 3214
Abstract
The atmospheric corrosion behavior of type 2024, 5083, 6061, and 7075 aluminum alloys in the Antarctic environment was investigated by outdoor exposure tests and indoor characterization. After one year of exposure to the Antarctic atmosphere, significant differences in surface corrosion states were observed [...] Read more.
The atmospheric corrosion behavior of type 2024, 5083, 6061, and 7075 aluminum alloys in the Antarctic environment was investigated by outdoor exposure tests and indoor characterization. After one year of exposure to the Antarctic atmosphere, significant differences in surface corrosion states were observed among the specimens. The results revealed that the corrosion rate of the 2024 aluminum alloy was the highest, reaching 14.5 g/(m2·year), while the 5083 aluminum alloy exhibited the lowest corrosion rate of 1.36 g/(m2·year). The corrosion products formed on the aluminum alloys exposed to the Antarctic environment were primarily composed of AlOOH and Al2O3. In the Antarctic atmosphere environment, the pits were dominated by a freezing–thawing cycle and salt deposition. The freezing–thawing cycle promotes the wedge effect of corrosion products at the grain boundary, resulting in exfoliation corrosion of high-strength aluminum alloys. Full article
(This article belongs to the Special Issue Corrosion of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

17 pages, 7335 KB  
Article
Dynamic Plasticity and Fracture of Al 7075 and V95T1 Alloys: High-Velocity Impact Experiments
by Egor S. Rodionov, Andrey Ya. Cherepanov, Alfiya G. Fazlitdinova, Timur T. Sultanov, Victor G. Lupanov, Polina N. Mayer and Alexander E. Mayer
Dynamics 2025, 5(1), 6; https://doi.org/10.3390/dynamics5010006 - 15 Feb 2025
Cited by 1 | Viewed by 1552
Abstract
A novel method to measure dynamic flow stress and corresponding strain rates obtained from Taylor tests using profiled samples with a reduced cylindrical head part was applied to study the dynamic characteristics of similar commercial 7075 and V95T1 aluminum alloys. The measured dynamic [...] Read more.
A novel method to measure dynamic flow stress and corresponding strain rates obtained from Taylor tests using profiled samples with a reduced cylindrical head part was applied to study the dynamic characteristics of similar commercial 7075 and V95T1 aluminum alloys. The measured dynamic flow stress is verified using a classical Taylor’s approach with uniform cylinders and compared with the literature data. Our study shows that the dynamic flow stress of 7075 alloy, which is 786 MPa at strain rates of (4–8) × 103 s−1, exceeds the value of 624 MPa for V95T1 alloy at strain rates of (2–6) × 103 s−1 by 25%. The threshold impact velocity resulting in fracture of the 4 mm head part of the profiled samples is 116–130 m/s for 7075 alloy and only 108 m/s for V95T1 alloy. The fracture pattern is also different between the alloys with characteristic shear-induced cracks oriented at 45° to the impact direction in the case of V95T1 alloy and perpendicular to the breaking off head part in the case of 7075 alloy. On the other hand, the compressive fracture strain of V95T1 alloy, which is 0.29–0.36, exceeds that of 7075 alloy, which is 0.27–0.33, by approximately 8%. Thus, V95T1 aluminum alloy exhibits less strength but is more ductile, while 7075 aluminum alloy exhibits more strength but is simultaneously more brittle. Full article
Show Figures

Figure 1

31 pages, 21065 KB  
Article
Effect of Zirconium Silicate Reinforcement on Aluminum 7075; Mechanical Properties, Thermomechanical Analysis and Vibrational Behavior
by Balbheem Kamanna, S. B. Kivade and M. Nagamadhu
Eng 2025, 6(2), 23; https://doi.org/10.3390/eng6020023 - 22 Jan 2025
Viewed by 1481
Abstract
Aluminum 7075 alloys are widely utilized in aerospace, transportation, and marine industries due to their high strength and low density. However, further research is needed to understand their mechanical, thermomechanical, and vibrational behaviors when reinforced. This study focuses on the development of Al [...] Read more.
Aluminum 7075 alloys are widely utilized in aerospace, transportation, and marine industries due to their high strength and low density. However, further research is needed to understand their mechanical, thermomechanical, and vibrational behaviors when reinforced. This study focuses on the development of Al 7075 composites reinforced with zirconium silicate (ZrSiO4), processed via sand stir casting. The mechanical properties, including tensile, compression, and impact strength, as well as thermomechanical and vibrational behaviors, were thoroughly investigated. A planetary ball mill was used to mix ZrSiO4 with a wettability agent, and the results indicated that the addition of ZrSiO4 with the wettability agent significantly enhanced the mechanical properties. Fourier Transform Infrared Spectroscopy (FTIR) was employed to identify the compounds formed after adding the reinforcement and wettability agent. Scanning Electron Microscope (SEM) images and Energy-dispersive X-ray (EDX) analysis revealed a uniform distribution of the particles within the matrix. The tensile, compression, and impact strengths increased by 20%, 21%, and 19%, respectively, with the addition of 8 wt% ZrSiO4; however, strain decreased. Additionally, heat treatment further enhanced the mechanical properties of the composites. The thermomechanical properties showed improvement even at elevated temperatures, and the damping factor was enhanced with the addition of ZrSiO4. The elemental composition of the reinforced composites was analyzed using EDX, confirming the presence of the reinforcement. This research highlights the potential of Al 7075-ZrSiO4 composites for improved performance in various applications. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

Back to TopTop